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Is there more to folates than neural-tube defects?
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The purpose of the present paper is to review our current understanding of the chemistry and
biochemistry of folic acid and related folates, and to discuss their impact on public health beyond
that already established in relation to neural-tube defects. Our understanding of the fascinating
world of folates and C1 metabolism, and their role in health and disease, has come a long way since
the discovery of the B-vitamin folic acid by Wills (1931), and its first isolation by Mitchell et al.
(1941). However, there is still much to do in perfecting methods for the measurement of folate
bioavailability, and status, with a high extent of precision and accuracy. Currently, examination
of the relationships between common gene polymorphisms involved in C1 metabolism and folate
bioavailability and folate status, morbidity, mortality and longevity is evaluated as a series of
individual associations. However, in the future, examination of the concurrent effects of such
common gene polymorphisms may be more beneficial.

Folic acid: Bioavailability: C1 metabolism: Gene polymorphisms: Health and disease

5-methyl THF, 5-methyltetrahydrofolic acid; MTHFR, methylenetetrahydrofolate reductase.Folate is a generic term for all B-vitamin compounds that
exhibit a common vitamin activity based on the parent
structure of folic acid (pteroyl-L-monoglutamic acid).
Folates are essential for a wide range of biochemical
pathways involving C1 metabolism. In particular, folates
play an essential role in cell replication and pregnancy
because they are required for the synthesis of purines and
pyrimidines, the building blocks of DNA. Marked protection
against neural-tube defects has been shown in women
supplemented periconceptionally with folic acid (MRC
Vitamin Study Research Group, 1991; Czeizel & Dudas,
1992). The remethylation of homocysteine, a S-containing
amino acid, intimately involves the metabolism of folate and
other B-vitamins, notably vitamin B12. Elevated plasma
homocysteine, a consequence of marginal folate deficiency,
is an emerging risk factor for vascular disease and certain
cancers (Boushey et al. 1995; Mason, 1995).

The purpose of the present paper is to review our current
understanding of the chemistry and biochemistry of the
vitamin, and to discuss its impact on public health. It also
identifies research areas where our knowledge is limited or
inadequate.

Chemical forms, dietary sources and intake

Folic acid is the most oxidised and stable form of folate and
consists of an aromatic pteridine ring linked through a

methylene bridge to p-aminobenzoic acid, and then to one
L-glutamic acid residue. It occurs rarely in nature, but is the
form used for vitamin supplementation and food fortification
because of its greater stability and lower cost. Folates
occurring naturally in body tissues and foods are mainly
5,6,7,8-tetrahydro-pteroylpolyglutamates, which contain a
fully-reduced pteridine ring together with additional
glutamic acid molecules linked by γ-peptide bonds. The
nutritional activity of these reduced polyglutamates is
expressed as long as the essential subunit structure of folic
acid remains largely intact. Additionally, folates are usually
C1 substituted at the N-5 (e.g. 5-methyl, 5-formyl) or N-10
(e.g. 10-formyl) positions, or have a single C bridge spanning
these positions (e.g. 5,10-methylene, 5,10-methenyl). Thus,
there are many chemical derivatives of folic acid that exhibit
a common vitamin activity (as folates), and these have been
well described (Wagner, 1996; Scott, 1999).

The main dietary sources of folate are leafy green
vegetables, dairy products and cereal products, especially
fortified breads and breakfast cereals. Mainly as a result of
the increased consumption of such fortified products, there
has been a gradual increase of about 14 % in folate intakes
since 1980. The average folate intake from the household
food supply in the UK in 1998 was 241 µg/d (Department of
Health, 2000). An additional average of 29 µg/d was
consumed outside the home, giving a final total average
folate intake of 270 µg/d.
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In the UK a value for the recommended daily amount
(which equates to the current reference nutrient intake) was
set for folate in 1979 at 300 µg/d for adults (Department of
Health, 1979). This value was later withdrawn because of
scientific uncertainties in the food folate data used to
calculate intakes. In 1991 the reference nutrient intake,
which is sufficient to cover the needs of most population
groups, was introduced for folate and set at 200 µg/d for all
adults, rising to 300 µg/d during pregnancy and 260 µg/d
during lactation (Department of Health, 1991). These
reference nutrient intakes were estimated on the basis of the
relationship between dietary intakes and markers of folate
status such as serum or erythrocyte folate concentrations,
and liver folate concentrations at post-mortem examination.
However, the current reference nutrient intake does not take
into account any differences due to genetic polymorphisms
of common folate enzymes.

Absorption and metabolism

Before absorption across the intestinal mucosa can take place,
dietary folates (which exist predominantly as polyglutamates)
need to be hydrolysed to the folate monoglutamate form in
the gut lumen by a brush-border γ-glutamyl hydrolase or
conjugase (folylpolyglutamate carboxypeptidase; Halsted,
1980). Human brush-border folate conjugase is a Zn-
dependent exopeptidase that catalyses the stepwise hydrolysis
of folate polyglutamates (Reisenauer et al. 1977). The
mucosal cells of the proximal small intestine (jejunum) then
take up these monoglutamates by a saturable active energy-
dependent carrier-mediated process at physiological concen-
trations, and by passive diffusion at higher concentrations
(Selhub et al. 1984). Many foods contain inhibitors of the
intestinal brush-border folate conjugase enzyme and/or folate
transport system, which can reduce the efficiency of
absorption (Tamura & Stokstad, 1973; Butterworth et al.
1974; Babu & Srikantia, 1976).

The efficiency of deconjugation and absorption in the gut
lumen can vary considerably with the folate form, the
presence of other dietary constituents and various physio-
logical factors. Absorption is not affected by the aging
process (Bailey et al. 1984), but it is markedly influenced by
pH, with a maximum at pH 6·3 and a sharp decline between
6·3 and 7·6 (Russell et al. 1979). Some foods, such as milk
and other dairy foods, contain folate-binding proteins
(Ghitis, 1967; Wagner, 1985). Small amounts of folate may
also be synthesised by intestinal flora in the body, but in
man (unlike the rat) this source of absorbable folate is only a
very minor one.

Absorbed folate monoglutamates are converted to the
5-methyltetrahydrofolic acid (5-methyl THF) form during
transit through the intestinal mucosa, before onward
transport into the hepatic portal vein. From here 5-methyl
THF is conveyed to the systemic plasma circulation via
the liver, which is thought to initially remove a sizeable
proportion of the absorbed dose (‘first pass effect’;
Steinberg et al. 1979). The only folate form usually
entering the human circulation from intestinal cells is
5-methyl THF. A review by Selhub et al. (1983)
concluded that the intestine is capable of both reduction
and C1 substitution (methylation) of physiological doses of

folic acid (e.g. from supplements and fortified foods)
before it is transported from the mucosal side to the
serosal side. However, this process is limited in capacity,
and folic acid uptake is itself saturable, with an additional
capacity for passive diffusion. As a result, if enough folic
acid is ingested (> 280 µg in one dose), unaltered folic
acid may appear in the circulation (Kelly et al. 1997).
With this exception, the folate form generally present in
the systemic circulation is 5-methyl THF, which is then
taken up by cells via folate transport systems. This form
cannot be retained intracellularly, or used as a coenzyme,
unless it is first metabolised by the vitamin B12-dependent
enzyme methionine synthase to the tetrahydrofolate form
(see Fig. 1) and then converted to a polyglutamate.
Circulating folic acid, from excess intake, can also be
taken up by cells and subsequently utilised after it is
initially reduced, via dihydrofolate, to the tetrahydrofolate
form. In man folate is mainly stored in the liver
(Whitehead, 1973; Hoppner & Lampi, 1980), which is
assumed to contain 50 % of the normal total body folate
content of 5–20 mg. Folate undergoes substantial entero-
hepatic recirculation, with as much as 100 µg folate
undergoing biliary re-excretion each day (Herbert & Das,
1993). Although much of this folate is reabsorbed by
the small intestine (Weir et al. 1985), the efficiency of
this re-absorption may be influenced by diet composition
if digestion of foods happens to be concurrently in
progress. Deficiencies of vitamin B12, vitamin C, Fe
and Zn can reduce the efficiency of folate utilisation.
Folate absorption is also affected adversely by some drugs
(anticonvulsants, anti-inflammatory and anti-cancer drugs,
and some oral contraceptives; Institute of Medicine, 2000).

It is thought that the bioavailability of food folates
averages about 50 % of that for folic acid (Gregory, 1997;
Bailey, 1998). Although the bioavailability of folic acid
taken in the form of supplements is high, when it is
consumed in the form of fortified foods the bioavailability is
thought to be lower and depends on the food vehicle used
for fortification. An estimate of 85 % bioavailability from
fortified foods was used to calculate the dietary folate
equivalents in the USA (Bailey, 1998; Lewis et al. 1999). It
was further calculated that folic acid taken in the form of
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Fig. 1. C1 metabolism, encompassing both homocysteine remethyl-
ation and thymidylate synthesis. SAM, S-adenosylmethionine; SAH,
S-adenosylhomocysteine; MS, methionine synthase; B-12, vitamin
B12; THF, tetrahydrofolic acid; MTHFR, methylenetetrahydrofolic
acid; dUMP, deoxyuridine monophosphate; TS, thymidylate
synthase.
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fortified foods, or taken with food, is 1·7 times more
bioavailable than food folates.

However, recent studies using a dual-label stable-isotope
protocol have suggested that some cereal-based vehicles
(especially bran) may inhibit folate absorption, i.e. below
the 85 % bioavailability used previously for vehicles
(Finglas et al. 2002b). Another recent study has also found
much higher absorption of spinach folate (79 %) relative to
a folic acid supplement, using an ilesotomy model in
which the difference between folate intake and the folate
content of ileostomy effluents was used to calculate absolute
absorption (Konings et al. 2002).

Methods for assessing folate bioavailability

Amongst short-term protocols, comparison of the serum or
plasma response to a single oral folate test dose relative to
that of a folic acid reference dose has often been used for the
assessment of folate bioavailability in human volunteers
(Gregory, 1997, 2001). Such protocols have varied, in that
they have entailed either measurement of the rate of increase,
or the maximum increase, in plasma folate concentration
over a period of 2–3 h (Perry & Chanarin, 1972; Lucock
et al. 1989; Bower et al. 1993; Kelly et al. 1997), or meas-
urement of the rise in plasma folate concentration (the area
under the curve) over a period of ≥ 7 h (Pietrzik et al. 1990;
Prinz-Langenohl et al. 1999). These protocols have been
criticised for their relative insensitivity, and because those
protocols based on the rate of increase, or the maximum
increase, may be flawed (Gregory, 2001). Additionally, it
has not yet been confirmed whether the plasma response to a
test dose derives, in its entirety, from the test dose.

The use of stable-isotope-labelling studies of folate
bioavailability was developed on the premise that labelled
folate molecules appearing in plasma or urine could only
be derived from any labelled dose administered (Gregory
& Toth, 1988). However, further work showed that the
appearance of labelled folate in plasma was greater for intra-
venous folates than for oral folates. Hence, it was suggested
that absolute bioavailability could not be determined readily
because of a presumed extensive hepatic uptake of absorbed
folates from the oral dose (Rogers et al. 1997). Methods were
then developed to avoid this limitation, based on a single-
dose dual-label approach in which two isotopically-labelled
forms of folic acid (13C and 2H) are administered; one as an
oral (13C) dose and one as an intravenous (2H) dose.

The percentage of the oral and intravenous doses excreted
as intact folate in urine over a 24–48 h period was measured
and then expressed as the urinary excretion ratio to estimate
the fractional absorption of the oral dose (Rogers et al.
1997). However, the ‘phenomenon’ that some oral doses of
folic acid exhibit a urinary excretion ratio higher than the
theoretical maximum of 1·0 was also reported. Although it
was confirmed later that the oral folic acid dose (absorbed
and then transferred into the plasma as 5-methyl THF) and
the intravenous folic acid dose (introduced into the plasma
directly as folic acid) were handled differently, it was
thought that this dual oral–intravenous approach would still
have much merit once the circulating form of plasma folate,

(6S-)5-methyl THF, was used for the intravenous dose
(Finglas et al. 2002b).

The analysis of either isolated plasma or urine folate has
been simplified recently. A previous, more cumbersome,
GC–MS procedure that involved previous chemical cleavage
of folates to their corresponding p-aminobenzoylglutamate
and subsequent derivatization to a more volatile compound
has been replaced by a more direct liquid chromatography–
MS technique (Hart et al. 2002). Studies using direct
measurement of plasma enrichment by the liquid chromatog-
raphy–MS approach, combined with kinetic modelling of
absorption curves, may offer an alternative for the improved
quantification of folate bioavailability (Finglas et al.
2002a). Fig. 2 shows the appearance of 5-methyl-
tetrahydro[13C6]folic acid in plasma following oral dosing of
fasted (12 h) adult volunteers with either 5-formyl-
tetrahydro[13C6]folic acid or [13C6]folic acid. The in vivo
kinetics and absorption profile appears to be different for
folic acid compared with 5-formyltetrahydrofolic acid, with
the plasma area-under-the-curve response to folic acid being
slower, and peaking much later, than the response to the
5-formyltetrahydrofolic acid test dose. This difference
would lead to spurious conclusions in bioavailability studies
based on comparisons of oral doses of reduced ‘labelled’
folate (e.g. labelled food folate) v. a ‘labelled’ folic acid
reference dose. It is speculated that this phenomenon may be
due to a slower rate of mucosal processing of folic acid
(involving an initial two-step reduction, first to dihydrofolic
acid and then to tetrahydrofolic acid, before methylation)
compared with 5-formyltetrahydrofolic acid (methylation
only). This difference may result in a slower transfer of
5-methyl THF metabolite to the plasma, which will, when
coupled with a similar clearance rate to that of 5-methyl THF
metabolite derived from oral 5-formyltetrahydrofolic acid,
result in a comparatively smaller labelled plasma area under
the curve.
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Fig. 2. Appearance of 5-methyltetrahydro[13C6]folic acid in plasma
following single oral dosing (600 nmol) of fasted (12 h) human adult
volunteers with 5-formyltetrahydro[13C6]folic acid (n); n 10) and
[13C6]folic acid (u; n 12). Values are means with their standard errors
represented by vertical bars. The labelled plasma response to the oral
dose of folic acid was slower, and peaked much later (173 (SE 10) min
v. 41 (SE 9) min), than that to the 5-formyltetrahydrofolic acid test dose.
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Genetic aspects

Over recent years the enzyme methylenetetrahydrofolate
reductase (MTHFR) has received much attention because of
the presence of a common gene polymorphism within the
population. This polymorphism is a thermo-labile enzyme
variant that results in an enzyme activity of about 50 % of
the normal value. It is inherited as an autosomal recessive
trait and has been identified as a 677C→T mutation
resulting in an alanine to valine substitution (Frosst et al.
1995). It was found to be associated with increased plasma
homocysteine and with possible increased risk of cardio-
vascular disease (Kang et al. 1991). The MTHFR enzyme,
which is dependent on FAD (a riboflavin coenzyme),
provides the 5-methyl THF necessary for the vitamin B12-
dependent remethylation of homocysteine to methionine
(Fig. 1). Thus, it is a crucial enzyme, as it can direct the
folate pool towards homocysteine remethylation at the
expense of DNA and RNA biosynthesis. The prevalence of
the MTHFR 677C→T variant is related to ethnicity; the
frequency of homozygosity for the T allele (abnormal TT
genotype) is approximately 10–15 % in the UK, 20–30 %
in some Italian populations, but only a few percent in
Afro-Americans (Schneider et al. 1998).

The concentration of erythrocyte folate, used as an index
of body stores, varies according to MTHFR 677C→T
genotype, and appears to be related to the type of folate assay

used. This relationship is explained by the different responses
of the intracellular folate species to the various detection
systems (Molloy et al. 1998), since it has been shown
recently that formylated tetrahydrofolate polyglutamates
may accumulate in ‘TT’ (MTHFR 677C→T) subjects at the
expense of 5-methyl THF, the predominant form in other
wild-type (CC) and heterozygous (CT) individuals. These
formyl forms may cause re-direction of C1 metabolism
towards the more efficient maintenance of DNA repair under
conditions of low folate intake or status (Bagley & Sehub,
1998), since they are more associated with purine and
pyrimidine synthesis than with methylation. However, it is
clear that there is a lack of heterogeneity within ‘TT’
subjects, as the percentage of formyl folate may vary from
0 % (i.e. 100 % ‘normal’ 5-methyl THF) to > 60 %.

Other ‘common’ inherited enzyme polymorphisms inti-
mately involved in deconjugation, transport and C1
metabolism are listed in Table 1. These polymorphisms
include: a second MTHFR deficiency (1298A→C);
methionine synthase deficiency (2756A→G), a vitamin B12-
dependent enzyme involved in remethylation of homo-
cysteine to methionine (Silaste et al. 2001); methionine
synthase reductase deficiency (66A→G), a vitamin B2-
dependent enzyme which regenerates methionine synthase
(Wilson et al. 1999; Gaughan et al. 2001; Rady et al. 2002).
Additionally, there are ‘common’ polymorphisms in the

Table 1. Common polymorphisms in folate-related absorption and metabolism (adapted from Molloy, 2002)

Enzyme (gene mutation point)
Mutation (% allele 

frequency)
Wild-type

(%)
Heterozygous 

defect (%)
Homozygous 

defect (%)
Known risks or
phenotypic differences Reference

 Methylenetetrahydrofolate 
reductase (677C → T)

Methylenetetrahydrofolate 
reductase (1289A → C)

Intestinal folate brush-border 
hydrolase (1561C → T)

Intestinal reduced folate
carrier (80A → G)

Methionine synthase
(2756A → G)

Methionine synthase
reductase (66A → G)

Cystathionine β-synthase 
(844ins68)

T 38

C 28

T 4

G 42

G 24

G 48

8

CC 41

AA 53

CC 92

AA 35

AA 59

AA 28

84

CT 41

AC 37

CT 8

AG 47

AG 38

AG 49

16

TT 18

CC 9

TT 0 (one in 
625)

GG 18

GG 3

GG 23

0 (lethal?)

NTD, Down’s syndrome, 
cleft lip or palate, low 
plasma or erythrocyte 
folate, high plasma 
homocysteine,
riboflavin-dependent

Low plasma or erythrocyte 
folate, high plasma 
homocysteine,
riboflavin-dependent

Low plasma folate, high 
plasma homocysteine 
(predict lower
absorption)

No change in erythrocyte 
folate or plasma
homocysteine (predict 
lower absorption)

High plasma folate and 
erythrocyte folate, 
reduced plasma
homocysteine, vitamin 
B12-dependent

NTD, Down’s syndrome, 
higher plasma
homocysteine,
riboflavin-dependent

Higher plasma
homocysteine? vitamin 
B6-dependent

Molloy et al. (1997), 
Schneider et al. 
(1998), Frosst et 
al. (1995), Kang 
et al. (1991), 
Chango et al. 
(2000)

Dekou et al. (2001), 
Silaste et al. 
(2001)

Devlin et al. (2000)

Chango et al. 
(2000), Whets-
tine et al. (2001)

Silaste et al. (2001), 
Chen et al. 
(2001)

Wilson et al. (1999), 
Gaughan et al. 
(2001), Rady 
et al. (2002)

Tsai et al. (2001), 
Silaste et al. 
(2001)
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intestinal folate brush-border hydrolase folylpolyglutamate
carboxypeptidase (1561C→T; Devlin et al. 2000) and the
intestinal reduced folate carrier (80A→G; Whetstine et al.
2001).

Although several common genetic polymorphisms in
folate-dependent enzymes have been implicated in the
development of homocysteinaemia, and increased risk of
neural-tube defects, it is not known precisely to what extent
these genetic variants contribute to low folate intakes and
disease risk in the general population. However, despite the
growing body of research on the post-absorptive implica-
tions of these polymorphisms, there is very little information
available on their influence on folate bioavailability and
recommended intakes to maintain an optimal status in a
diverse population group.

Association of folate status and human health

A low circulating folate concentration gives rise to an
elevated plasma homocysteine concentration, which is an
independent risk factor for several types of vascular disease
and stroke (Kang et al. 1992; Boushey et al. 1995; Alfthan
et al. 1997; Vollset et al. 2001; Quere et al. 2002) and
neuro-psychiatric disturbances, including depression and
dementia (Botiglieri, 1996). In one of a few ‘prospective
studies’ the risk in Finnish men in the top third of serum
folate concentrations was only 30 % of the risk in the lowest
third of serum folate concentrations (Voutilainen et al.
2000). Whilst elevated homocysteine has been accepted for
some time as a ‘risk marker’, plausible metabolic mecha-
nisms are beginning to emerge that may soon see its
acceptance as a ‘risk-factor’. It is currently suggested that
elevated homocysteine may have direct proatherogenic
effects mediated via cholesterol dysregulation (Li et al.
2002) and by the enhancement of monocyte and T-cell
adhesion to human aortic endothelial cells (Koga et al.
2002). Although folic acid supplementation or fortification
may be effective in lowering homocysteine concentrations,
it is suggested that concurrent ingestion of vitamin B12
would be much more effective (Quinlivan et al. 2002).

Not only is low maternal folate status associated with
increased risk for neural-tube defects (Daly et al. 1995) and
cancer, e.g. colo-rectal cancer (Ryan & Weir, 2001), but so
is the common ‘TT’ polymorphism in the MTHFR 677C→T
gene (Ou et al. 1996), particularly when combined with low
folate status (Christensen et al. 1999). Both MTHFR
677C→T and methionine synthase reductase 66A→G have
been implicated in the incidence of Down’s Syndrome
(James et al. 1999; Hobbs et al. 2000).

The MTHFR 677C→T mutation may potentially have
both positive and negative effects. It might enhance availa-
bility of methylenetetrahydrofolate in the DNA synthesis
pathway, thus reducing misincorporation of uracil into
DNA, which might otherwise result in double-strand breaks
during uracil excision repair processes (Blount et al. 1997).
Also, it might reduce both homocysteine remethylation and
DNA methylation, which plays a role in genome stability
and gene expression (Choi & Mason, 2000; Friso et al.
2002). The ultimate question, of course, is whether such a
common mutation reduces overall longevity. As yet, there
has been little study of this aspect, and no consensus. There

is both evidence of no overall effect (Brattstrom et al. 1999),
and conflicting evidence that it reduces longevity in men in
middle and old age, but not in women (Heijmans et al.
1999).

Folic acid fortification

In the UK over half the pregnancies are unplanned, and
recommendations for women to increase their folate intakes,
together with uncertainties of folate bioavailability, are
difficult to implement. In the USA the fortification of all
enriched grain products, such as flour, has resulted in a
decrease of about 20 % in the prevalence of neural-tube
defects (Honein et al. 2001). It has also resulted in a
population-wide increase in plasma and erythrocyte folate
concentrations, together with a fall in plasma homocysteine
of 48 % in subjects with an elevated homocysteine concen-
tration of > 13 µmol/l (Lawrence et al. 1999; Jacques et al.
1999). In 1998, following fortification, there was a 3·4 %
reduction in mortality from stroke and heart attack (Martin
et al. 1999), which could possibly be linked to the fall in
plasma homocysteine concentrations.

In the UK the Committee on Medical Aspects of Food
and Nutrition Policy (Department of Health, 2000) has
recommended a fortification policy of 2400 µg/kg flour, but
this recommendation has not yet been implemented. The
potential risk–benefits of introducing mandatory fortifi-
cation of flour were recently reviewed (Wright et al. 2001)
and it was considered that there are still a number of issues
to be resolved; such as claims of an increased risk of
dichorionic twin pregnancies and increases in MTHFR
667C→T gene frequency in newborns. Although folic acid
is considered to be a very safe compound with no toxicity
threshold (Campbell, 1996), it has been estimated that 20 %
of young children may exceed the newly-recommended
tolerable upper intake level of 1 mg/d for their age-group
(Lewis et al. 1999).

Conclusions

The discovery that folic acid supplementation before
conception markedly reduces the risk of neural-tube defects
represents a major achievement since the vitamin was
discovered > 70 years ago. There has been considerable
progress in understanding the role of folic acid in health and
disease, but there is still much to do in perfecting methods
for measuring folate bioavailability, and status. Optimal
folate status may confer a protective effect against many
chronic diseases, and increasing folate intakes may be
expected to reduce the prevalence of these folate-related
diseases. However, the bioavailability of different folate
vitamers is still not well understood. There are still a number
of outstanding research issues that need to be resolved
before a re-evaluation of optimal folate intakes can be
undertaken. These issues include: (1) is folate status
increased best by the intake of folate supplements, fortified
foods or natural food folates; (2) is optimal folate status
easily achievable in countries that do not permit the folic
acid fortification of foodstuffs; (3) what are the health
consequences of some sections of the population consuming
large amounts of folic acid.
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