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Bubble bursting and subsequent collapse of the open cavity at free surfaces of
contaminated liquids can generate aerosol droplets, facilitating pathogen transport.
After film rupture, capillary waves focus at the cavity base, potentially generating fast
Worthington jets that are responsible for ejecting the droplets away from the source.
While extensively studied for Newtonian fluids, the influence of non-Newtonian rheology
on this process remains poorly understood. Here, we employ direct numerical simulations
to investigate the bubble cavity collapse in viscoelastic media, such as polymeric liquids.
We find that the jet and drop formations are dictated by two dimensionless parameters:
the elastocapillary number Ec (the ratio of the elastic modulus and the Laplace pressure)
and the Deborah number De (the ratio of the relaxation time and the inertio-capillary
time scale). We show that, for low values of Ec and De, the viscoelastic liquid adopts
a Newtonian-like behaviour, where the dynamics is governed by the solvent Ohnesorge
number Ohs (the ratio of visco-capillary and inertio-capillary time scales). In contrast, for
large values Ec and De, the enhanced elastic stresses completely suppress the formation
of the jet. For some cases with intermediate values of Ec and De, smaller droplets are
produced compared with Newtonian fluids, potentially enhancing aerosol dispersal. By
mapping the phase space spanned by Ec, De and Ohs , we reveal three distinct flow
regimes: (i) jets forming droplets, (ii) jets without droplet formation and (iii) absence of

© The Author(s), 2025. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/
licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original
article is properly cited. 1010 A2-1

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 3
.1

48
.2

06
.1

83
, o

n 
08

 M
ay

 2
02

5 
at

 1
8:

44
:1

0,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

23
7

https://orcid.org/0000-0002-1544-6676
https://orcid.org/0000-0002-6926-9302
https://orcid.org/0009-0009-4458-3221
https://orcid.org/0000-0003-4138-2255
https://orcid.org/0000-0002-4293-6099
https://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog?doi=10.1017/jfm.2025.237&domain=pdf
https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2025.237


A.K. Dixit, A. Oratis, K. Zinelis, D. Lohse and V. Sanjay

jet formation. Our results elucidate the mechanisms underlying aerosol suppression versus
fine spray formation in polymeric liquids, with implications for pathogen transmission and
industrial processes involving viscoelastic fluids.

Key words: viscoelasticity

1. Introduction
Bubbles in liquids (Lohse 2018) – from oceans (Deike 2022) and volcanoes (Gonnermann
& Manga 2007) to cosmetic gels (Lin 1970; Daneshi & Frigaard 2024) and champagne
(Liger-Belair 2012; Mathijssen et al. 2023) – rise due to buoyancy and reach the liquid–
gas interface, where they sit as the intervening liquid film drains (figure 1a-i, Lhuissier &
Villermaux 2012; Bartlett et al. 2023). Upon film rupture, numerous tiny droplets, known
as film droplets, scatter over the free surface (Lhuissier & Villermaux 2012; Villermaux,
Wang & Deike 2022), leaving a high-energy bubble cavity (figure 1a-ii, Woodcock et al.
1953; Knelman, Dombrowski & Newitt 1954; Mason 1954). The subsequent collapse
of this cavity is driven by surface tension. This process involves rim retraction (Taylor
1959; Culick 1960; Sanjay et al. 2022) that generates capillary waves (Eggers, Sprittles &
Snoeijer 2025). These waves propagate along the cavity, converging at its base to create
an inertial flow focusing (Gordillo & Rodríguez-Rodríguez 2019; Gordillo & Blanco-
Rodríguez 2023) that forms a Worthington jet (Worthington 1877, 1908; Stuhlman Jr 1932;
Lohse et al. 2004; Sanjay 2022) that features large strain rates (Sen et al. 2024). The jet
may fragment into droplets through end-pinching and the Rayleigh–Plateau instability
(Lord Plateau 1873; Rayleigh 1878; Stone & Leal 1989; Keller, King & Ting 1995;
Ghabache & Séon 2016; Walls, Henaux & Bird 2015). These jet droplets, typically larger
and faster than the initial film droplets, play a crucial role in transporting dissolved
substances to the atmosphere (Berny et al. 2020; Villermaux et al. 2022; Dubitsky
et al. 2023a). The dynamics of bubble bursting has far-reaching implications across
various domains. These include the transfer of pathogens from contaminated water to air
(Bourouiba 2021), the transport of dissolved salt from seawater to the atmosphere, where
salt particles act as cloud condensation nuclei (Dubitsky et al. 2023b; de Leeuw et al.
2011), and the dynamics in bioreactors containing animal cells (Boulton-Stone & Blake
1993). The unique capacity of ejected droplets to transport diverse species underscores
the importance of comprehending the complete dynamics that dictates their formation.
Ever since the first documented study of Stuhlman Jr (1932), advanced experiments and
simulations have extensively characterised the rich dynamics of bursting bubbles. Key
metrics include ejected drop heights (Stuhlman Jr 1932), sizes (Kientzler et al. 1954; Deike
et al. 2018; Berny et al. 2020, 2021; Blanco-Rodríguez & Gordillo 2020; Villermaux et al.
2022) and velocities (Deike et al. 2018; Gordillo & Rodríguez-Rodríguez 2019; Sanjay,
Lohse & Jalaal 2021; Gordillo & Blanco-Rodríguez 2023).

MacIntyre (1972) revealed internal liquid flow using dye and attempted to understand the
drop composition, which was finally explained by direct numerical simulations (DNSs) of
Dubitsky et al. (2023a). Furthermore, Dasouqi, Ghossein & Murphy (2022) demonstrated
atmospheric flow patterns using smoke-filled bubbles, which were detailed numerically
by Singh & Das (2021). Although shadowgraphy techniques limit most experimental
studies, X-ray imaging has captured the travelling capillary wave dynamics, providing
crucial validation for DNS results (Lee et al. 2011). These advancements have significantly
enhanced our understanding of bubble bursting at the Newtonian liquid–gas interface
across various scales and applications. Indeed, for a bubble of radius R0 surrounded by a
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liquid with viscosity, density and surface tension ηs , ρs and γ , the interplay of capillarity,
viscosity and gravity governs the bubble cavity collapse. Correspondingly, the key control
parameters of this process are the solvent Ohnesorge number

Ohs = ηs√
ρsγ R0

, (1.1)

and the Bond number

Bo = ρs gR2
0

γ
. (1.2)

Here, g is the acceleration due to gravity. The solvent Ohnesorge number Ohs exemplifies
the dimensionless viscosity of the surrounding medium, significantly influencing the
capillary wave dynamics, determining its damping and overall viscous dissipation, while
the Bond number Bo affects the initial cavity shape and the hydrostatic pressure
differences (Bergmann et al. 2006, 2009; Walls et al. 2015; Lohse 2018). In this study, we
will focus our attention on the limiting case of very small bubbles with Bo = 0.001, for
which the bubbles can be approximated as spheres (figures 1a, Toba 1959; Princen 1963;
Lhuissier & Villermaux 2012). For the Newtonian cases, Appendix A summarises the key
results, including the effect of Ohs on the bubble-busting dynamics. For the influence of
gravity on the shape and consequently the overall dynamics of Newtonian fluids, we refer
the readers to Toba (1959), Princen (1963), Walls et al. (2015), Krishnan, Hopfinger &
Puthenveettil (2017) and Deike et al. (2018).

Given the potential for jet drops to transport pathogens or pollutants into the atmosphere,
strategies to prevent their generation are pertinent. Recent studies unsurprisingly show that
non-Newtonian effects, particularly that viscoplasticity and viscoelasticity, can suppress
jet drop production (Sanjay et al. 2021; Sen et al. 2021; Ji et al. 2023; Rodríguez-Díaz
et al. 2023). While computational studies have successfully reproduced experimental
observations, such as elasticity-induced droplet suppression (Balasubramanian et al.
2024; Cabalgante-Corrales et al. 2025), the full impact of these effects on the bubble-
bursting dynamics remains elusive. In this paper, we answer the question: How does
the viscoelasticity influence the observed regimes? What underlying physics governs
the transitions between these regimes? Advancements in solving nonlinear constitutive
equations for highly deformed interfacial flows of viscoelastic fluids have been made
possible by techniques like the log-conformation method (Fattal & Kupferman 2004) and
the square-root conformation method (Balci et al. 2011). Originally developed for single-
phase flows, these methods have been extended to multiphase flows (Fraggedakis et al.
2016; López-Herrera et al. 2019; Varchanis & Tsamopoulos 2022; França et al. 2024;
Zinelis et al. 2024), facilitating more comprehensive investigations into this topic.

Viscoelastic media differ from viscous Newtonian liquids in their rheological properties,
exhibiting both viscous and elastic stresses when deformed due to the presence of
dissolved polymers. These polymeric effects are characterised by two material properties:
the elastic modulus G that characterises the strength of the dissolved polymers by relating
the strain with the additional polymeric stresses in the system, and the relaxation time
scale λ that characterises the memory of the system as it is a measure of the time scale at
which the additional polymeric stresses in the system vanish. When non-dimensionalising
these properties, we obtain two further non-dimensionalised control parameters, namely,
the elastocapillary number

Ec = G R0

γ
, (1.3)
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Figure 1. (a-i) A bubble with radius R0 rests close to the liquid–gas interface, separated from it by a thin liquid
film of thickness δ � R0. The surrounding viscoelastic medium is characterised by density ρs , solvent viscosity
ηs , elastic modulus G and relaxation time λ. The gas has density ρg and viscosity ηg . (a-ii) Film rupture
creates an axisymmetric cavity, which we study in this work. (b) Apart from the solvent Ohnesorge number
Ohs = ηs/

√
ρsγ R0 and the Bond number Bo = ρs gR2

0/γ , the presence of polymers introduces two additional

parameters, namely the elastocapillary number Ec = G R0/γ (1.3) and the Deborah number De = λ/
√

ρs R3
0/γ

(1.4). To explore the dynamics, we move across the entire Ec–De phase space. Often, the polymeric Ohnesorge
number Oh p = Gλ/

√
ρsγ R0 = Ec × De (1.5) based on polymeric viscosity is also used to describe the

influence of polymers.

comparing the elastic modulus with the Laplace pressure scale, and the Deborah
number

De = λ√
ρs R3

0/γ

, (1.4)

comparing the relaxation time of the additional stresses with the process time scale, i.e. the

inertiocapillary time scale τγ =
√

ρs R3
0/γ . Additionally, we also introduce the polymeric

viscosity ηp = Gλ based on dimensional arguments, which can be normalised with the
inertiocapillary scales to give the polymeric Ohnesorge number (figure 1b)

Oh p = ηp√
ρsγ R0

= Ec × De, (1.5)
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which is the product of Ec and De. We note here that Oh p and Ohs are related by

Oh p = ηp

ηs
Ohs = c Ohs, (1.6)

where c = ηp/ηs is the so-called concentration of the polymers (see e.g. Remmelgas,
Singh & Leal 1999; Hinch, Boyko & Stone 2024).

Prior experimental studies have provided valuable insights into viscoelastic effects
on the bubble-bursting dynamics. Early work by Cheny & Walters (1996) demonstrated
dramatic modifications of Worthington jets through polymer addition, where even small
concentrations (c ∼ 50 ppm) reduced jet heights by an order of magnitude. More recently,
Rodríguez-Díaz et al. (2023) demonstrated how even weakly viscoelastic polymer
solutions (with relaxation times λ� 50μs) can dramatically alter the bubble-bursting
dynamics through both interfacial and bulk effects. They found that, at optimal polymer
concentrations (≈ 25 ppm), interfacial effects enhancedthe jet velocity by dampening
short-wavelength capillary waves, while at higher concentrations, extensional thickening
led to complete droplet suppression. The elastic stress buildup during jet formation was
further elucidated by Cabalgante-Corrales et al. (2025), who supported the previous
observation that droplet emission is completely suppressed for large enough relaxation
times (jet Weissenberg number Wi j = λv j/R � 0.5, where v j is the characteristic velocity
of the Worthington jet), while the jet velocity is primarily dictated by Oh p. These
experimental observations motivate our systematic computational investigation of the
Ohs-Ec-De phase space to uncover the fundamental mechanisms that govern viscoelastic
bubble bursting. We refer readers to Appendix B for a representative summary of the
different control parameters.

In this study, we investigate viscoelastic effects on the bubble-bursting dynamics by
exploring the three-dimensional phase space of Ohs , Ec and De, using volume of
fluid-based finite volume simulations. Using the Oldroyd-B constitutive relation, we
demonstrate that the addition of polymers significantly influences the overall dynamics,
which is governed by the interplay of viscous and elastic effects. For systems with
a permanent memory of the initial state and subsequent deformations, i.e. when the
additional polymeric stresses are sustained throughout the process time scale (De → ∞),
the dimensionless elastic modulus dictates the dynamics and suppression of jet and drops.
In contrast, for systems with poor memory of the initial state and subsequent deformation
(De → 0), the dynamics resembles that encountered in Newtonian liquids with an effective
viscosity deduced using the slender elastic jet equations. Despite its simplicity, we note
thatthe Oldroyd-B model has some crucial limitations. For instance, it cannot account for
the shear-thinning behaviour of polymer solutions and it predicts the divergence of stresses
for strong extensional flows (Alves, Oliveira & Pinho 2021; Yamani & McKinley 2023).
Consequently, the Oldroyd-B model cannot accurately capture the final stages of filament
thinning or the actual rupture of viscoelastic filaments, which may affect predictions of
droplet detachment and fine aerosol formation. Nevertheless, we choose the Oldroyd-B
model as its simplicity allows us to gain fundamental insight into the interplay between
capillary, viscous and elastic forces during bubble bursting.

Building upon the extensive literature on viscoelastic flows, we extend these concepts
to the specific case of bubble bursting. Previous research has explored viscoelastic
phenomena in various contexts, including flow through nozzles and contractions (Chen
1991; Hinch 1993; Boyko, Hinch & Stone 2024), stability and breakup of viscoelastic jets
(Middleman 1965; Goren & Gottlieb 1982; Bousfield et al. 1986; Chang, Demekhin &
Kalaidin 1999; Anna & McKinley 2001; Pandey et al. 2021; Sen et al. 2024; Zinelis et al.
2024), coalescence and spreading of viscoelastic drops and bubbles (Bouillant et al. 2022;
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Dekker et al. 2022; Oratis, Bertin & Snoeijer 2023) and oscillating bubbles in viscoelastic
media (Oratis et al. 2024). Recent studies have also investigated elastoviscoplastic flows,
incorporating viscous, elastic and plastic aspects (Putz & Burghelea 2009; Varchanis
et al. 2019; Balasubramanian et al. 2024; França et al. 2024), further expanding our
understanding of non-Newtonian liquids. We refer readers to reviews by Bogy (1979),
Eggers (1997) and Yarin (1993) for comprehensive overviews of these topics. Our
work applies the foundational knowledge developed in these works to elucidate how
viscoelasticity alters the formation of Worthington jets and ejected droplets during bubble
bursting, enhancing our understanding of this specific phenomenon.

This paper is organised as follows: § 2 presents the governing equations and numerical
method. § 3 investigates the polymer influence on bubble bursting, focusing on systems
with permanent (De → ∞, § 3.1) and poor (De → 0, § 3.2) memory. For both cases, we
categorise the bursting bubble dynamics into distinct regimes and elucidate the transitions
in § 4, where we generalise the results across systems where the memory of the initial
conditions and subsequent deformations is gradually fading (0 < De < ∞). Finally, § 5
summarises our findings and suggests future research directions.

2. Numerical framework and problem description

2.1. Governing equations
We investigate the collapse of an open bubble cavity at the interface in a viscoelastic
medium (of figure 1) using an axisymmetric domain with incompressible fluids. Length
scales are normalised using the initial bubble radius giving L= L̃R0 as characteristic

length, and the time is normalised using the inertiocapillary time scale τγ =
√

ρs R0
3/γ

giving t = t̃τγ . These normalisations yield an inertiocapillary velocity scale uγ =√
γ /ρs R0 for the velocity field u = ũuγ . Lastly, all stresses are normalised using the

Laplace pressure scale, σ = σ̃σγ , where σγ = γ /R0. Here, as usual, non-dimensionalised
quantities are denoted with a tilde, although from here onwards, we drop the tilde, and all
equations are thus dimensionless in the current section. Throughout the manuscript, we
use the subscripts s, p and g to denote liquid solvent, polymer and gas, respectively. The
governing mass and momentum conservation equations for the liquid phase read as

∇ · u = 0, and (2.1)
∂u
∂t

+ ∇· (uu) = −∇ p + ∇· (
σs + σ p

)
, (2.2)

where the Newtonian contribution (coming from the solvent) σs is

σs = 2OhsD, (2.3)

with D = (∇u + (∇u)T )/2 representing the symmetric part of the velocity gradient
tensor – equal to half of the rate-of-strain tensor. The non-Newtonian contribution σ p
arises from the presence of polymers in the fluid. We emphasise that, although we refer
to σ p as ‘polymeric stresses’ in the context of dilute polymer liquids, this concept extends
to any deformable microstructure within the fluid that responds to flow (Saramito 2007;
Snoeijer et al. 2020; Balasubramanian et al. 2024; França et al. 2024). To characterise the
deformation of these microstructures, we introduce the conformation tensor A, an order
parameter that evolves from an initial identity state A= I (figure 1a-ii). Here, we employ
the Oldroyd-B model, which represents the simplest conformation tensor-based constitu-
tive equation for viscoelastic fluids (Oldroyd 1950; Bird, Armstrong & Hassager 1977;
Snoeijer et al. 2020; Stone, Shelley & Boyko 2023; Boyko & Stone 2024). This model
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assumes a linear relationship between elastic stresses and polymeric deformation

σ p = Ec (A− I) , (2.4)

where Ec is the elastocapillary number (1.3), representing the strength of the polymers
analogous to a dimensionless elastic modulus. Note that, even though the polymeric
stresses σ p grow linearly with A, the polymeric deformations A can be highly
nonlinear. Naturally, in the limit of Ec = 0, the polymeric stress would vanish, and the
system will give a viscous Newtonian dictated by the solvent Ohnesorge number Ohs
(see (2.3)).

Additionally, the conformation tensor A relaxes to its base state I over time due to
thermal effects. Once more, using the Oldroyd-B model, A follows a linear relaxation law
(i.e. the rate of change of A in the Lagrangian frame is linear in A)

∇
A = − 1

De
(A− I) , (2.5)

where
∇
A ≡ ∂A

∂t
+ (u · ∇)A−A· (∇u) − (∇u)T ·A, (2.6)

is the frame-invariant upper convected Oldroyd derivative of second-rank tensor A, and
De = λ/τγ (defined in (1.4)) is the Deborah number, representing the ratio of the polymer
relaxation time λ to the process time scale τγ . We note that, while the Oldroyd-B model
is nonlinear in terms of the velocity field and its gradient, both the stress term and its
relaxation law remain linear in A. This characteristic contrasts with models such as the
Giesekus model, which involves a quadratic term A ·A (Giesekus 1982), or the finite
extensible nonlinear elastic (FENE) models, which include a nonlinear term involving a
finite-extensibility parameter L (Bird, Dotson & Johnson 1980). Therefore, the Oldroyd-B
model is often referred to as ‘quasi-linear’ (Davoodi et al. 2018; Alves et al. 2021).

The Deborah number characterises the polymeric liquid’s memory. It is instructive to
note that, in the limit of De → ∞, polymeric liquids have permanent memory and the
dissolved polymers undergo affine motion (see (2.5) and Snoeijer et al. 2020; Stone et al.
2023; Boyko & Stone 2024)

∇
A = 0, (2.7)

indicating that they follow the flow and deform according to the velocity field. In this limit,
for finite Ec, the Oldroyd-B model is equivalent to the damped neo-Hookean model (also
known as the Kelvin–Voigt model) for solids (Snoeijer et al. 2020). Conversely, at De = 0,
polymeric liquids have no memory of their initial condition and subsequent deformations,
relaxing immediately to the base state. For non-infinite Ec values, polymeric stresses
vanish, resulting in a Newtonian response (2.4) governed by the solvent Ohnesorge number
Ohs (see (2.3)). It is, therefore, surprising that both Ec = 0 and De = 0 (figure 1b)
represent Newtonian responses, irrespectively of the corresponding other parameter.

Equations (2.4) and (2.5) can be combined to get

De
∇
σ p + σ p = 2Oh pD, (2.8)

where Oh p = Ec × De is the polymeric Ohnesorge number (1.5). Consequently, in the
limit De → 0 at fixed Oh p (e.g. moving along constant Oh p lines in figure 1b), the system
exhibits a viscous Newtonian response with a total dimensionless viscosity of Ohs + Oh p.
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The Oldroyd-B model, despite its widespread use due to its simplicity, fails to
capture several important physical phenomena (Snoeijer et al. 2020). It is inadequate to
describe shear-thinning behaviour in polymeric liquids (Yamani & McKinley 2023) and
erroneously predicts unbounded stress growth in strong extensional flows (McKinley &
Sridhar 2002; Eggers, Herrada & Snoeijer 2020). The numerical discretisation of Oldroyd-
B (§ 2.2) also features an implicit stress regularisation due to the finite grid size (Renardy
& Thomases 2021) – similar in spirit to the implicit slip regularisation of the contact line
singularity (Afkhami et al. 2018; Fullana et al. 2024). These limitations can be addressed
by incorporating finite polymer extension, for example, by increasing the effective Ec
as the polymer approaches full extension (Hinch & Harlen 2021; Zinelis et al. 2024).
Various extensions of the Oldroyd-B equations have been developed to account for such
nonlinearity, either in (2.4) and (2.5) or in the solvent contribution in (2.3) (de Gennes
1974; Tanner 2000; McKinley & Sridhar 2002; Alves et al. 2021). In this study, we employ
the Oldroyd-B model to include the two primary effects of the polymer addition: the
additional stress (Ec) and polymeric liquid memory (De) (Snoeijer et al. 2020). Our
aim is to provide a comprehensive understanding of the entire Ec–De parameter space
(figure 1b). However, it is crucial to note that the Oldroyd-B model, while serving as
a useful baseline, cannot accurately reproduce the finite-time breakup of viscoelastic
filaments (Eggers et al. 2020) or the full complexity of interface rupture (Lohse &
Villermaux 2020). These limitations warrant caution when interpreting the final stages
of jet thinning and droplet formation, particularly in scenarios involving strong polymer
stretching.

2.2. Methods
We employ the open-source software Basilisk C (Popinet & collaborators 2013–2024;
Popinet 2015) to solve the governing equations outlined in § 2.1. To solve the Oldroyd-
B viscoelastic constitutive relation (2.8), Basilisk C uses the log-conformation method
(Fattal & Kupferman 2004) implemented by López-Herrera et al. (2019) which has been
used extensively at finite De (Turkoz et al. 2018, 2021). To explore the entire Ec–De
parameter space (figure 1c), we have extended the log-conformation formulation to solve
(2.4) and (2.5). In the spirit of Basilisk C, this code is detailed open source in Sanjay
(2024). The rest of the governing equations are solved using the one-fluid approximation
(Tryggvason, Scardovelli & Zaleski 2011), with surface tension incorporated as singular
body force at the liquid–gas interface (Brackbill, Kothe & Zemach 1992). To account for
the gas phase, in addition to the dimensionless parameters described in §§ 1 and 2.1, we
maintain constant density and viscosity ratios of ρr = ρg/ρs = 10−3 and ηr = ηg/ηs =
2 × 10−2, respectively. The liquid–gas interface is tracked using the volume of fluid (VoF)
method, governed by the advection equation

∂Ψ

∂t
+ ∇· (Ψ u) = 0, (2.9)

where Ψ represents the VoF colour function. We implement a geometric VoF approach,
reconstructing the interface at each time step and applying surface tension forces as
singular forces (Brackbill et al. 1992; Popinet 2009)

f γ ≈ κ∇Ψ, (2.10)

with curvature κ calculated using the height-function method (Popinet 2018). The explicit
treatment of surface tension imposes a time step constraint based on the smallest capillary
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wave oscillation period (Popinet 2009). Yet another time step restriction, usually more
relaxed than the surface tension one, comes from the explicit treatment of the polymeric
stress term σ p. We impose no-penetration and free-slip conditions at wall boundaries to
avoid wall-shear effects, with outflow conditions at the top boundary to prevent droplet
rebound. Pressure gradients are set to zero at domain boundaries for both liquid and gas
phases.

The initial bubble shape is determined by solving the Young–Laplace equations for
quasi-static equilibrium (Toba 1959; Princen 1963; Sanjay 2022; Villermaux et al. 2022).
While the shape’s asymmetry increases with the Bond number Bo, we focus on the limit
Bo → 0, setting Bo = 0.001 to regularise the singularity at the sphere–plane intersection.
This results in a near-spherical initial cavity shape (figure 1a-i). We stress that, here, we
assume that the bubble has resided at the liquid–gas interface for a duration far exceeding
the polymeric medium’s relaxation time, ensuring that elasticity does not influence the
initial configuration (Balasubramanian et al. 2024). During the bubble cap bursting,
the film cap retracts almost instantaneously (once again, we neglect the influence of
elasticity), after which the capillary waves are generated. As we are interested only in
the bubble cavity collapse, the simulations begin with an open cavity without the thin
cap (figure 1a-ii), as also done similarly in recent studies (Deike et al. 2018; Gordillo &
Rodríguez-Rodríguez 2019; Sanjay et al. 2021). The computational domain spans 8R0 ×
8R0, discretised using quadtree grids with adaptive mesh refinement (Popinet 2009). Error
tolerances for the VoF colour function, curvature, velocity and order parameter A are set
to 10−3, 10−6, 10−3 and 10−3, respectively.

In this work, following our earlier study (Sanjay et al. 2021), most simulations maintain
a minimum grid size of Δ = R0/512, which dictates that, to get consistent results, 512 cells
are required across the bubble radius while using uniform grids. We have also used an
increased resolution (Δ = R0/1024 for high De cases and Δ = R0/2048 near transitions)
as needed. These resolutions are consistent with previous studies by Berny et al. (2020,
2021) on bubble bursting and Turkoz et al. (2018, 2021) on visco-elastic thinning with
a maximum level of resolution of 14 (for Δ = R0/2048 and domain size L0 = 8R0). We
have carried out extensive grid independence studies to ensure that changing the grid size
does not influence the results (see Appendix C). We refer the readers to Popinet (2015),
Sanjay (2022) and Sanjay & Dixit (2024) for further details of the numerical method used
in this work.

3. Influence of polymers
This section phenomenologically describes the influence of polymers on the bursting
bubble process by investigating how varying the elastocapillary number Ec influences
the formation of Worthington jets and droplet ejection. We focus on two limiting cases:
polymeric solutions with permanent memory exhibiting affine motion (De → ∞) and
those with poor memory (De → 0).

3.1. Polymeric liquids with permanent memory
We begin our analysis by considering the limit of De → ∞, where the polymeric
solutions feature affine motion (2.7) and maintain a permanent memory of their initial
condition and subsequent deformations without relaxation during the process time scale.
Figure 2 illustrates representative cases in viscoelastic media for Ohs = 0.025 and varying
elastocapillary numbers (Ec). The figure presents a temporal evolution of the interface
profile (green line) alongside the velocity magnitude on the left and the trace of elastic
stress σ p on the right. Remarkably, despite all cases exhibiting a total Ohnesorge number
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(a)

(b)

(c)

t/τγ = 0.1 = 0.4

Ec = 0.0001

Ec = 0.01

Ec = 0.1

0 2 –2 1log10 (tr (σp))||ν|| / γ/ρs R0

= 0.8 = 1.2

Figure 2. Temporal evolution of the bubble cavity collapse at De → ∞ and Ohs = 0.025 for Ec = (a) 0.0001,
(b) 0.01 and (c) 0.1. The colour scheme in the left panel of each snapshot represents the magnitude of the
velocity field normalised by the inertiocapillary velocity, while the right panel of each snapshot shows the trace
of the elastic stress σ p that represents twice the elastic energy stored in polymeric deformations on a log10
scale. See also the supplementary movies SM1.

of infinity (Ohs + Oh p → ∞), which typically implies highly viscous behaviour (see
figure 13), low Ec scenarios demonstrate a dynamics qualitatively resembling Newtonian
fluids. In these cases, capillary waves drive the collapse of a bubble cavity, converging
at its bottom to form a Worthington jet that subsequently fragments into droplets (see
figure 2a). Intuitively, the elastic stresses are concentrated near the axis of symmetry where
the strain is maximum (Turkoz et al. 2018; Eggers et al. 2020). The process concludes
within a finite time scale (∼ τγ ), resulting in a regular limit as Ec → 0. As a result,
the system’s behaviour deviates gradually from the Newtonian case at Ec = 0, exhibiting
a continuous transition as the elasticity increases. This absence of singularity contrasts
with elastic Taylor–Culick-type retractions, where an infinite process time scale allows the
elastic stresses to develop, leading to distinct behaviours for Ec = 0 and Ec → 0 (Bertin
et al. 2024), i.e. a singular limit.

We stress that in this limit, the jet breakup occurs due to finite grid resolution in our
numerical code (Lohse & Villermaux 2020; Chirco et al. 2022; Kant et al. 2023). We
cannot differentiate between a case of drop detachment from the jet or the case when
they are still connected through a thin filament – also known as the beads-on-a-string
structure (Clasen et al. 2006; Pandey et al. 2021; Hosokawa et al. 2023; Zinelis et al. 2024).
Although current simulations fully resolve other aspects, they cannot resolve these finest
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Ec = 0.00500
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θc (t)

L (t)

t/ ρsR0/γ
3 t/ ρsR0/γ

3

Figure 3. (a) Trajectory of the maximum curvature capillary wave parameterised using the angle θc(t) as
depicted in the inset at De → ∞ for different Ohs and Ec. (b) Evolution of the jet length L(t) at Ohs = 0.04
and De → ∞ for different Ec.

threads, which may have subgrid cell sizes depending on Ec. At higher grid resolutions,
we expect to recover the beads-on-a-string configuration, as the Oldroyd-B model does
not yield a finite time breakup singularity in the infinite De regime, instead converging
to a finite filament (Turkoz et al. 2018, 2021; Eggers et al. 2020). To prevent infinite
thread thinning, a nonlinear elastic model could also be employed (see § 2.1 for further
discussions).

As Ec increases, we observe jet formation without droplet ejection (figure 2b). At
higher Ec values, even jet formation is suppressed due to elevated elastic resistance
(figure 2c). Notably, while polymeric effects significantly influence the dynamics after the
convergence of capillary waves (figure 2, t/τγ = 0.8, 1.2), the propagation of capillary
waves (figure 2, t/τγ = 0.1, 0.4) remains largely unaffected. Figure 3(a) quantifies the
trajectories of these capillary waves across three orders of magnitude variation in Ec at
two different Ohs . The capillary wave speed is independent of both liquid and polymeric
control parameters, mirroring the behaviour observed in Newtonian media (Gordillo &
Rodríguez-Rodríguez 2019) and contrasting those for viscoplastic media (Sanjay et al.
2022). The independence of capillary wave speed on the polymeric control parameters has
also been reported in experiments (Cabalgante-Corrales et al. 2025). Following capillary
wave collapse, the Worthington jet initially elongates to a maximum length (Lmax ) before
retracting. As shown in figure 3(b) for Ohs = 0.04, Lmax decreases with increasing Ec
due to stronger resistive stresses.

Figure 4(a) presents a phase map of Lmax , compiled from approximately 100
simulations. For Newtonian liquids, Lmax peaks near Ohs ≈ 0.03, corresponding to the
value of observed hydrodynamic singularities (Zeff et al. 2000; Lohse 2003; Eggers
& Fontelos 2015; Yang, Tian & Thoroddsen 2020), before decreasing at higher Ohs
(Duchemin et al. 2002; Deike et al. 2018; Gordillo & Rodríguez-Rodríguez 2019).
Jet formation ceases altogether beyond a critical value of Ohc = 0.11 (Sanjay et al.
2021) (defined here when Lmax < 0.3R0). As Ec increases, viscoelastic effects become
significant. The value of Lmax decreases monotonically with Ec due to increased elastic
resistance, with jet formation suppressed beyond Ec = 0.086. Unlike the non-monotonic
relationship between Lmax and Ohs , where increasing Ohs initially produces thinner and
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Figure 4. (a) The maximum jet length Lmax at De → ∞ in the Ec-Ohs phase space, depicted by the colour
map, where the lighter region corresponds to higher values. For the Newtonian liquid (Ec → 0), the jetting
transition occurs at Ohs = 0.11, denoted by the horizontal dotted line. Due to the elastic effects, this transition
occurs at Ec = 0.086, as depicted by the vertical dotted line. (b) The size of the first droplet at De → ∞ in the
Ec-Ohs phase space. For the Newtonian liquid, the dropping transition is observed at Ohs = 0.0375, denoted
by the horizontal dotted line. Further, the transition due to elastic effects is very sensitive to Ohs and is shown
by the inclined dotted line.

faster jets, the Lmax (Ec) relationship remains consistently monotonic. Even the Ohs-
sensitive singular Worthington jets disappear with increasing Ec. Notably, the critical Ec
values for these transitions appear to be largely independent of Ohs , in contrast to the
Ohs-dependent behaviour observed in the Newtonian limit.

The emerging Worthington jet may eject multiple droplets. For Newtonian liquids,
predictions, for the first droplets’ size rd are well understood (see Appendix A and
Gañán-Calvo 2017; Blanco-Rodríguez & Gordillo 2020). Here, rd decreases with Ohs
until Ohs ≈ 0.0375, beyond which the droplet breaks from the jet due to the Rayleigh–
Plateau instability and falls downwards. Our analysis focuses on droplets propagating
away from the source, excluding those with downward velocity upon breakup (observed
in Newtonian media for 0.0375 < Ohs < 0.045). For elastic cases, despite unresolved
filaments connecting droplets and jets, we have rigorously verified the convergence of
the first droplet’s size to at least 10 % accuracy. Figure 4(b) illustrates a phase map of
the first droplet’s size rd , revealing intriguing differences from the jet behaviour. While
rd follows the same trend with Ohs observed at Newtonian limits and remains invariant
of Ec below critical values, the critical Ec for droplet suppression differs from that of
jet suppression. As the jet width is determined solely by Ohs , independently of Ec, the
first emerging droplet’s size also remains independent initially. However, as Ec increases
further, rising elastic stresses suppress droplet formation more abruptly than jet formation.
The critical values Ecd for the transition between jet formation with and without droplet
breakup (dropping transition) are sensitive to Ohs , with the critical Ecd decreasing as
Ohs increases. This trend is in stark contrast with the transition from jet formation to jet
suppression (jetting transition), where critical Ec values remain largely Ohs-independent.

3.2. Polymeric liquids with poor memory
This section examines the dynamics in media with a poor memory of the initial conditions
and subsequent deformations (De → 0). For sufficiently small Deborah numbers De,
the polymers relax rapidly, resulting in elastic stresses of the polymeric liquid that are
considerably lower than those observed in cases where De → ∞. The stress relaxation
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(a)

(b)

(c)

t/τγ = 0.1 = 0.4

Ec = 1

Ec = 5

Ec = 10

0 2 –2 –0.5

= 0.8 = 1.2

log10 (tr (σp))||ν|| / γ/ρs R0

Figure 5. Temporal evolution of bubble cavity collapse at De = 0.01 and Ohs = 0.025 for Ec = (a) 1,
(b) 5 and (c) 10. The colour scheme in the left panel of each snapshot represents the magnitude of the velocity
field normalised by the inertiocapillary velocity, while the right panel of each snapshot shows the trace of the
elastic stress σ p that represents twice the elastic energy stored in polymeric deformations on a log10 scale. See
also the supplementary movies SM2.

also results in the dissipation of elastic energy stored in stretched polymers. Figure 5
illustrates representative cases for De = 0.01, showcasing three distinct regimes as a
function of the elastocapillary number (Ec). The figure presents a temporal evolution of
the interface profile (green line) alongside velocity magnitude on the left and the trace of
elastic stress σ p on the right for Ec = 1, 5 and 10. For Ec = 1 (figure 5a), we observe
a slender Worthington jet that forms a droplet. As Ec increases to 5 (figure 5b), the jet
persists but fails to produce a droplet. At Ec = 10 (figure 5c), jet formation is completely
suppressed, with the interface showing only slight deformations during cavity relaxation.
The qualitative trends with respect to the elastocapillary number (Ec) remain consistent as
compared with those in § 3.1. However, the critical Ec values for different regimes differ
markedly from those observed at De → ∞. Notably, jet formation and droplet production
persist at Ec = 1 (figure 5a), despite this value being an order of magnitude higher than
the critical Ec for the jetting transition at infinite De. This difference underscores the
dependence of transition thresholds on De.

To further interpret the jetting dynamics and drop formation, figure 6 presents phase
maps illustrating the behaviour of maximum jet lengths (Lmax ) and first droplet sizes
(rd ) for De = 0.01. Figure 6(a) shows Lmax across a range of Ec and Ohs values.
For low Ec, Lmax shows Newtonian-like Ohs dependence. As Ec increases, Lmax
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Figure 6. (a) The maximum jet length Lmax at De = 0.01 in the Ec-Ohs phase space, depicted by the colour
map, where the lighter region corresponds to higher values. For the Newtonian liquid, the jetting transition
occurs at Ohs = 0.11, denoted by the horizontal dotted line. Due to the elastic effects, this transition occurs at
Ec = 9.3, as depicted by the vertical dotted line. (b) The size of the first droplet at De = 0.01 in the Ec-Ohs
phase space. For the Newtonian liquid, the dropping transition is observed at Ohs = 0.0375, denoted by the
horizontal dotted line. Further, the Ohs -independent transition due to elastic effects occurs at Ec = 2.5, as
shown by the vertical dotted line.

decreases monotonically until jet formation ceases beyond an Ohs-independent critical
Ec j , mirroring the infinite De limit behaviour. Figure 6(b) maps rd , showing Ec-
independent droplet sizes that are equal to values at the Newtonian limit until near the
transition point, where droplet formation is suppressed. For De � 1, the critical Ecd
for the dropping transition exhibits minimal Ohs-dependence, contrasting with the Ohs-
sensitive behaviour at infinite De. Comparing these results with the De → ∞ limit reveals
persistent fundamental regimes across different De values, but the transition thresholds are
highly sensitive to the polymeric liquid’s relaxation time. Critical Ec values for both jet
and droplet suppression are significantly higher at low De compared with the infinite De
limit, indicating that rapid relaxation of polymeric stresses allows jet and droplet formation
at higher Ec values. This low De behaviour suggests an interplay between elastic and
viscous effects, explored further in § 4.

4. Regime map
The bursting bubble dynamics in viscoelastic media exhibits distinct behaviour compared
with Newtonian fluids. Our analysis reveals three well-defined regimes: (i) jets that form
droplets, (ii) jets without droplet formation and (iii) complete suppression of jets. While
viscoelasticity significantly modifiesthe jet dynamics, the capillary wave propagation prior
to jet formation remains remarkably unaffected. This section explores the transitions
between these regimes across the Ec-De phase space, extending our earlier analysis of
the limiting cases De → ∞ and De → 0 from § 3.

4.1. Summary of the different regimes
The transitions between these regimes depend on both Ec and De, exhibiting markedly
different characteristics in two limiting cases: De → ∞ and De → 0. Figure 7 maps these
transitions in the elastocapillary–Deborah number (Ec–De) phase space, delineating the
boundaries between droplet-forming jets and jets without droplets. Figure 8 complements
this by illustrating the transition to complete jet suppression. Notably, the infinite De
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Figure 7. The elastocapillary–Deborah number (Ec–De) phase map delineating the transition between the
regimes: (i) jets forming droplets and (ii) jets without droplet formation. The data points represent the critical
elastocapillary number Ecd (De, Ohs) at which this transition occurs. The transition behaviour exhibits distinct
characteristics in different limits: as De → ∞, the transition occurs at a constant Ec which is highly sensitive
to Ohs (see the grey dashed line showing Ecd ∼ De0), while for De → 0, the transition is Ohs -independent
and occurs at constant Oh p (see the grey solid line showing Ecd ∼ De−1, i.e. Oh p,d ∼ De0).
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Figure 8. (a) The elastocapillary–Deborah number (Ec–De) and (b) the polymeric Ohnesorge–Deborah
number (Oh p-De) phase map delineating the transition between the regimes: (ii) jets without droplet formation
and (iii) absence of jet formation. The data points represent the Ohs -independent critical elastocapillary
number Ec j (De) at which this transition occurs. The transition behaviour exhibits distinct characteristics in
different limits: as De → ∞, the transition occurs at a constant Ec (see grey dashed line showing Ecd ∼ De0),
while for De → 0, the transition occurs at constant Oh p (see grey solid line showing Ecd ∼ De−1, i.e.
Oh p,d ∼ De0).

asymptotic behaviour extends down to De ≈ 1, reflecting that polymers lack sufficient
time to relax when relaxation times exceed the process time scale.

For polymeric liquids with long relaxation times (De 	 1), we observe that:

(i) the dropping transition occurs at Ecd(Ohs), with strong Ohs dependence (figures 4b
and 7); and
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FγFγ

= 0.8

h (z)

t/τγ = 0.8 = 1.2

VjetZ
R

Fη + Fp

Figure 9. Temporal evolution of the Worthington jet for a representative case, where the jet emerges, reaches a
maximum, and is pulled to merge with the liquid bath. The control volume contains the jet region, as shown by
the region within the grey lines. Here, h(z, t) is the width of the jet, which becomes hbase at the base of the jet.
The capillary force at the jet base is Fγ = γ (2πhbase) that acts radially outwards. At the same time, the elastic
and viscous stresses act at the base of the jet as Fη + Fp = (ση,base + σp,base)πh2

base.

(ii) the jetting transition occurs at Ec j ≈ 0.086, independent of Ohs (figure 8a).

Conversely, for polymeric liquids with short relaxation times (De � 1), we find that
both transitions are Ohs-independent and occur at constant polymeric Ohnesorge number
Oh p = Ec × De:

(i) the dropping transition occurs at Oh p,d ≈ 0.048 (figure 7); and
(ii) the jetting transition occurs at Oh p, j ≈ 0.129 (figure 8b).

These behaviours reflect fundamentally different physical mechanisms: at high De,
depending on Ohs , the medium behaves like an elastic solid (Ohs → 0) or Kelvin–Voigt
solid (finite Ohs). However, at low De, polymer addition manifests as an enhanced viscous
effect characterised by Oh p. The trend of dropping transition in the small De regime is
qualitatively similar to recently reported experimental observation (Cabalgante-Corrales
et al. 2025). Although, a quantitative comparison cannot be made due to significant
differences in Bo. We further investigate the jetting transition using the slender jet
equations in § 4.2 following similar approaches by Driessen et al. (2013), Gordillo, Onuki
& Tagawa (2020), Zinelis et al. (2024) and Sen et al. (2024).

4.2. What sets the different transitions, and what do we learn from these transitions?
To understand the mechanisms governing bubble cavity collapse, we analyse the jet
dynamics using a control volume approach (figure 9). Employing the slender jet
approximation (Shi, Brenner & Nagel 1994; Driessen et al. 2013; Eggers & Fontelos 2015),
given the small radial-to-axial length scale ratio, the vertical momentum equation for the
jet reads

ρs

(
∂v

∂t
+ v

∂v

∂z

)
= −γ

∂κ

∂z
+ 1

h2
∂

∂z

[
h2

(
3ηs

∂v

∂z
+ G (Azz − 1)

)]
. (4.1)

Here, v(z, t) is the radially averaged jet velocity, and the shape of this jet is h(z, t).
We define a control volume containing the emerging jet that is always bounded by the
inflection points at the interfaces, see figure 9(b). Integrating over this control volume
(with differential volume element dΩ = πh(z, t)2dz) yields the force balance (Trouton
1906)

dM jet

dt
= 3ηsh2 ∂v

∂z
|base + Gh2(Azz − 1)|base = (

ση,base + σp,base
)
πh2

base, (4.2)
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Figure 10. (a) Evolution of the maximum elastic stress at the jet base (max(σp,base(t))), normalised by the
Laplace pressure scale σγ = γ /R0, as a function of De for different Ec at Ohs = 0.001. Note that Oh p =
Ec × De. (b) Comparison of the resistive elastic stress max(σp,base(t)) in the high De regime (→ ∞) against
the inertial stresses σI,base, plotted against Ec for different Ohs .

where M jet (t) = ∫
Ω(t) ρsv(z, t)πh(z, t)2dz denotes the momentum of the jet. The

capillary stress (first term on the right-hand side of (4.1)) integral vanishes due to
orthogonal interface intersection with the control volume (see Marchand et al. 2011;
Munro 2019, pp. 16–21). We chose this control volume because of its vanishing integral
feature. Furthermore, the integral of the second term on the right-hand side forms an
exact integral which vanishes at the tip where it is zero owing to h(z = Lmax (t)) = 0.
Consequently, jet evolution depends solely on stresses at the base: viscous (ση,base(t))
and elastic (σp,base(t)). For relevant Ohs values, ση,base(t) is too weak to suppress the
Worthington jet. Numerical simulations allow us to estimate σp,base(t). As the capillary
waves collapse, the base elastic stress reaches a global maximum, before decreasing again
at later times. Jet formation occurs if inertial flow focusing is sufficiently strong at the peak
elastic stress. We will now evaluate this competition for the two limits of De.

4.2.1. The limit of De → ∞
Figure 10(a) shows that, for De > 1, the maximum elastic stress max(σp,base(t)) reaches a
plateau, dependent only on Ec. This De-independence coincides with the extent of infinite
De asymptotes featured in the transitions discussed in § 4.1. The upper limit of elastic
resistance competes with inertial flow focusing to inhibit jet formation. We quantify the
inertial stresses at peak elastic stress using

σI,base = 2
h2

base

∫ hbase

o
ρsv

2hdh, (4.3)

where hbase is the jet width at its base (see figure 9). Figure 10(b) reveals that the ratio
of elastic to inertial stresses is largely independent of Ohs . As Ec increases, this ratio
reaches a maximum beyond which jet suppression occurs. It is important to note that the
apparent decrease in this stress ratio with increasing Ec and Ohs near the jetting transition
in figure 10(b) occurs due to a decrease in both the polymeric and inertial stresses in this
region of the parameter space.

1010 A2-17

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 3
.1

48
.2

06
.1

83
, o

n 
08

 M
ay

 2
02

5 
at

 1
8:

44
:1

0,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

23
7

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2025.237


A.K. Dixit, A. Oratis, K. Zinelis, D. Lohse and V. Sanjay

4.2.2. The limit of De → 0
In the zero De limit, polymeric liquids exhibit additional viscous effects characterised
by the polymeric Ohnesorge number Oh p (also see § 4.1). The maximum elastic stress
max(σp,base(t)), when normalised by the Newtonian-like viscous stress σN ,base, collapses
for all Oh p as De → 0, where

σN ,base = 2
h2

base

∫ hbase

o
Gλ

∂v

∂z
hdh. (4.4)

As De approaches unity, marking the onset of the infinite De asymptotic regime,
the elastic stress scales as max(σp,base(t)) ∼ De × σN ,base. This scaling remarkably
resembles that predicted by Boyko et al. (2024) for flow in a slowly varying contraction
at the infinite De asymptote, despite significant geometric differences. While our study
focuses on free surface flows and Boyko et al. (2024) examined contraction geometries,
this unexpected similarity hints at a potentially universal behaviour near the infinite
De asymptote. To further examine this intriguing connection, a similar closed-form De
expansion for free surface flows is necessary. However, we caution that this scaling
approach to the infinite De asymptote could be system-dependent (Hinch et al. 2024).

At zero De, the elastic stress reduces to a Newtonian-like viscous stress with polymeric
viscosity ηp, yielding σp ≈ 2GλD for the Oldroyd-B rheology. The force balance in (4.2)
becomes

dM jet

dt
= (3ηs + 2Gλ) h2 ∂v

∂z
|base, (4.5)

which depicts the balance of jet inertia with viscous forces. Using characteristic scales
for jet momentum M jet ∼ ρVjet h3

base, velocity gradient ∂zv ∼ Vjet/δη and time τi ∼
hbase/Vjet , the force balance yields

ρV 2
jet ∼ ηe f f ective

Vjet

δη

. (4.6)

Here, δη represents the viscous length scale and the effective viscosity is

ηe f f ective = 3ηs + 2Gλ. (4.7)

Since polymers do not affect the flow before jet formation (§ 3), the jet Weber number
remains constant at inception (Blanco-Rodríguez & Gordillo 2021)

W e jet = ρV 2
jetδη

γ
= constant. (4.8)

Combining (4.6) and (4.8), we get

Vjet ∼ γ

ηe f f ective
, (4.9)

analogous to Newtonian media but with modified viscosity (Gordillo & Rodríguez-
Rodríguez 2019; Blanco-Rodríguez & Gordillo 2020).

Figure 11(b) illustrates the jet velocity as a function of the effective Ohnesorge
number

Ohef f ective = 3Ohs + 2Oh p, (4.10)

(reflecting (4.7)) at different De. We stress that the jet velocity varies in time (Deike et al.
2018; Sanjay et al. 2022; Gordillo & Blanco-Rodríguez 2023) and is maximum at its
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Figure 11. (a) Evolution of the maximum elastic stress at the jet base (max(σp,base(t))), normalised by the
Newtonian-like viscous stress σN ,base with viscosity ηp = Gλ, as a function of De for different Oh p at Ohs =
0.001. The grey dashed horizontal line represents max(σp,base(t)) ≈ σN ,base while the black dashed line serves
as a guide to the eye representing max(σp,base(t))/σN ,base ∼ De. Note that Ec = Oh p/De. (b) The variation of
jet’s tip velocity Vjet , normalised by the inertiocapillary velocity uγ = √

γ /ρs R0, with Ohef f ective = 3Ohs +
2Oh p at different De and Ohs = 0.01. The grey dashed line represents Vjet ∼ γ /ηe f f ective.

inception, which is the value that we report here. For sufficiently large Ohef f ective and
small De, we recover the scaling predicted in (4.9). However, as De increases, the added
elastic stresses cannot be directly substituted with Newtonian-like viscous stresses, and the
underlying assumption fails, evident in the deviation of Vjet from the prediction.

On the other hand, for small Ohef f ective, Vjet for all De closely matches the
corresponding speed in Newtonian liquids, as observed in figure 11(b) for Oh p = 0. As
Oh p increases, Vjet also increases, reaching a maximum before decreasing and following
(4.9). Although the capillary wave speed remains unaffected in the polymeric medium,
increasing Oh p triggers elastic stresses in smaller-wavelength capillary waves, which are
promptly dissipated due to small De. Consequently, improved flow focusing occurs as
the strongest undamped capillary wave survives, thus increasing Vjet . This behaviour
is analogous to the non-monotonicity observed and well understood for Newtonian
liquids at small Ohs (Duchemin et al. 2002; Deike et al. 2018; Gordillo & Rodríguez-
Rodríguez 2019; Yang et al. 2020; Sanjay et al. 2022; Gordillo & Blanco-Rodríguez 2023),
further supporting the observation that polymeric liquid exhibit a Newtonian-like viscous
response in the zero De limit.

To further quantify this behaviour, figure 12(a) illustrates jet features at inception
for different Oh p at De = 0.001, while figure 12(b) shows jet radius as a function of
Oh p at different De. At small Oh p, we observe that the jet radius maintains a value
comparable to the Newtonian reference case (figure 12a: Oh p = 0, 0.005). This behaviour
is consistent with the De → 0 limit, where polymeric additives primarily contribute
enhanced effective viscosity. Since the jet radius determines the resulting drop size
(Gañán-Calvo 2017; Blanco-Rodríguez & Gordillo 2020), this independence of jet radii
in the low Oh p regime suggests minimal variation in droplet size distribution compared
with Newtonian cases. As Oh p increases, we observe a pronounced reduction in jet width
until reaching Oh p,c ≈ 0.017 (figure 12a: Oh p = 0.013, 0.018). At this critical value,
the system transitions to a bubble entrainment regime (figure 12a: Oh p = 0.018, 0.025
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Figure 12. The capillary waves focus and collapse at the bottom of the cavity. (a) The inception of the jet after
the collapse at different Oh p at De = 0.001 and Ohs = 0.01. The radius of the jet at the base R jet decreases
with Oh p until Oh p,c = 0.017, beyond which bubbles are entrained and the jet radius increases. (b) Radius
of jet R jet with Oh p at Ohs = 0.01 and different De. Here, R jet remains close to the value at the Newtonian
limit Oh p = 0, and decreases sharply as it approaches Oh p,c. Beyond Oh p, j jets are no longer observed.

Gordillo & Rodríguez-Rodríguez 2019; Blanco-Rodríguez & Gordillo 2020; Rodríguez-
Díaz et al. 2023). Interestingly, the prediction for Newtonian liquids applies well to
viscoelastic liquids by substituting Oh p for Ohs (figure 12b), particularly in the De → 0
limit. Beyond Oh p,c, the jet radius becomes ill defined as the jet gradually widens
(figure 12a: Oh p = 0.035), first reaching the dropping transition at Oh p,d ≈ 0.048 (figures
7 and 12b) and ultimately vanishing at Oh p, j ≈ 0.129 (figure 8b).

5. Conclusion and outlook
This work elucidates the effects of viscoelasticity on Worthington jet formation and droplet
ejection, by contrasting it with Newtonian fluid behaviour. The process is governed by
two key dimensionless parameters: the elastocapillary number Ec, comparing elastic and
capillary forces, and the Deborah number De, relating the relaxation time of the polymeric
liquid to the inertiocapillary time scale. We identify three distinct regimes in viscoelastic
media, analogous to Newtonian fluids: (i) jet formation with droplet ejection, (ii) jets
without droplets and (iii) complete jet suppression. However, the transitions between these
regimes now depend on Ec and De rather than solely on the solvent Ohnesorge number
Ohs . Notably, while viscoelasticity significantly alters the jet dynamics, it does not affect
the capillary wave speed.

Analysis across the Ec–De phase space reveals markedly different behaviours in two
limiting cases. For polymeric liquids with permanent memory (De → ∞), transitions
occur at fixed Ec, independently of De. The jetting transition Ec j is independent of
Ohs , while the dropping transition Ecd exhibits strong Ohs dependence. Remarkably,
this infinite De asymptote extends down to De ≈ 1, where the polymer relaxation
time becomes comparable to the process time scale. Below this, for De ∼O(0.1),
we observe a transition in scaling behaviour, consistent with the Weissenberg number
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criterion Wi ≡ De
√

W e jet ∼O(1), where W e jet is the jet Weber number (4.8) that
remains approximately constant due to negligible elastic effects during the initial shear
flow (Blanco-Rodríguez & Gordillo 2021). Conversely, for polymeric liquids with poor
memory (De → 0), both transitions occur at constant polymeric Ohnesorge number
Oh p = Ec × De, indicating that the addition of polymers introduces an excess viscous
stress in this limit. These transitions are independent of Ohs . Using a slender jet
approach (Driessen et al. 2013; Eggers & Fontelos 2015; Gordillo et al. 2020), we
provide further insights into these transitions, examining the competition between
elastic stresses and inertial flow focusing that governs jet formation and droplet
ejection. This analysis helps to explain the observed scaling behaviours and transition
criteria.

Our findings have important implications for understanding and controlling bubble
bursting in viscoelastic fluids, with relevance to biological processes (Walls et al. 2017),
such as airborne disease transmission (Bourouiba 2021), and industrial applications,
such as inkjet printing (Lohse 2022). The results highlight how polymer additives can
dramatically alter spray formation, with intermediate values of Ec and De leading to
smaller and faster droplets, whereas high values of Ec and De suppress droplet formation
entirely (Kant et al. 2023). This work also opens several avenues for future research.
Further investigation is needed into the universal behaviour near the infinite De asymptote,
including the development of closed-form De expansions for free surface flows (Sen et al.
2021; Boyko et al. 2024; França et al. 2024; Hinch et al. 2024; Sen et al. 2024). The
mechanism underlying the Ohs sensitivity of transition Ec values at high De requires
further clarification. Additionally, extending our analysis to nonlinear viscoelastic models
would provide valuable insights into the role of shear-thinning behaviour and finite
extensibility in bursting bubbles, addressing limitations of the current model (McKinley
& Sridhar 2002; Snoeijer et al. 2020; Zinelis et al. 2024). This approach would allow
quantification of discrepancies between experiments and simulations, often attributed
to inherent issues with the Oldroyd-B model, thereby enhancing our understanding of
viscoelastic jets (Gaillard et al. 2025). Indeed, the numerical method developed here,
freely available in Sanjay & Dixit (2024), provides a generalised framework readily
adaptable to any model within the Oldroyd-B family of upper convective derivative models
(Snoeijer et al. 2020). Furthermore, as higher Bond numbers are observed in many
scenarios (Ghabache, Séon & Antkowiak 2014; Walls et al. 2015; Krishnan et al. 2017;
Deike et al. 2018), exploring their combined effect with viscoelasticity on the overall
dynamics would provide valuable insights into such experiments (Rodríguez-Díaz et al.
2023). Indeed, a critical assumption of this work is the initial condition and flow history,
particularly for bubbles at liquid–gas interfaces in viscoelastic or elastoviscoplastic media.
Our current work assumes the bubble has resided at the interface for a duration far
exceeding the polymeric medium’s relaxation time, ensuring elastic stresses have fully
relaxed before bursting. This idealised scenario provides a well-defined starting point
but may not fully capture experimental conditions (Cheny & Walters 1996; Deoclecio,
Soares & Popinet 2023). Lastly, studying interactions of multiple bubbles (Singh &
Das 2019) at the liquid–gas free surface will provide further insights into pathogen
transport.

Extensions of this work could also explore coated bubbles (Dollet, Marmottant &
Garbin 2019; Yang et al. 2023) or those with surface elasticity (Ji et al. 2023), and
incorporate surfactants that alter bulk or interfacial properties (Constante-Amores et al.
2021; Lohse 2022; Pierre, Poujol & Séon 2022; Pico et al. 2024). Utilising the current
numerical framework to investigate the effects of bubble motion (Beris et al. 1985;
Moschopoulos et al. 2021) and oscillations in viscoelastic media (Dollet et al. 2019;
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Oratis et al. 2024) on the overall dynamics before bursting would also be beneficial.
This model provides a general framework for studying both Newtonian viscous and
non-Newtonian elastic effects. As a future perspective, it would be worthwhile to study
phenomena such as wrinkling (Debrégeas et al. 1998; Oratis et al. 2020; Davidovitch &
Klein 2024) and buckling (Le Merrer, Quéré & Clanet 2012; Timoshenko & Gere 2012),
which occur in various viscoelastic systems (Schmalholz & Podladchikov 1999; Matoz-
Fernandez et al. 2020; Lee & Dalnoki-Veress 2024). By encompassing both viscous and
elastic behaviours, this approach enables a comprehensive study of these interconnected
instabilities, elucidating their underlying mechanisms and relationships as envisioned by
Stokes (1845), Lord Rayleigh (1896) and Taylor (1969). Moreover, integrating viscoelastic
and elastoviscoplastic (Balasubramanian et al. 2024; França et al. 2024) properties into
recently developed analytical methods for capillary wave propagation and convergence,
such as those by Kayal et al. (2025), could yield a deeper theoretical understanding of the
phenomenon.

In conclusion, this study investigates and characterises bubble bursting in viscoelastic
media, interpreting the interplay between elastic, viscous and capillary forces by moving in
the Ohs Ec–De phase space. As a starting point, we employed the Oldroyd-B constitutive
model. While this choice elucidates the basic interplay of elasticity, viscosity and
capillarity, it does not capture shear-thinning effects or finite extensibility of polymer
chains. Therefore, the predicted droplet sizes, jet thinning dynamics and ultimate filament
breakup must be interpreted with caution. More complex viscoelastic models (e.g.
Giesekus, Finite Extensible Nonlinear Elastic-Peterlin (FENE-P)) that incorporate finite
extensibility and nonlinearities will likely alter certain details of our findings. Hence, our
results should be viewed as a conceptual road map rather than definitive predictions. An
essential extension of our study involves the experimental validation of the numerical
results. Controlled laboratory studies using polymer solutions with known rheological
properties are needed to assess the accuracy of the Oldroyd-B model in this parameter
regime (also see Appendix B). Such comparisons will help determine where the simplified
assumptions fail and guide refinements, including the use of more realistic constitutive
equations.

Despite these caveats, our study offers a foundation for understanding how
viscoelasticity can either suppress or enhance droplet formation during bubble bursting.
We hope this work will inspire future experiments and numerical explorations
using more advanced rheological models, ultimately leading to a more complete
and quantitative picture of viscoelastic bubble bursting across different application
domains.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2025.237
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Figure 13. Temporal evolution of bubble cavity collapse in Newtonian liquid for Ohs = (a) 0.0025, (b) 0.02
and (c) 0.1. The left panel represents the magnitude of the velocity field normalised by the inertiocapillary
velocity, while the right panel shows the local viscous dissipation on a log10 scale. See also the supplementary
movies SM3.

Appendix A. The Newtonian limit of bursting bubble dynamics
The dynamics of bursting bubbles in Newtonian media is solely dictated by the Ohnesorge
number Ohs in the limit of very small bubbles (Bond number Bo � 1). Figure 13
illustrates representative cases at varying Ohs for Bo = 0.001. At low Ohs , capillary
waves propagate along the cavity, converging at its base to form a Worthington jet
that subsequently fragments into droplets (figure 13a). In this limit, multiple undamped
capillary waves collide at the cavity’s bottom, generating a thick Worthington jet.
Increasing Ohs dampens short-wavelength capillary waves, allowing the dominant wave
to focus more effectively and produce a thinner jet. This explains the observed decrease
in jet width with increasing Ohs (Gordillo & Blanco-Rodríguez 2023), until a critical
Ohc ≈ 0.03 (at Bo = 0.001) where the jet becomes extremely narrow, approaching a
singularity (Blanco-Rodríguez & Gordillo 2020). Concurrently, the size of the first ejected
droplet diminishes with increasing Ohs (Gordillo & Rodríguez-Rodríguez 2019). As Ohs
further increases, bubble entrainment occurs. Beyond Ohs,d = 0.0375, vertical droplet
ejection ceases; instead, the jet undergoes Rayleigh–Plateau instability, producing droplets
that fall back into the pool (Walls et al. 2015; Deike et al. 2018; Blanco-Rodríguez
& Gordillo 2020). As Ohs increases (Ohs > 0.045), viscous dissipation becomes more
prominent, resulting in jet formation without droplet ejection (figure 13b). Further increase
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c R ηs λ ηp G
(ppm) (mm) (m pa s) (μ s) (m pa s) (pa)

Cheny & Walters (1996) [0, 100] 7.5, 19 300 N/A [0, 18] N/A
Rodríguez–Díaz et al. (2023) [0, 350] 1 1 [0, 500] [0, 0.5] [0, 1]
Cabalgante-corrales et al. (2025) [0, 100] 0.93 0.89 [0, 700] [0, 2] [0, 1]

Table 1. Representative values of physical parameters in polymer solution studies from three representative
works on the Worthington jets from the literature. Across these studies, the density of the medium and its
surface tension coefficient are roughly 1000 kg/m3 and 70 mN/m, respectively. N/A represents unavailable
data. See table 2 for the estimates of dimensionless numbers using these properties.

Ohs De Ec Oh p Bo

This work [10−3, 100] [0, ∞) [0, 103] [0, ∞) 10−3

Balasubramanian et al. (2024) [10−3, 10−2] [0, 102] [0, 10] [10−3, 10−2] 10−3

Cheny & Walters (1996) 10−1 N/A N/A [0, 10−2] [10, 102]
Rodríguez-Díaz et al. (2023) 10−3 [0, 10−1] [0, 10−2] [0, 10−3] 10−1

Cabalgante-Corrales et al. (2025) 10−3 [0, 2 × 10−1] [0, 10−2] [0, 10−2] 10−1

Table 2. Representative values of dimensionless numbers in this work as compared with those from previous
studies. For experimental studies, the dimensionless parameters are calculated using the properties in table 1.
For Balasubramanian et al. (2024), we have only considered the limiting cases of zero yield stress. We note
that while experiments are naturally limited in their accessible parameter ranges, our numerical study explores
a broader range to establish comprehensive scaling laws and regime transitions.

in Ohs beyond Ohs, j = 0.11 completely suppresses jet formation (figure 13c, also see
Sanjay et al. 2022).

Appendix B. A note on the range of control parameters considered in this work
In this appendix, we tabulate and compare the range of dimensionless parameters explored
in this work with those available in the literature on viscoelastic effects in bubble bursting.
Table 1 and 2 summarise the physical properties and corresponding dimensionless
numbers from three representative experimental studies.

Table 1 presents key physical parameters including polymer concentration (c), bubble
radius (R), solvent viscosity (ηs), polymer relaxation time (λ), polymer contribution to
viscosity (ηp) and elastic modulus (G). The corresponding dimensionless numbers are
shown in table 2, where we compare our parameter space with both experimental and
computational studies from the literature. Our work systematically explores a significantly
broader range of these parameters compared with experimental studies, which are often
constrained by practical limitations in achievable polymer concentrations and relaxation
times. This comprehensive coverage allows us to identify universal scaling laws and
regime transitions that may be challenging to observe experimentally.

The ranges explored in our numerical study suggest several promising directions for
future experimental investigations. For instance, while moving in the De-Ec parameter
space, experiments could probe the robustness of our predicted transitions and scaling
laws. Experimental studies would not only validate our computational findings but could
also reveal additional physical mechanisms not captured by the Oldroyd-B model. We
anticipate that trying new polymers and advances in characterisation techniques (Gaillard
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Figure 14. (a) The relative error in predicted droplet size versus the number of grid points per bubble
radius, R0/Δ, at De → ∞, De = 102 and De = 10−3. The dashed line indicates a scaling of (R0/Δ)−1,
demonstrating approximately first-order convergence for large De cases. The relative error for small De
is lower as the elastic stresses are less prominent compared with large De. (b) Dependence of the critical
elastocapillary number Ecd at the dropping transition on the Deborah number De for different grid resolutions
(R0/Δ = 256, 512, 1024, 2048). The scaling behaviours Ecd ∼ De−1 as De → 0 and Ecd ∼ De0 as De → ∞
remain unchanged beyond R0/Δ = 1024.

et al. 2024a) will continue to expand the experimentally accessible parameter space,
enabling increasingly detailed comparisons between simulations and experiment.

Appendix C. Grid sensitivity tests
This appendix assesses the grid independence of our numerical results by examining two
important metrics: (i) the predicted droplet size and (ii) the regime transitions. Ensuring
grid convergence is crucial, especially if interface ruptures due to finite grid resolution in
our numerical code (Lohse & Villermaux 2020; Chirco et al. 2022; Kant et al. 2023).

Figure 14(a) shows the relative error in predicted droplet size as a function of the number
of grid points per initial bubble radius R0/Δ, where Δ is the minimum grid size. We
focus on De → ∞ as this case is particularly demanding, featuring slender filaments due
to viscoelastic stresses. The error is calculated relative to the finest resolution (R0/Δ =
2048). The data exhibit approximately first-order convergence, indicated by the dashed
line scaling as (R0/Δ)−1. For our standard resolution of R0/Δ = 512, the relative error is
approximately 6 %, decreasing to approximately 3 % at R0/Δ = 1024.

While droplet size convergence demonstrates improved numerical accuracy with
increasing resolution, the determination of regime transitions between different flow
behaviours provides an even more stringent test. These transitions are highly sensitive
to the details of jet breakup. Figure 14(b) displays the dimensionless elastocapillary
number Ec at the transition boundary for different grid resolutions. We find that
for (R0/Δ)� 1024, the transition curves do not change, confirming that the scaling
behaviours previously identified – namely Ecd ∼ De−1 for De � 1 and Ecd ∼ De0 for
De 	 1 – are robustly reproduced across all grid resolutions tested.

Appendix D. Deviation from the Newtonian asymptote
In the main text, we showed that for small elastocapillary numbers Ec, the droplet size rd
and jet length Lmax closely match those of the Newtonian case at arbitrary Ohs (solvent
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Figure 15. Comparison of (a) maximum jet length Lmax/R0 against Ec at various De at fixed representative
cases of Ohs = 0.05 and (b) first droplet size rd/R0 against Ec at various De fixed at Ohs = 0.001. The
horizontal lines indicate the Newtonian reference values (obtained at Ec = 0). At small Ec, both Lmax and rd
coincide with their Newtonian counterparts, demonstrating negligible viscoelastic influence. As Ec increases
beyond critical values, significant deviations from the Newtonian limits emerge, with the degree of departure
depending on De. These results quantify the onset and magnitude of elastic effects relative to the Newtonian
baseline, providing a clear framework for interpreting viscoelastic modifications to bursting bubble dynamics.

Ohnesorge number) and De (Deborah number). Only when Ec approaches or exceeds
critical values do we observe significant departures from the Newtonian reference.

Figure 15 quantifies these deviations by comparing both the maximum jet length Lmax
(figure 15a) and the first droplet size rd (figure 15b) against Ec at various De, in the
limit of Ohs � 1. The symbols represent numerical results for the viscoelastic system,
while the horizontal lines mark the corresponding Newtonian asymptotes (i.e. rd and
Lmax values obtained at Ec = 0). For small Ec, both rd and Lmax are invariant, indicating
that viscoelastic stresses are negligible in this range. As Ec increases and approaches the
critical thresholds identified in § 4, deviations emerge, ultimately leading to suppressed
jetting or droplet formation.

Notably, the critical Ec value at which rd and Lmax deviate from their Newtonian
counterparts depends on De. For high De, even a moderate increase in Ec can trigger
significant changes, reflecting the persistent elastic memory in the fluid. In contrast, for
De � 1, where the polymeric stresses relax rapidly, larger Ec values are necessary to
produce noticeable departures from Newtonian behaviour. Similarly, the Newtonian limit
is readily recovered by reducing either Ec or De to zero.

These results highlight that any interpretation of viscoelastic bubble-bursting dynamics
should be framed with reference to the Newtonian baselines (either De = 0 or Ec = 0). By
systematically mapping out these deviations, one can pinpoint the onset of non-Newtonian
behaviour and interpret observed jetting or droplet formation regimes as outcomes of either
weak or strong elastic effects, all benchmarked against the Newtonian scenario.
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