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Path decompositions of digraphs

Issam Abdul-Kader

Let G = (X, U) bve a digraph of order n . P(G) denotes the

minimal cardinal of a path-partition of the ares of G .
Oystein Ore, Theory of graphs (Amer. Math. Soc., Providence,

Rhode Island, 1962) has proved that P(G) = §:+ (dg(x)—d;(m)) s
z€X
G

where XZ = {x €x| dg(x) > d;(x)} . We say that G satisfies
@ if the preceeding inequality is an equality.

We give some properties of the digraphs satisfying &€ , and in

particular the case where (G 1is strongly connected. Then we

prove that P(G) = [ne/h] - 2 , and that this result is the best

possible. Next we exhibit the existence of digraphs with
circuits such that P(G) = [nz/h] .

Finally we prove that if (G 1is a strongly connected digraph of
order 7n vwhich satisfies & , then there exists a strongly
connected digraph # of order n + 1 having G as a

sub-digraph and satisfying & , too.

1. Introduction
1.1. The notations are those of Berge [5].

A digraph G = (X, U) is a non-empty finite set X (the vertices),
together with a finite family U of ordered pairs of vertices (the arcs).

A simple digraph is a digraph without parallel arcs and loops.
In this paper we only consider simple digraphs. The digraph obtained
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from G by deleting a vertex &« € X and its adjacent arcs will be
denoted by G - T .

We denote by (xl, Lyy wees xk] (respectively (xl, Ty eeer Ty xl))

the elementary path (respectively the circuit) containing the k distinct

vertices <« xk . Let R be a family of elementary paths of G .

ILEREEE
If each arc of G 1lies on exactly one element of R then R is a path-
partition of G . We denote by P(G) the minimal cardinality of a path-
partition of a digraph G . '

From now on we denote

I‘;(:::) =ly €x | (z,9) €v}, [(dya ll‘;(x)l) ,

@) =y €X | (g, ) €0}, (O(x) = [y@)]) ,

X, = {z € x | dia) > d(@)} ,
o = (e € x | dile) = &)},
- (+ 0
Xy=X- lXGuXGJ

From Ore [9], we have

P(G) 2 ¥, (d(x)-d ()

€, G

Alspach and Pullman [4], have conjectured that for any simple digraph
G or order n , P(G) = [nz/h] .

O'Brien [8] proved this conjecture. For a further detailed study of
the index P(G) , we refer also to Chaty, Chein ([6], [7]).

DEFINITION 1.2. Let & = (X, U) be a digraph of order n ; if
P(G) = §:+ [d;(x)—d;(x)) we say G has the property & . 1In the
reX
G

following, we denote by e(G) the sum e(G) = §j+ (d;(x)-dz(x))
€X
G

https://doi.org/10.1017/50004972700008698 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700008698

Decompositions of digraphs 207

2. Results
LEMMA 2.1. Let G = (X, U) be a digraph of order n and v € X; .
If G satisfies the following conditions,
(<) dg(v) =0,
(1) P(G-v) = e(G-v) (that is G - v has the property € ),

then G has the property @ .

+ + 0 + ~
Proof. X, = (X~{v}) v [XG n FG(v)] , and P(G-v) = e(G-v) . If
+ + + -
x € X,  » then dG_v(x) = dG(x) and d;_v(x) = dG(x) - 1. Moreover, for
+ +
x €X, - (XG-v n FG(U)) , Wwe have

o
dh () =d(z) and d, (z) = d (x)
G-p'T) T dg\%) an G-v =4 :

+ +
Xo v (x-{v}) - X,
But in G - v , through each vertex « € X;_v n F;(v) there pass
o+ . s
dG_v(x) - d;_v(x) = [dG(x)-d;(x)] + 1 elementary paths of origin =z ,

wvhich belong to a path-partition R of the arcs of the digraph, the
cardinal of R being P(G-v) . Among those paths of origin x , consider
the path A = (x, ...) . Since (v, &) € U , the path X allows the
construction in G of the path u = (v, z, ...) of origin v . Thus the

number of paths of origin x in G becomes (d;(x)-d;(x)] . Moreover,
for each x € FZ(U) - [X;_v n Fg(v)] , Wwe construct the path (v, z) of

origin v in G . Let R' be the set of elementary paths obtained from
R by cancelling those paths A which have been used to define the path u
of origin v in G . Let T be the following set of elementary paths:
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T=Rouvlpu=(,z ...) | © ex;_v nI‘;(v)}

v {(v, 2) | = €TR)-(x;_ o Th)]

It is obvious that the set T partitions the arcs of (G , and we have
|7] = e(G) = P(G)
Therefore P(G) = e(G) .
From the preceding lemma, we deduce the following theorem.

THEOREM 2.2 (Ore [9]). Let G = (X, U) be a digraph without

etreuit; then
P(G) = e(G) .
COROLLARY 1 (Aispach and Pul lman [4]). If TTn is the transitive

tournament of order n we have
plrr) = 1PN .

REMARKS. (1) 1If we replace the condition (i) of the lemma by the

condition (Z'), dg(v) = 0 , we get a similar result. Moreover, the

preceding lemma allows us to construct from a digraph of order (n-1)

satisfying € , another digraph of order # still satisfying ¢ .

(2) By that lemma, we can define an algorithm which allows the

construction of a path-partition of a digraph without circuit.
The following lemma is due to Alspach, Mason, Pulliman [3].

LEMMA 2.3. Let G = (X, U) be a digraph of order n satisfying &

and (x, y) an are of G such that xEX—XE and yexéuxg. If H

is the digraph obtained from G by reversing the arc (x, y) , then K
satisfies @ and P(H) = P(G) + 2 = e(H) .

THEOREM 2.4. Consider a strongly connected digraph G = (X, U)
satisfying P(G) = e(G) . Then we have

P(G) = [nz/h] -2.

Proof. Suppose that P(G) = [nz/h] -1 . Since G is strongly

*  such that (x, y) eU .

connected, there exist x € X—X; and y € XG
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Denote by Gl the digraph obtained from G by reversing the arc (zx, y)

By Lemma 2.3, Gl satisfies & and we have

P(Gl] =P(G) +2 = [ne/h] +1,

which is a contradiction to the fact that P(Gl) < D12/h] . Thus we

-2
necessarily have P(G) < |n /h] - 2.
We show that the result of Theorem 2.4 is the best possible.
REMARKS. (1) Let Tn = (X, U) be a tournament of order n . It is
easy to verify that P(Tn) > [(n+1)/2] ; therefore

[(n+1)/2] = P(Tn) < [nz/h] .

(2) Let An = (X, U) be the strongly connected c¢-minimal
tournament! of order = (that is An = (X, U) admits exactly
((n-1)(n-2))/2 elementary circuits). Let us study some particular cases.

Case n = 4 .

pat 2 Z3 Ty
Let xl, Ty x3, xh be the canonical indexation of the vertices of

Ah . We have

But the set {[xh, x2, x3, xl), (x3, xh, xl, xz)} of elementary paths

forms a partition of the arcs of 4) . Therefore P(Ah) = [ﬁe/h] -2=2.

! A complete study of strongly connected c-minimal tournaments will be

found in Abdul-Kader [1].
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Case n =5

zy z, x3 z), zs
Let xl, x2, x3, xh, xs be the canonical indexation of the vertices
of AS . We have
PlA) = ef4.) =14 .
() = e(a;)
But the set

{(xs, Ty, T, xl], (xs, 3, ), z,) (xh, ., xa), (xh, zg, xl]}

of elementary paths forms a partition of the arcs of A_ . Therefore

5

P(As)

THEOREM 2.5. Let A

[2] - 2=k = elay)

(X, U) be the strongly connected c-minimal

tournament of order n = 5 ; then
2
Pa) = /4] - 2= ef4,)

Proof. We prove the theorem by induction on #n . The theorem is

already true for n = k, 5 . Suppose it is true for An we prove it

13
for An (n = 6)

Let ml, x2, ey xn be the canonical indexation of the vertices of
An
. (1) Let G be the digraph obtained from An—l by adding the vertex
Yy and the arcs (y, xi) for al1 2 =1, ..., n-2 . By the induction

hypothesis An—l satisfies € , which implies that the digraph @&
satisfies & (see Lemma 2.1).

(2) Let Gl be the digraph obtained from G by adding the arc
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LG-l’ y) . But dgl(xn_l) =1 and 7n > 5 ; hence there exists at least
one path X of origin y which does not end up at the point xh-l . From
this path A we can construct a path of origin xn 1 in Gl ; therefore
P(Gl) = e(Gl] (Gl isomorphic to An ).
In An we have (see Abdul-Kader [1]),
+ P
X, = {xi | © = [n/2]41, ..., n} ,
n
dZ [xz) - dz (x,bj = 2(%-1) - (n-1) for all < = [n/2]4+1, , n=-1,
n n
+
4 (@) -4 (@) =n-3.
n n
Therefore
) n-1
P(a ) = 2(2-1) - (n-1) + (n-3)

i=[n/2]+1

ela) = 1] -2 .

The following corollary proves the existence, by exhibiting them, of
digraphs G with circuits satisfying P(G) = E1z/h] .
We denote by TTn the transitive tournament of order n .

COROLLARY 1. There exist tournaments 7, which are not isomorphic

to TTn and such that

¢ 2
P(r ) = [2°/4] .
Proof. Let An = (X, U) be the tournament strongly connected and

¢-minimal of order n . Let Tys Tns wnvs xn be the canonical indexation

of the vertices of An .

First Case: n = 2k .

In A2k we have: if dzzk(xk) =k -1 and QZZk(xk) >k -1, then
+ + .
dAZk(xk] - dzzk(xk) < 0 ; moreover dAek(xk+1J - dzzk(xk+l] > 0. We
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denote by Tn the tournament of order »n obtained from An by reversing
the arc (xk, xk+1J .
By Lerma 2.3, the tournament Tn satisfies & and we have
g 2
P =PlA )+ 2= =
(z,) = P(@) [2"/4] = e(T,)

Second Case: n = 2k + 1

We have

and

\"
o

4+ . .
dA l‘""‘k+2) B dZ (xk+2J
n n

Let Tn be the tournament of order #»n obtained from An by
reversing the arc (xk, xk+l) 5 by Lemma 2.3, the tournament satisfies &
2
and P(Tn) = P(An) +2 - [n°/4] = e(Tn) . Similarly the tournament of

order »n obtained from An by reversing the arc satisfies

(xk+l’ xk+2)
€ and P(Tn) = P(An) + 2= [nz/h] = e(Tn) . This proves our result.

By Abdul-Kader [2]3, if Tn is a tournament having a unique

hamiltonian circuit, we have
2
(1) P(Tn) = [°/4] - 2

(2) this result is the best possible, that is, there exist
tournaments having a unique hamiltonian circuit, which are

not isomorphic to An , and which satisfy the equation
P(z) = [2°/] - 2 ;
w T T
(3) Tn does not satisfy the property & , in general.

THEOREM 2.6. Let G = (X, U) be a strongly connected digraph of
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order n satisfying & ; then there exists a strongly comnected digraph
H of order n + 1, satisfying & and having G as a sub-digraph.

Proof. We have X; 9.
First Case: IX&’ > IX;, .

- Py = i - +
Let Bl’ B2 be a partition of XG such that IBll = IXG[ . Let

z, § X and H be the digraph generated by X u {xo} such that

(1) GcH,

(2) for all =z € X; v Bl , we consider the arcs [x, xo) if

x € XE and (xo, x] if not, as being arcs of H . We

have then X; = X; . Moreover, d;(:z:) = d;(x) +1 and
d;i(a:) = d;(x) for all x € X}; 5 then

P(H) = e(H) = e(G) + |X;| .

If R is a path-partition of G such that |R| = P(G) , then the set
Rl =R v {(:z:i, :co, bi) | :ci € X;, bi € Bl} is a path-partition of the arcs
of H and |R1| = P(G) + |X;| . One verifies easily that the digraph #
is strongly connected; therefore

P(H) = e(H)
Second Case: |X&| < |X2| .

+

be a partition of XG

Let C), C such that Icll = IX(';I , and let

2
H denote the digraph generated by X u {xo} and satisfying

(1) 6c &,

(2) for all =« € Cl U X, , we consider the arcs (z, xo] if

x € Cl and (xo, x) if x € X(_; , as being arcs of H .

We have the relations

d;(x) d;(x) +1, dylz) =dy(z) forall zecC

*

d;(:c) d;(x) , d;z,(:z:) = d;(x) for all =x € 02 .
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Then
P(H) z e(H) = e(G) + |c |
Moreover the set R, =.R {(xi, Zqs ;) | z, €Cp5 Y, € X;}
partitions the arcs of # and IRlI = |R| + icll = P(G) + |cl| .
Therefore P(H) = e(H) . As before, one easily verifies that H is

strongly connected.

REMARK. This last theorem constitutes a procedure of extension
permitting the construction, from a class of strongly connected digraphs
satisfying & , another class of strongly connected digraphs satisfying @
too.

EXAMPLES. Consider a strongly connected digraph G of order n
satisfying P(G) = e(G) . We study two cases.

(1) n=>5
i1 5 T
xs £ a:3

By Theorem 2.6, we have
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1 o 2
%o
g = <
xh H
(2) n=6
%y
G
By Theorem 2.6 we have
z, . g
A 4
o 2 “y
x, ]
6 xs H
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