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ABSTRACT. Perturbation of divide position is considered by a linearization about
the Vialov—Nye solution and also about related solutions with O(1) relief. Relaxation
times of one-sixteenth the [undamental thickness/accumulation-rate time-scale are
found for the Vialov—Nye configuration, while substantial basal topography can halve
the rate of relaxation. Steady divide position is most sensitive to anti-symmetric
accumulation-rate distributions near the divide, but transient divide motion is most
strongly excited by anti-symmetric accumulation rate variations halfway between the
margin and the divide. Relaxation times for the Antarctic Peninsula divide position
are estimated to be around 200 years, while the larger Greenland ice sheet has a
divide-position relaxation time of around 600 years.

Modelling accumulation rate as a white-noise process permits analysis of divide
perturbation as a (stochastic) Ornstein-Uhlenbeck process, where the standard
deviation of the response is proportional to the standard deviation of the forcing. If
observed accumulation-rate variability in the Antarctic Peninsula were anti-
symmetric about the divide, it would be sufficient to force the divide position to
fluctuate with standard deviation 10-20 times the depth of the ice sheet. There appears
to be suflicient noise to cause Raymond bumps to be spread significantly. More data
on the statistical variation of accumulation with position are needed. Random forcing
will increase the complexity of any fold structures created in the divide region and in
particular the number of such structures intersecting any borehole.

1. INTRODUCTION particular ice zone for a short time and it may be possible
to neglect it. Larger variation in divide position will
spread out the Raymond bumps. If, as seems likely, the
special flow fields in divides are liable to produce folding
of the ice (Alley and others, 1995), then repeated reversals

of divide-migration direction may potentially produce

Understanding the flow in ice divides is of singular
importance owing to their being favoured locations [or
ice-core drilling. The non-linear rheology of ice means
that over a zone a few 1ce-sheet thicknesses wide the flow

in the vicinity of ice divides cannot be described by the
shallow-ice approximation (Raymond, 1983). In parti-
cular, the vertical strain rate is markedly different,
leading to different predicted age—depth relationships
(Raymond, 1983; Reeh, 1988) in stationary divides than
in the remaining part of the ice sheet. The different
vertical velocities lead to a theoretical prediction that
marker layers in the divide area will be higher than in the
flanking areas, a phenomenon popularly known as
“Raymond bumps™. The variation ol steady divide
position with asymmetric forcing of the ice sheet (e.g.
by accumulation rate) has been considered by Weertman

(1973) and, in the specific context of the influence of

divide migration on flow modelling of the GRIP and
GISP2 cores, by Anandakrishnan and others (1994),
Movement of the divide causes these [low patterns to

migrate horizontally through the ice, which is itsell

flowing. There is clearly an important issue of the
expected transient variation of ice-divide position; if this
is only expected to be a few ice-sheet thicknesses, the
complicating influence will be concentrated in a small
arca, while, if the expected variation of divide position is
large, the complicating influence will only exist in a
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repeated folding events within the ice. One purpose of this
paper is to investigate whether stochastic variability of
climate can produce these reversals in divide-migration
direction. This is potentially an explanation for folding
seen in many sites distant from the divide; ice becomes
heavily folded under a (stochastically) migrating divide,
and then is transported, folded, to the distant sites. Even if
pure shear is occurring in the rest of the ice sheet, the
folding will be preserved, although the limbs will clearly
be heavily attenuated.

The investigation in this paper concentrates on divide
motion forced by anti-symmetric accumulation forcing. It
is obvious that margin position can have a far greater
influence on divide position than any other factor, but in
ice sheets like on Greenland and around the Antarctic
Peninsula, margin position is determined by the heavily
red-shifted sca-level record, which may not produce the
same short-term variability in divide position.

The technical procedure used in this paper is based on
the recognition that while the flow within ice divides
cannot be calculated using the shallow-ice approxima-
tion, their position (to the order of the ice-sheet thickness)
can. If the movement of the divide over a period of
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interest is greater than the breadth of the region of
anomalous flow, then the shallow-ice approximation can
be used to determine how large a region the moving
divide can be expected to cover. Nevertheless, we expect
from the analysis presented by Weertman (1973) that the
expected variation in divide position, normalized by the
span, will be small, possibly smaller than typical linite-
difference grids, with the implication that moving-grid
techniques need to be used, and also implying that study
of the linearized ice-sheet evolution equations can yield
applicable equations. We thus perform the anti-sym-
metric perturbation around the Vialov-Nye fixed-span
solution through a coordinate stretching, using the
correct regularity condition for the moving divide and
solve the consequent eigen problem. Ice divides are
difficult areas to work with theoretically, and this is also
true when considering application of the shallow-ice
approximation (Hutter, 1983; Szidarovszky and others,
1989). I'he profile is singular (e.g. Fowler, 1992) and the
nature of the singularity deseribing the anti-symmetric,
migrating divide has only been established recently
(Hindmarsh, unpublished). It is clearly important that
analyses which have heen correctly executed should be
used to examine the stochastic variability of divides.

The analyses reported in this paper tell us that, for
internal deformation of ice according to a Glen rheology,
the time-scale for decay of the slowest anti-symmetric
mode is 16 times less than the fundamental thickness/
accumulation-rate time-scale for the ice sheet, implying
relaxation times of 200 years for the Antarctic Peninsula
divides and around 600 years for the central Greenland
divide. Steady-state divide position is most sensitive to
accumulation forcing near the divide, but large divide
motions are forced most efliciently by an accumulation
distribution which reaches its maximum half-way be-
tween divide and margin. The corresponding relaxation
constant for symmetric configurations is 9 times the
fundamental time-scale (Hindmarsh, unpublished).
Other configurations with O(1) variations in basal
topography vield eigenvalues of between 6 and 15 times
the fundamental rate, with an increase in relief of basal
topography causing divides to decay more slowly from
anti-symmetric perturbation.

We consider the evolution of the slowest mode being
stochastically forced by the anti-symmetric accumulation-
rate variation projected on to the eigenfunction associated
with the slowest mode. This yields a Langevin equation
whose asymptotic behaviour is, for forcing by white noise,
an Ornstein—-Uhlenbeck process which relates the ex-
pected variation of the divide position to the expected
variation of the anti-symmetric accumulation rate.

2. THE STOKES’ EQUATION AND THE ICE-
SHEET EQUATION

In this paper we shall restrict consideration to plane flow.
In two space dimensions the Stokes’ equations, which
describe momentum balance, are

By, 7ij = Orp — gis 1,5 =1,2 (1)

where 7;; represents the components of the deviator stress
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tensor and we represent the horizontal and vertical
dimensions by y, 2 or x, z as convenient. The accelera-
tion due to gravity is represented by g; and the pressure
by p. Specification of a viscous relationship and appro-
priate boundary conditions permits solution of the Stokes’
equations, which are usually obtained numerically.
Normally we consider a reduced model obtained from
an afline scaling of the Stokes™ equations. This scaling is
equivalent to the “stretched coordinates™ used by Hutter
(1981) which are completely different from the stretched
coordinates we use later. The alline scaling yields simple
functional forms for the vertical variation of the stress field
and a considerable computational saving. Further ma-
nipulation of the reduced model results in the ice-sheet
equation

. ; ; = o o :
8H = a_,.(CH'“ O] ”'0ys) +a, w€[-5,5]  (2)
where H(x,t) is the thickness of the ice sheet, s(x, t) is the
upper surface, a is the surface mass-balance exchange and
{ denotes time, Boundary conditions for this model are

H(+8) = 0. (3)

These equations describe the evolution ol ice-sheet
thickness where the flow mechanism is either internal
deformation according to some non-linearly viscous flow
law or sliding according to some Weertman-type law. The
analyses we shall carry out are not in principle limited to
these situations but tractability, which we are secking in
the first instance, does appear to impose such limits.

The most important point to grasp is that in a small
region of length a few ice-sheet thicknesses around the ice
divide (where the surface slope is zero) the reduced model
is known not to apply. However, while the flow in this
region must therefore be computed using the Stokes’
equations, large-scale variations in its position are
determined principally by flow in regions where the
reduced model holds, and one can therefore compute
divide translation on the large scale by solution of the
evolution Equation (2). Because the flow in the region of
the divide gives diflerent age—depth relationships in cores
(Raymond, 1983; Rech, 1988) to those found in the rest of
the ice sheet, migration of the divide will disturb age-
depth relationships. The purpose of the analysis is to
estimate the likely magnitude of this effect.

The quantity C' is directly related to either a weighted
vertical average rate factor Aq defined below in Equation
(17) of the rate factor Ay used in the viscous relationship

B =Agr" (4)
where E is a second invariant of the deformation rate and

7 1s a second invariant of the deviator stress (Glen, 1955)
or comes from a sliding relation of the form

up = Asﬁ)r (5)

(Weertman, 1937) where Uy, is the sliding velocity. We
construct the following quantities for use in the general

O
o
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evolution equation

n internal deformation

B= i (6)
¢ sliding
2 internal deformation

m= . (7)
£-1 sliding

C — %{% Ay internal deformation (8)
Aulpg)”  sliding.

The derivation of the evolution Equation (2) using the
shallow-ice approximation is standard (Hutter, 1983;
Morland, 1984; Fowler, 1992). The following derivation
is not essentially different from these and may also be
found in Hindmarsh (unpublished). Let vertical distances
be scaled by a thickness magnitude [H], horizontal
distances by a magnitude [S], accumulation rates by [a],

time by [t]= [H]/[a] and rate factor [C] by

o Ll

" Gl Y

The scale magnitude of the shear stress [7,..] is given by

bl —% —dolldiE =€l (10)
where
. % <1 (11)

is the aspect ratio of the problem and [p] is the pressure
magnitude. We also note that we have used density and
gravitational acceleration magnitudes [p] and [g]. Hence-
forth, all quantities are assumed to be dimensionless.
The shallow-ice approximation (Hutter, 1983) ex-
pands the Stokes’ equations in terms of the aspect ratio,
treating it as a global parameter representing deviation
from static conditions. The quasi-static formula for the
shear stress introduced into glaciology by Nye (1952)

Tz = —pgl(s — 2)0,5 (12)
is re-obtained as the asymptotic approximation
v )
Toe = —pg(s — 2)0,.5 + ()(E') (13)
and the shallow-ice approximation also vields
vt ial Baolu, (14)
while the viscous relationship may be approximated
; —1
():“ = 2(pg)VA(||T.r:4H Txz (15)

Substitution of the approximate relationship (13) and two
integrations with respect to 2 yields a formula for the ice
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flux ¢,

2(pg)" A

d rrm s r—=1lg y
o H0s|” s (16)

q¢=—

where
1
A=+ [a-gae
Jo

and where
z—0b
s 18
(=—7g (18)

i1s a normalized vertical coordinate and b represents the

base of the ice sheet. ITinstead we are dealing with sliding,
then

g=u,H = —A(pg)"H"|0,5| "' 0,8 (19)

and use of the continuity equation

H+0,q=ua (20)
results in the non-linear diflusion type Equation (2).
The Vialov-Nye (VN) (Vialov, 1958; Nye, 1959)
solution is computed by setting H =0 and a = ay,
C' = Cyo, both constants, in Equation (2) and integrating
the resulting ordinary diflferential equation (ODE). It is
convenient to work in terms of a normalized profile n(§),
where

sam(&,t) = H(x, 1), (21)
BE =4 (22)

The VN solution is

v 1/(y+1)
. + 1\ " ay
gy = SO ((—7 5 ) =T IU) (23)
ml)

wf(v+1)
m(©) = (1-1¢"") (24)

and

where

b=v+1l, y=v+m-1 (25)

We shall also use the construction

s‘,+l ('}/ il ) ua
A= do = mb) ] 9
S‘r\ ( é ) C‘11|1() ( 6)

Following Weertman (1973), one may compute the
ellfect of a step change in the parameters on the divide
position. Consider an ice sheet where the distance from
left and right margins to divide are S, Sk, respectively.
Since the elevations of the two sections must be equal at
the divide by definition, we see that

Sr, (”mnn/ﬂ-um[.) ) L
— =T =|——"74177—% 27
SH (( “nlll]}/('mlll.) ( )

where additional subscripts R and L indicate the constant
values of accumulation rate or rate lactor on the lelt or
right side of the divide. For example, a 2:1 ratio in
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accumulation rates vields

Tl 2

when we choose v =3 = é = 4. The normalized devia-
tion of the divide from the centre position is given by

ISR_S[-ilT_I

JY —= = o
y <5L + Sr -1

~ (.04

for the case mentioned above.

We are also interested in more general cases, where
the bed profile is varying smoothly but with O(1)
variations in elevation. This does not violate reduced
model assumptions (Morland and Johnson. 1980) but
does now mean that the zeroth-order solution is no longer
analyvtical. With VN boundary conditions, one may
integrate from the margin where the discharge and
elevation arc known and obtain the divide elevation
without any need for shooting. The equation for the
steady profile is

B, (CH”'|a,.._-\“*1c'1,s) — —a,d.5(0) = 0,b(S) = s(5) =0,

which has first integral

(s — b(x))" 85 = (29)

ax|l/v
2
and s(x) is obtained by numerical solution of this ODE.
This is singular at the margin x = L, where it is known
(e.g. Hindmarsh, 1995) that the local expansion is of form

‘ w

- JJ)I‘}'[“« t |]. ar-"' P _A (L . .r)f&r"(".‘ +1)—1

7

g = k(L
5 ( I

+

(30)

and we can solve for & by noting that at this order at and
near the margin ¢ = aL and substituting [or s and d,.5 in

the flux relations (16) and (19) to obtain

1%

2 17
g=Ck (- =al (31)
f
whence we solve for k,
Y TN/ fpy YO+
k= (’ ) (”—) . (32)
i 8

Starting the integration at the margin, a forward Euler
starting step over a discretization interval A, is given
by

, L/ {v+1
v+ 1\"aL )

v 1

The profile is then integrated back to the divide using
Taylor expansions. At the final step we use the divide
local expansion (Fowler, 1992)

v+ 1

1

5(Ay) = s(0) — kg AV 5.5 = — kaAY”
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where &y is a constant. We may compulte

v, s

B Avd,s
Al (v +1)

feali=
v+1

o 5(0) =8 ) 3

and thus s(0), and we deline

(&) = s(x)/5(0).

3. ANTI-SYMMETRIC LINEARIZATIONS
AROUND THE VN SOLUTION

solution have been

around the VN
considered in detail by Hindmarsh (unpublished ). There,
symmetric and anti-symmetric perturbations are consid-

Linearizations

ered in detail, and the resulting numerical eigenvalue
problem is solved in a number of ways in order to ensure
accuracy, using (i) linite discretization methods and (ii)
Priifer Pruess shooting methods (see Pryce, 1993). We
refer the interested reader to Hindmarsh (unpublished)
for further details of the techniques used. We shall use the
more accurate Priiffer—Pruess method. In this section we
extend the analysis of Hindmarsh (unpublished) by
considering beds which have general symmetric topogra-
phy in the zeroth-order solution.

3.1. Regularity conditions for a moving divide

In the general asymmetric case the divide will move.
Since the divide curvature is in general singular (Weert-
man, 1961; Fowler, 1992). we need to examine the nature
of the expansion around the moving divide to assure
ourselves that we are respecting regularity conditions. We
summarize the construction of Hindmarsh (unpublished ).

There are three requirements for a moving divide
expansion, which we suppose occurs at a point & = &4 (i)
the slope is zero; under reduced model assumptions. this
implies that the flux is zero: (i) there is a finite lowering
rate, i.c. dg/dx is finite; (iii) there is a finite migration
rate. Under shallow-ice aproximations, the divide slope is
zero. Since the divide is the point d.s(x = x4) =0, we

may write
i), s €L C .')r" (0 rd
D@is(aa))|  _ 008) ,  00es) _

Dt at dr

=iy

(33)

where Ay is the migration velocity of the divide. The
differentiated form ol the mass conservation condition is

d(dys)  0(0.q)

dr dr U
(surface mass-exchange gradient does not enter into the
analysis at this order) and assuming that the profile s is
sufliciently well behaved at the divide that 0,05 = 0,05
(which can be conlirmed a posteriori) we can substitute the
differentiated conservation condition into Equation (33)
to eliminate &,.0;s to obtain
a%q
My=—=+.
s

(34)

We consider a more general case where the divide is at

97
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Fig. 1. The strelched coordinate system. Vertical axis &,
horizontal axis €. Solid line is the symmetric VN solution
£ =n(&), & =&, while dashed line is a non-symmelric
solution n(E(E.)), € = 1+ &, — €2, The dotled line is a
graph of € — & = 1 — €2, which represents the deviation
of the stretched coordinate system from the configuration
yielding a symmelric ice-sheet profile. In this paper, non-
symmelric ice-sheel configurations are deseribed by similar
coordinate strefchings.

x = x4 and define a local coordinate £ = & — x4, and set
t =sgn(z — z4). The expansion consistent with these
requirements is

H = H, (l =g ) Heg(f{:f:)”z/") (35)

where the first two terms are the usual divide expansion
(Fowler, 1992) and the third term enables the divide to
move. The constants € and e; emerge from solutions to
the parabolic equation describing the evolution of ice-
sheet profile (Equation (2)). The constant e; tells us
about the curvature of the divide, (il ¢; = 0, the divide is
flat), while the constant ey tells us about the asymmetry of
the divide.

3.2. The stretched coordinate system

IT a divide moves, there will clearly be a position where
the perturbed slope is non-zero but the zeroth-order
solution has zero slope. For flux relations where the slope
enters non-linearly (here, as a result of Glen's power-law
deformation relationship), this will cause any assumption
about the perturbed quantities being much smaller than
the zeroth-order solution quantities to be violated. The
standard resolution to this technical problem is to use
stretched coordinates (e.g. Halfar, 1981; Fowler, 1992)
illustrated in Figure 1. Rather than let the profile perturb,
we let the independent space coordinate stretch in such a
way that the transformed ice-sheet evolution equation
satisfies the assumptions of a perturbation being small.
We then construct an evolution equation for the profile
perturbation. Because this is an anti-symmetric perturba-
tion, by construction the average elevation and in
particular the elevation at the perturbed divide will not
change.

The procedure used has been given in detail by
Hindmarsh (unpublished) and the important features are
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described here. To construct the stretched coordinate
system we write

n(&; ) =m(&), §=X(&,t.),t =t (36)
and solve for & with &,,t. as the independent variables.
Here & =0 defines the divide position which is given
directly by £ = X(0,t,). The key point is that £ is the
physical coordinate but &, is the independent variable.

We may construct an evolution equation for 7 from

Equations (2), (21) and (22):

sadm = Ade(Cr”

den| ' On) +a.  (37)

Then, by substituting into the above equation the
dynamic stretching transformation (Equation (36)) and
eliminating n(&,t) in favour of my(€,) a non-linear
evolution equation for X(&..t), given in Hindmarsh
(1996), is obtained. We shall treat the small perturbation
case and consider a linearized problem which can
therefore be superposed on to solutions from the
symmetric perturbation. Halfar (1981), who carried out
an anti-symmetric ice-sheet perturbation using a
stretched coordinate system, found infinite tangents at
the divide, but no such problems are found here,
presumably because we ensure that we respect the
regularity condition for an asymmetric divide (Equation
(35)). Thus, we perturb the stretched coordinate system,
again using a small parameter g, writing

€= X(& t) = &+ pXy (L te) (38)

We must have Xi(—1,t) = X1(1,t) =0, in order to
ensure that the position of the margin is fixed (a condition
of the VN solution), while the value ol X(0,1)
determines the position of the divide in € space and in x
space. (Physically, t. is identical to t.) We allow
perturbations in the accumulation

a > aq) + pray (& ts) (39)

where the perturbed forcing function is an anti-symmetric
function of the spatial coordinate.

Hindmarsh (unpublished) showed that to zeroth order
the ice-sheet evolution equation is simply

A apé,
= —‘(;;f ) + ap , (40)

which is true by construction, and to first order

Sdo Do) ox, 00X, 9 (—E V(')Xl)

ay O O, Ot OE, €,

1 -1
PRV (—V(V ),u-) (41)
[217] 2

where
_ur
I

v

il we write
Fleot) =2 (43)

L)

and multiply Equation (41) by a Sturm- Liouville multi-
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Fig. 2. Zeroth-order profiles z = s(x) (solid line) for
Jive bed profiles z = b(z) (dotted line) including a flat
bed. Highest ice-sheet profiles correspond lo highest bed
profiles, ete. Horizontal axis x, vertical axis z.

plier 8(&.), we find that we can write the evolution
equation for X in a sell~adjoint form

_ (:Z::L W(E.)D, X, = (95‘ (T(E*)af.Xi) + prS(E)F + O(p)
(44)
where
5 9]
W(E*F% %El’”: S(&)=E""fv; Tt )y=¢+\">
(45)

and where we have taken (r—1)/2= 0O(1). This
equation is to be solved over the domain & € [0, 1] and
X will be an even function about zero.

The small parameter p is now interpreted an

Hindmarsh: Stochastic perturbation of divide position

acceptable relative modelling error & in the perturbed divide
position, which will thus depend upon how the solution is
being used. Under steady conditions, the lefthand side of
Equation (44) is zero. and to balance the righthand side
we need

pE = ’L:TF =0(1/8(&))=v=>pr=vp=vé, (46)
1.e. the acceptable (anti-symmetric) forcing magnitude is
v times the acceptable relative error in the perturbed
position. Provided this is accepted as an operational rule,
it is now computationally convenient to take pp =
0= pr =1, and this convention will be followed in the
rest of this paper.

Let us consider for the moment the homogencous
problem, setting F" =0, we write X;(£.,t.) in a
separated form

Xi(& 1) = Xu(&)TL(t) (47)

substitute this into Equation (44) to obtain

1 T, _ 3 (T(6)0.X.)6 ,
T el W(E) X (v +1) B
K= M (49)

8400

where A is the eigenvalue of the problem. The time
equation has solution

T, = T exp(AAgt.) (50)

where T, represents an initial condition, and the second
order equation in space can be written in Sturm-Liouville

Table 1. Eigenvalues and relaxation time-scales for linearized diwide motion. 'The meaning of the parameters describing
cases 1-9 are explained in the text, and the first eigenvalue Ny and the value of the corresponding eigenvalue at the divide
E1(0) are indicated. The corresponding divide-motion relaxation times for Greenland (G, [H) =3000m, [a] =0.3m
year ', [t] = 10000 years), Antarctic Peninsula (AP, [H) =1000m, [a] =0.3myear ', [t] = 3000 years ), East
Antarctica (EA, [H] =3000m, [a] =0.03myear ', [t] = 10000 years) are shown. Case 10 refers to the predictions of
the relaxation time by the 0D scale model, where the eigenvalue is 1/(2n+2): this corresponds to a symmetric perturbation

(see Hindmarsh, unpublished )

Case 7 ) y by § -\ &, (0) G/a AP/a EA/a
| 3 4 7 0 16 2.5 6.3 x 107 1.9 % 10° 6.3 10%
2 3 4 6 0 15 2.4 7.1 x 107 2.1:x10° 7.l % 107
3 4 5 10 0 20 9.9 5.0 x 107 1.5 % 10 5.0 % 10°
4 3 4 7 14 1.2 14 2.3 7.1 x 10 2.1 % 10° 7.1 x 10°
5 3 4 7 12 12 12 2.1 8.3 x 10% 2.5%10° 8.3 % 10°
G 3 4 7 3/4 1/2 10 2.0 1.0 x 10* 3.3% 10? 1.0 x 10*
7 3 t 7 1/2 8.2 1.8 19x 10 4.1 % 107 1.2x10%
8 3 4 7 5/4 . 6.5 1.6 1.5x 10* 5.1 x 10° 1.5% 10"
9 3 4 7 1/2 1 /4 14 2.3 7.1 % 10° 2.4% 10% 7.1x 10"

10 3 7 8 1.3%10% 3.8x10° 1.3x 10"
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Fig. 3. Divide position sensitivity functions K(0,y) for
accumulation for the case v=3,6=4,v=7. Hor-
izontal axis y.

form as

AW(ENX, =0.  (51)

9 aX*) (v+1)
€ BE.

4. COMPUTATION OF THE EIGENVALUES

Solutions to the lincarized eigenvalue problem and
computation of Green's [unctions have been considered
for the perturbation about the VN solution and have been
described in detail by Hindmarsh (unpublished), who
compared the results [rom finite-difference discretizations
and shooting methods. The perturbaton problem is as
above, and we note that the Priifer Pruess solver we use
(SLEDGE; Pruess and Fulton, 1993) has automatic end-
point analysers, which deal with the singular nature of the
boundary-value ordinary diflerential equation for the
perturbation.

We consider results for five different cases, all of which
have a bed-function defined by

bler) = boexp(—(€/60)°) (1 - e'“f")”/h )

and with {by} = 2*/0+) % [0,0.25,0.5,0.75, 1, 1.25], and
v=3, =4, y=7 and & =1/2. These are values
suitable for internal deformation ol the ice according to
Glen’s flow relation. The results of the computation of the
zeroth-order solution are shown in Figure 2 and indicate
features like the maximum ice elevation, which does not
increase at the same rate as the maximum hed elevation.

Computations by SLEDGE yielded the eigenvalues
shown in Table 1 [or the slower modes. These cigenvalues
can be regarded as relaxation-rate constants in inverse
time units set by the scale [a]/[H]. Relaxation time-scales
for a typical Antarctic Peninsula ice cap, the Greenland
ice sheet and East Antarctica are indicated in this table.
The computed eigenvalues show that divide relaxation
times for the Antarctic Peninsula are between 200 and
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500 years, for Greenland are 500-1000 years and for East
Antarctica are 5000-10 000 years. Forcing at frequencies
higher than these values will be filtered by the ice sheet.
This is likely to be true of forcings not considered
explicitly in VN-type models, [or example of margin
position by sea-level rise and fall. Sturm-Liouville theory
shows that

A o —12,4— 0.
This relationship is accurate enough for our purposes for
i > 1 and the constant of proportionality can be deduced

with sufficient accuracy [rom Table 1 as being the same as
the eigenvalue for the first mode.

5. DIVIDE MIGRATION

5.1. Steady divide position

It is shown in the Appendix that we may solve the non-
homogeneous equation through the equation

X.(6) = [ K(E.,y)Fly) dy, (53)

K(En,y) = Gle)S(y) = Y ULV

k=1 7

(54)

where y is a dummy variable, &(&,) is an eigenfunction
for mode i, the kernel K is a non-symmetric influence
function (see Equation (66) in the Appendix) and G is a
symmetric Green’s function.

This has been computed for the case ¥ =3, m =25
= §=4,vy=7T. We are only really interested in
K(0,y). This is the sensitivity of divide position to
anti-symmetric forcing at position y and is illustrated in

Horizontal Position

Mode number

Fig. 4. Sampling of accumulation distribution by the
solution modes, divided by their eigenvalue so as to indicate
their relative importance in lime-dependent  behaviour.
Horizontal position coordinate is §. & = O indicates divide.
Even though the modes sample heavily near the margin, the
sign changes with each mode and, in general, the effect will
sum to zero. At the divide, sampling is all positive. Values
Jor non-integral mode numbers have no  mathematical
meaning and are only drawn to improve the display.
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Figure 3. The key point is that steady-state divide
position is most sensitively affected by accumulation
close to the divide, which is perhaps obvious, but, as we
shall shortly see, the sensitivity in the area around the
divide belongs to the modes with the fastest response
times, with the implication that stochastic excitation of
these modes will not produce great variations in divide
position.

5.2. Time-dependent behaviour

The dilferent modes ol the solution can be lorced or
excited by accumulation-rate variations. Each mode
samples the ant-symmetric distribution differently in
space. Let us consider a set of forcing lunctions F; so that
-7:;'(5}-&):flsiRi(f*)wfi(f*) (55)

S(&.)

where R;(t) is a function of time only. (Here, ag is
redundant, but in the stochastic counterpart to this ODE,
as; will be seen to be equivalent to the standard deviation
of the forcing.)

Sturm- Liouville theory shows that the eigenfunction
solutions to Equation (31) form a complete set, and are
orthogonal with respect to the weighting lunction W(E,)
given by Equation (45). The former fact means that we
can write arbitrary F as

W(E.) . | -
F= Z Filbt) = Z alfi(t) grgy Eil6) . (56)

The completeness of the cigenfunctions means that we

may write
T oy Y o T (57)
k=1

and by using the definition of F;(£), orthogonality and
the original partial differential equation (PDE) in
Equation (44) we obtain

Ty = NTs o (), Ae <, (58)

i.e. an ODE for the mode magnitude. This standard
derivation is sketched in the Appendix.

The &, dependence of the functions F; represents the
sampling of the accumulation rate by the different modes.
This dependence is plotted in Figure 4, which clearly
shows that the slower modes sample preferentially
approximately hallway between divide and margin, while
the faster modes sample closer and closer to the divide.
Even though [or any one mode there is strong sampling at
number
magnitude and will cancel for smooth accumulation
distributions. It must also be remembered that this is an

the margin, the sign oscillates with mode

anti-symmetric perturbation, with an increase in accu-
mulation on one side of the ice sheet implying an
equivalent decrease on the other side.

We are less interested in the actual eigenfunctions X,
but we shall need the result that forv=3,6 =4,9=17
(internal deformation according to a Glen rheology)
E(0) = 2 for all the cases considered here (Table 1).
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6. STOCHASTIC FORCING OF DIVIDE POSITION

We now present the main application of the paper, which
is consideration of the stochastic forcing of divide position
by anti-symmetric accumulation forcing. The scientific
issue is whether random variations in climate are likely to
have produced large enough variations in divide position
to affect seriously dating. This question cannot be
answered [ully without detailed modelling ol the transi-
tion zone (see Schott and others (1992) for an example of
modelling a stationary divide).

Let us write down the stochastic counterpart to the
deterministic ODE in Equation (58) derived in the
Appendix,

T,.,‘ = */\,‘1‘*,‘ + @i Zit. A < 0, (5())

a Langevin equation for mode i, where T.; is now a
stochastic process and Zj; denotes a white-noise forcing
with unit variance, i.e. where the spectral power density is
independent of the wave number. At the moment we are
more interested in the evolution and steady-state value ol
(T?), the variance of mode i.

This particular Langevin equation in the stochastic
process T.;, with the restoring force linear in the
deviation, and with the white-noise term entering
additively, vields as its solution an Ornstein- Uhlenbeck
process. We are interested in its asymptotic behaviour as
t — oo, It can be shown (e.g. Grimmet and Stirzaker,
1992, p.519) that the resulting probability distribution
for T, is Gaussian with the [ollowing relationship

between the standard deviations

V@

(Ta) =-—g5

*1

(60)

When one is considering a system ol Langevin
equations, the solution is more complicated. because
one must specify the correlation between the white-noise
processes driving the different ODEs. Since, in our case,
the different modes are sampling the accumulation rate in
space according to Figure 4, the cross-correlation between
the noise processes driving each of the modes depends
upon the spatial autocorrelation ol the accumulation.
Such considerations are somewhat bevond the coverage of
available data. We thus suppose that the accumulation
rate, although a white-noise process in time, is perfectly
autocorrelated in space. Under these assumptions, the
eflects of random forcing of each mode are additive and
we shall for simplicity consider the eflects of forcing the
slowest mode as this will be a valid order-of-magnitude
estimate,

We are particularly interested in whether fluctuations
in divide position are less or greater than the ice-sheet
thickness, as this is the breadth of the region of anomalous
flow (Raymond, 1983; Rech, 1988). The divide position is
given by X(0,t) = £(0)T;. As a basis for comparison, let
us consider the case when the horizontal [luctuations in
divide position have the same standard deviation as half
the ice-sheet depth (we take hall the ice-sheet depth
hecause the divide position 1s [luctuating about both sides
of the mean position). This occurs when the standard

deviation of divide position is a,x = /(X?) = £(0)\/(T3)

101
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= ¢/2. The critical standard deviation o, of the anti-
symmetric component of the accumulation rate required
to produce this magnitude of divide-position fluctuation
may be computed from this relationship and the
Ornstein-Uhlenbeck solution in Equation (60), and is
found to be

g = —Xe/E(0).

Taking € = (0.001 — 0.01) for typical ice sheets, the first
eigenvalue of the anti-symmetric perturbation to be
(6 — 16) and £(0) =2 (see Table 1), gives us a range
of possible answers for the standard deviation of the
critical standard deviation of the anti-symmetric accu-
mulation-rate distribution o,,, which are given in Table
2. The smaller this required standard deviation of anti-
symmetric accumulation-rate distribution, the more likely
it will be that the age-depth relations will have been
influenced by stochastic forcing. To make this conclusion
more precise, we need to look at some observed standard
deviations.

Table 2. Standard deviation of anti-symmetric accumula-
tion rate required to produce a normal probability distr-
ibution of divide position with standard deviation half the
ice-sheet thickness

£ =0.001 0.003 0.008
& =10.003 0.009 0.024
£ = 0.004 0.012 0.032
£=0.01 0.03 0.08

Problems in estimating standard deviations of accu-
mulation rates have been discussed by Fisher and others

(1985). They estimate normalized standard deviations of
accumulation rates as being between 0.12 and 0.14 for

Greenland (computed from column 3, table II, Fisher
and others (1985)). The aspect ratio in Greenland is
around 0.003. Fisher and others also suggested that the
stochastic process is “*blue”, that is it contains propor-
tionally more power in the high-frequency part of the
spectrum than in the low.

D. A. Peel (personal communication) stated that in
the Antarctic Peninsula region the typical normalized
standard deviation of inter-annual accumulation-rate values
determined directly from stratigraphic measurements on
ice cores is 0.3. Deposition noise (local spatial variations)
and definition noise (error in assigning a calendar date to
a stratigraphic horizon) are estimated to contribute an
effective standard deviation of 0.13-0.17 (for accumula-
tion rates of 0.9-0.4 m water year ', respectively) to this
estimate. The standard deviation of the true accumula-
tion rate is then estimated at 0.22-0.26. The aspect ratio
in the Antarctic Peninsula is around 0.004.

Unsmoothed periodograms of accumulation data from
the Antarctic Peninsula (personal communication from
R. Mulvaney) have been computed (see Fig. 5). Period-
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Fig. 5. Unsmoothed periodograms of accumulation rates
obtained from four Antarctic Peminsula sites (personal
communication from R. Mulvaney). Horizontal axes are
log o of the frequency in a I while vertical axes are the
log g of the spectral power density. The periodograms show
a flat response indicative of white noise.

ograms are simply Fast Fourier transformations (FFT) of
the data, and are very noisy, but do represent the data in
its frequency domain in its least processed form. All that
has been done here is to detrend the data, which removes
the very lowest frequency components. The spectra,
although noisy, are flat, showing that to a first
approximation, these accumulation distributions can be
viewed as a white-noise process rather than typical
geophysical red-noise processes. This is consistent with
the view of Fisher and others that accumulation-rate
processes are white or blue rather than red. Normalized
standard deviations are between 0.2 and 0.3. Elimination
ol deposition noise and definition noise still leave
significant high-frequency variation which can be related
to regional climate fluctuations such as the El Nino
oscillation (personal communication from D. A. Peel).

It is not known to what extent these accumulation-
rate processes are symmetric or anti-symmetric about the
divides. Il thev are anti-symmetric (unlikely), the
Antarctic Peninsula values would cause divide fluctua-
tions to be 10-20 times greater than the breadth ol the
anomalous zone, which actually helps core dating, as the
disruption is spread over a wider area. If the anti-
symmetric component were a one-tenth of the measured
standard deviation, luctuations would be concentrated in
the breadth of the anomalous zone, and increase the
number of refolding events as each area would experience
a larger number of flow-direction reversals.

In Greenland, if all the noise were anti-symmetric, this
would cause the divide position to fluctuate over a zone
5-13 times the breadth of the anomalous zone. If one-
tenth of the noise were anti-symmetric, this would cause
divide fluctuations to be one-half of the zone of
anomalous mechanics (the case A =06 corresponds to
high elevation immediately beneath the divide and may
not be realistic). This is likely to be enough to have
significant observable effects.
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When the estimated standard deviation of the divide is
less than the breadth of the anomalous zone, the answer is
not robust, as the flow within the anomalous zone can be
expected to alflect the standard deviation. It is not known
whether it will damp or amplify the standard deviation.

7. CONCLUSIONS AND SUGGESTIONS FOR
FURTHER WORK

We have considered the problem of forcing of divide
position through a linearization about the VN solution
which includes the correct regularity condition for divide
motion. A time constant for divide relaxation has been
computed, and found to be 16 times smaller than the H /a
time-scale for ice sheets, with plausible ranges of between
6 and 20 dmes the fundamental time-scale. High basal
relief reduces the rate ol relaxation. Divide-position
relaxation time-scales are estimated to be about 200
years for the Antarctic Peninsula and 600 years for
Greenland.

Depending on the geometry of the ice sheet and the
bed topography, standard deviations of anti-symmetric
accumulation distributions of between 0.003 and 0.08
are required to cause the divide to fluctuate in position
with standard deviation half the breadth of the anom-
alous zone of ice flow. Larger deviations will spread the
disruption over a larger area, diluting its effect, while
smaller deviations will concentrate it, making flow
modelling easier. Given that observed standard deviations
(whose symmetry properties are not known) can be as
high as 0.25, it seems very likely that divide position
exhibits significant stochastic variation driven by accu-
mulation-gradient variability.

Asyvmmetric migration of margin position has the
dominating secular effect on divide position, but in much
of Greenland and most of Antarctica this secular change
will be forced by sea-level change, and not produce the
higher-frequency forcing that seems to be present in the
climate record and thus in accumulation forcing.
Repeated reversals in divide-migration direction will
produce conditions favourable for multiple-folding
events, and thus forcing of divide position by accumula-
tion-rate variations may have a more disruptive eflect on
ice cores than the larger changes induced by margin
migration.

There is clearly a need for knowledge of the statistical
charactenistics of accumulation in time and in space.
Radar-echo transects from divide to both margins might
be able to pick up sufficient shallow layering to determine
whether the random anti-symmetric component of
accumulation variation is sufficiently strong to disrupt
flow in divide areas.

It is likely that there i1s a sufficiently large ant-
symmetric noise component to cause Raymond bumps to
be spread out both in the Antarctic Peninsula and in
Greenland.

ACKNOWLEDGEMENTS

I have had instructive conversations with A. Fowler, K.
Hutter, R. Mulvaney, D. A. Peel, J. Pryce, E. Wadding-

https://doi.org/10.3189/50260305500013306 Published online by Cambridge University Press

Hindmarsh: Stochastic perturbation of divide position

ton and E. Wolll. T should like to thank R. Greve for a
careful and constructive review and K. Hutter for an
excellent editing job. I used the SLEDGE driver written
by M. Marletta.

REFERENCES

Alley, R.B., A.]J. Gow, 5.]. Johnsen, ]J. Kipfstuhl, D. A. Meese and T.
Thorsteinsson. 1995, Comparison of deep ice cores. Nature,
373(6513), 393-394.

Anandakrishnan, 5., R.B. Alley and E.D. Waddington. 1994.
Sensitivity ol the ice-divide position in Greenland to climate
change. Geophys. Res. Lett., 21(6), 441444,

Fisher, D. A, N. Rech and H.B. Clausen. 1985. Stratigraphic noise in
the time series derived from ice cores. Ann. Glaciol., 7. 76-83.

Fowler, A.C. 1992, Modelling ice sheet dynamics. Geaphys. Astrophys.
Fluid Dyn., 63(1-4), 29-66.

Glen, J. W. 1955. The creep of polyerystalline ice. Proc. R. Soc. London.
Ser.4, 228(1175). 519-338.

Grimmet, G. R. and D. R. Stirzaker. 1992. Probability and random processes.
Second edition. Oxford, Clarendon Press.

Hallar, P. 1981. On the dynamics of ice sheets. 7. Geophys. Res., 86 C11),
11,061-11,072.

Hutter, K. 1981. The eflect of longitudinal strain on the shear stress of an
ice sheet: in defence of using stretched coordinates. 7. Glacol., 27(95).
39-56.

Hutter, K. 1983, Theoretical glaciology; material science of ice and the mechanies
of glaciers and ice sheets. Dordrecht, etc., D. Reidel Publishing Co./
Tokyo. Terra Publishing Co.

Morland, L. W. 1984. Thermomechanical balances ol ice sheet {lows.
Geophys. Astrophys. Fluid Dyn., 29, 237 -266.

Morland, L. W. and 1, R. Johnson. 1980. Steady motion of ice sheets. J.
Glactol., 25(92), 229-246.

Nye, J.F. 1952. A method of calculating the thickness of ice sheets.
Nature, 169(4300), 529 530.

Nye, J.F. 1959. The motion of ice sheets and glaciers. 7. Glaciol., 3(26),
493-507.

Pruess, S. and C.T. Fulton. 1993. Mathematical software for Sturm
Liouville problems. ACM Trans. Math. Software. 1903}, 360-376.
Pryce. J. 1993, Numerical solution of Sturm—Liowville problems. Oxford.

Oxford University Press.

Raymond. C.I. 1983. Deformation in the vicinity of ice divides. 7.
Glaciol., 29(103), 357 373.

Reeh, N. 1988. A flow-line model for calculating the surface profile and
the velocity, strain-rate, and stress lields in an ice sheet. J. Glaciol.,
34(116), 46-54.

Schou, C., E.D. Waddington and C.F. Raymond. 1992. Predicted
time-scales for GISP2 and GRIP boreholes at Summit. Greenland. 7.
Glaciol.. 38(128), 162-168.

Szidarovszky, I.. K. Hutter and S. Yakowitz. 1989. Computational ice-
divide analysis of a cold plane ice sheet under steady condition. Ann.
Glaciol., 12, 170-177,

Vialov, 5.5, 1958. Regularities of ice deformation (some results of
laboratory researches). International Assoctation of Scientific Hydrvology
Publication 47 (Symposium at Chamonix 1958 — Physics of the
Movement of the Ice), 383 391.

Weertman, J. 1957. On the sliding of glaciers. 7. Glaciol., 3(21), 33-38.

Weertman, J. 1961. Equilibrium profile of ice caps. J. Glaciol., 3(30),
953 964.

Weertman, J. 1973. Position of ice divides and ice centers on ice sheets.

J- Glaciol., 12(66), 353-360.

APPENDIX

KERNEL FUNCTIONS AND MODE-EVOLUTION
EQUATIONS

Consider an inhomogeneous partial differential equation
in self-adjoint form

WI(E)0 X1 = O (T (£.)0, X1) + S(E)F (&) (61)
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Here, F is a forcing function with some physical meaning

—for example, the first-order accumulation a;. If we
consider the corresponding homogeneous equation,

W(E )0 X, = d, (T(E*)(‘)s.Xl) i (62)
a standard separation of variable technique (i.e. setting
X (&, t) = Xu(&)T'(t)) can be used to yield two ordinary
differential equations, the spatial one being in Sturm
Liouville form i.e.

O, (T(£.)2: X.) + IW(L) X, =0. (63)

Such an equation has eigenfunction solutions &;(&, )4
i € N which are orthogonal with respect to the weighting
function, 1.e.

f EAEIWIENE(E) do = 6

where &;; is the Kronecker delta and we have normalized
the eigenfunctions appropriately. The eigenfunctions
form a complete set and we may thus write

X| (5,,_, t) = Z Itrl(f)gf(é*) :
k=1

Substitution of this relation into the PDE in Equation
(61) yields

Y TW(E)Ei =) T, (T(£.)0.E) + S(E)F(E)
i=1 =1
which if one uses Equation (63) can be written
Y LW )Ei = - ) TadW(E)E(E) + S(E)F(E).
i i=1

(64)

If we then multiply the whole equation by the eigen
functions &;(x),j € N and integrate over the domain of
the differential equation using y as a dummy variable we
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obtain

+ / E8F dy,je N
which, upon using the orthogonality relationships and

Equations (55) and (56), becomes diagonalized, yielding
the system of equations

'T*_j = )\_,’T?,' =t (Lﬁnll;(f) ,JjEN.
We are particularly interested in steady state, when

1
T*i‘x; — ——[EJ.S]'_ dlj
A

and using

we obtain the steady distribution in the form

TulE) = / Zai(f*)g.i(iqi\b(y)f(y) i
j=1 e
By delining a Green’s [unction
= g,‘ * E:(1 "
k=1 J

we may solve the non-homogeneous equation through the
equation

X.(6) = [ G nSwFG) dy.
One may equally rewrite this as
Xull) = fK(Emy)f(y) dy.

K(E..9) = C(6.n)s(y) = Y WS 45
)

oC
k=1

and one has an equation with a non-symmetric kernel K
we shall call the influence function.
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