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Abstract

Complete minimal immersions satisfying the Omori–Yau maximum principle are investigated. It is shown
that the limit set of a proper immersion into a convex set must be the whole boundary of the convex set.
In case of a nonproper and nonplanar immersion we prove that the convex hull of the immersion is a
half-space or R3.
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1. Introduction

Let M be a complete Riemannian manifold. We say that M satisfies the Omori–Yau
principle if the following holds.

OMORI–YAU PRINCIPLE. Let f : M→ R be a continuous function which is bounded
from below (or above, respectively). Let us also assume that f is C2 on the set
{ f < inf f + ε} (or on { f > sup f − ε}, respectively) for some ε > 0. Then there
is a sequence Qn ∈ M such that:

(1) f (Qn)→ inf f (or f (Qn)→ sup f , respectively);
(2) |∇f (Qn)| → 0;
(3) lim inf1 f (Qn)≥ 0 (or lim sup1 f (Qn)≤ 0, respectively).

REMARK 1.1. It is customary to require f to be C2 everywhere but it is easy to see
that it matters only when f is close to its infimum (or supremum, respectively). Since
it is obviously true for compact manifolds, this refers to the behavior at infinity of
noncompact manifolds.

This principle turned out to be a powerful tool in geometric analysis (see, for
instance, [3, 5, 11, 14] for a recent application).

There are various curvature conditions that force the manifold to satisfy the Omori–
Yau principle. It was shown by Omori [10] that if M is a complete manifold with
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sectional curvatures bounded from below, then M satisfies the Omori–Yau principle.
This was generalized by Yau [13] showing that if M is a complete manifold with Ricci
curvature bounded from below, then M satisfies the Omori–Yau principle. Recently a
further generalization was given. It was shown in [11] and also in [1] that if the Ricci
curvature does not converge to−∞ too fast, then the manifold satisfies the Omori–Yau
principle. Roughly speaking, one can consider the Omori–Yau principle instead of a
growth condition on the Ricci curvature.

After the discovery of a complete minimal immersion f : D→ B [9], where D⊂ R2

is the unit disk and B⊂ R3 is the unit ball, the attention turned towards proper minimal
immersions f : D→ D, where D is some convex body. In a series of papers [6–8] the
existence of such immersions was shown and their limit sets were investigated. It was
proved in [8] that the limit set can be a small part of ∂D.

For a proper minimal immersion ϕ : m→ D, where D is an open convex body, we
define the limit set of ϕ as ϕ(∂M)= Closure(ϕ(M))− ϕ(M). It is obvious that ϕ is
proper if, and only if, ϕ(∂M)⊂ ∂D.

THEOREM 1.2 (Martin and Morales). Let D be a regular strictly convex bounded
domain of R3, and consider a regular Jordan curve 0. Then, for each ε > 0, there
is a complete proper minimal immersion f0,ε : D→ D satisfying that the Hausdorff
distance δH ( f0,ε(∂D), 0) < ε, where f0,ε(∂D) represents the limit set of the minimal
disk f0,ε(D).

Our first result says that this cannot happen if the minimal surface satisfies the
Omori–Yau principle. In this case, the limit set must be the whole boundary ∂D.

THEOREM 1.3. Let D ⊂ R3 be a convex open set with boundary ∂D. Let f : M→ D
be a complete proper nonplanar minimal immersion. If M satisfies the Omori–Yau
principle, then the limit set of f is ∂D.

REMARK 1.4. The convex set D in the theorem is not necessarily bounded. It can be
a half-space for example.

Our second result concerns the convex hull of a complete minimal immersion. This
area is centred around the Calabi–Yau conjectures which concern the convex hull of
minimal surfaces. A recent overview can be found in [2].

A theorem of Xavier [12] states that if a complete nonplanar minimal surface has
bounded sectional curvature, then the convex hull of the surface is R3. Replacing
the curvature bound with a topological condition, Hoffman and Meeks [4] proved
later that the convex hull of a properly immersed nonplanar complete minimal surface
is R3. These results are known as half-space theorems in the literature since these
surfaces cannot be contained in a half-space. It was shown recently by Colding and
Minicozzi [2] that the convex hull of a nonplanar complete embedded minimal disk
is R3.

It is natural to ask whether there are other conditions that would imply a half-space
theorem. In connection with this, we prove a somewhat weaker version.
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THEOREM 1.5. Let f : N → R3 be a complete minimal immersion satisfying the
Omori–Yau principle. Then f (N ) cannot be in a wedge.

It would be interesting to know if the half-space theorem is true for complete
minimal immersions satisfying the Omori–Yau principle.

2. Proof of Theorem 1.5

PROOF. Let us assume that the statement is not true, and there is a complete minimal
immersion f : N → R3 satisfying the Omori–Yau principle and a wedge W containing
f (N ). Without loss of generality we can assume that the edge of the wedge is
the z-axis and that the wedge is symmetric with respect to the yz-plane. That is,
W = {(x, y, z) ∈ R3

: y <−a|x |} for some a > 0. Let V = {(x, y) ∈ R2
: y <−a|x |}

be the intersection of W with the xy-plane. By translating the surface in the z-direction
if necessary we may further assume that the xy-plane contains a point P = (x p, yp, 0)
of the surface f (N ).

Choose a point O = (0,−y0,) on the negative y-axis such that −y0 < yp and the
circle centred around O and passing through P intersects the boundary of V . By
shortening the radius slightly we obtain a disk S in the xy-plane centred at O with
radius R such that V − S has two connected components V1 and V2. We denote the
bounded component by V1 and the unbounded by V2. From the above it is clear that
the point P ∈ V1.

Let W1 = V1 × {z-axis}, W2 = V2 × {z-axis}, and let r : R3
→ R be the distance

function from the line L passing through O and parallel with the z-axis.
The Hessian of r has two eigenvectors (one is in the radial direction the other

is parallel to the z-axis) with zero eigenvalues and one eigenvector (tangent to the
cylinder around L and orthogonal to the z-axis) with a positive eigenvalue which is the
reciprocal of the distance from the line L . Therefore we have

1r(Q)= 1/dist(Q, L). (2.1)

We define g : N → R as follows:

g(Q)=

{
r( f (Q)) if f (Q) /∈W2,

R if f (Q) ∈W2.
(2.2)

This means that g is basically the restriction of r to f (N ), except for that part of the
surface that lies in W2. There g is constant. The distance function from the line L is
bounded by y0 on W1; therefore g is bounded from above. Although g is not smooth
along the intersection of the surface with the boundary of W2, we can modify it slightly
along the intersection to make it smooth everywhere. Since the rest of the argument
involves only the part of the surface that lies in W1 this will cause no problem.

We will calculate ∇g and 1g as in [1].
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For simplicity let us identify N with g(N ). For a point Q ∈ N let α(Q) be the
angle between the tangent plane of the surface TQ N and the tangent plane to the level
surface of the distance function r at the point Q.

We have ∇g =∇r |N = (∇r)T , where (∇r)T means the tangential part of ∇r .
Therefore

|∇g(Q)| = sin(α(Q)). (2.3)

Next we deal with the Laplacian. Let Q ∈ N such that Q /∈W2. Then for the tangent
vectors X, Y ∈ TQ N we have

Hess(r|N )(X, Y )= 〈∇̃X∇(r|N ), Y 〉 = 〈∇X (∇r − (∇r)N ), Y 〉

= Hess r(X, Y )− 〈∇X (∇r)N , Y 〉.

Since the normal component (∇r)N of the gradient is orthogonal to N we have

〈∇X (∇r)N , Y 〉 = −〈(∇r)N , ∇X Y 〉 = 〈(∇r)N , A(X, Y )〉,

where A(X, Y )=−(∇X Y )N denotes the vector-valued second fundamental form of
N and ∇ is the connection on R3.

Combining this with the equality above, we have

Hess g(X, Y )= Hess r(X, Y )− 〈(∇r)N , A(X, Y )〉.

Since N is minimal Trace A = 0. Taking trace in TQ N we have

1g = Trace(Hess r), (2.4)

where Trace(Hess r) is not necessarily the same as 1r , since we took trace in TQ N
only. Projecting the tangent plane TQ N to the plane orthogonal to ∇r we can conclude
that

1g = Trace(Hess r)≥ cos(α(Q))1r(Q). (2.5)

To reach a contradiction let Qn ∈ N be a sequence such that g(Qn)→ sup g and
|∇g(Qn)| → 0. From the construction of the function g it follows that Qn ∈W1 for
sufficiently large n. Since r is bounded by y0 on W1, formula (2.1) implies that

1r(Qn) >
1
y0
.

From |∇g(Qn)| → 0 we conclude that sin(α(Qn))→ 0, and so cos(α(Qn))→ 1.
Combining this with (2.5), we obtain that

lim sup1 f (Qn)≥ 1/y0.

This contradicts the Omori–Yau principle and the proof is complete. 2

3. Proof of Theorem 1.3

The proof combines the catenoid trick of Hoffman and Meeks [4] with the
observation that the distance function to a minimal surface has negative Laplacian
near the surface.
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The following fact will be used later. Let N be an embedded minimal surface and
p ∈ N be an arbitrary point. Let q be a point on the normal line through p at distance
d from N . If±λ are the principal curvatures of N at p and d < 1/λ, then the principal
curvatures of the parallel surface to N through q are given as

−
λ

1− λd
and

λ

1− λd
. (3.1)

PROOF OF THEOREM 1.3. We argue by contradiction. Let us assume that the
statement of the theorem is not true. Let P ∈ ∂D be a point that is not a limit point of
f . We will show that in this case the surface cannot satisfy the Omori–Yau principle.

Let SP be a supporting hyperplane of D through P . It is a straightforward
consequence of the maximum principle that SP is disjoint from f (M). Translate SP
towards the surface until it ‘touches’ the surface and denote this hyperplane (which is
not necessarily different from SP ) by S. Again, it is clear that S is disjoint from f (M)
but any translate of S towards the surface will intersect f (M).

We have two possibilities. If S 6= SP , then S ∩ D 6= ∅ and let P ′ be an arbitrary
point in S ∩ D. Since P ′ ∈ S ∩ D is in D, the properness of the immersion implies
that it cannot be a limit point of f , and since it is on S the surface f (M) cannot
pass through it, unless f (M) is a plane, which contradicts the assumptions of the
theorem. Therefore, there is a small ε > 0 such that B(P ′, ε) ∩ f (M)= ∅, where
B(P ′, ε) denotes the open ball around P ′ with radius ε.

We have the same situation if S = SP . From the assumption that P is not a limit
point of f we conclude that there is small ε > 0 such that B(P, ε) ∩ f (M)= ∅.

In either case, we have a hyperplane S and a point P ∈ S satisfying the following:

S ∩ f (M)= ∅;

dist(S, f (M))= 0;

there is an ε > 0 such that B(P, 4ε) ∩ f (M)= ∅.

(3.2)

Without loss of generality, we may assume that f (M) is in the upper half-space
H = {(x, y, z) : z > 0}, S = {z = 0} and P is the origin. Similarly to [4], let C
be the solid half-catenoid {(x, y, z) : x2

+ y2
≤ cosh2(z), z ≤ 0} and let Ct be the

homothetic shrinking of C by t, 0< t ≤ 1. We remark that ∂Ct converges to S − {P}
as t tends to 0.

From the assumptions above it is clear that dist(Cε, f (M)) > 0. Therefore there is
a small 0< η < ε such that dist( fη(M), Cε) > 0, where fη(Q)= f (Q)− (0, 0, η),
that is, fη(M) is the downward translation of f (M) by η.

We let t vary from ε to 0 until Ct ‘hits’ the surface fη(M). To be more precise,
consider the set T = {t ∈ (0, ε] : dist( fη(M), Ct )= 0}.

Since fη(M) has points below the plane S and Ct converges to S as t→ 0,
then T is not empty. Set t0 = sup T . Clearly 0< t0 < ε and dist( fη(M), Ct0)= 0.

The part of Ct0 that is above the plane S2η (where S2η is the downward translation
of S by 2η) is compact. By slightly increasing t0 we can find a t∗ ∈ (t0, ε]
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such that:

0< dist( fη(M), Ct∗)= δ < ε; (3.3a)

all principal curvatures of ∂Ct∗ are less than
1
2δ
. (3.3b)

As in the previous section, let r = dist(·, Ct∗) be the distance function from Ct∗ ,
g : M→ R be the restriction of r to fη(M) (g(Q)= dist(Ct∗, fη(Q)) and α(Q) be
the angle between the tangent planes of fη(M) and of the level surface of the distance
function at fη(Q).

The function g is not smooth on the whole of M since ∂Ct∗ is not a smooth surface
but it will be smooth on the set {g < 2δ}. Let Q ∈ {g < 2δ} and let R ∈ ∂Ct∗ be a
closest point to f (Q)− η ∈ f (M)η. From the relations of ε, η and δ one concludes
that R cannot be on the plane S, therefore it is on the half-catenoid. As a result it is
unique and the distance function and therefore g are smooth near Q.

The gradients of g and r are related as follows:

|∇g(Q)| = sin(α(Q))|∇r | = sin(α(Q)), (3.4)

since the gradient of the distance function is a unit vector.
As in the previous section, the hessian of g and r are related by formula (2.5) and the

nonzero eigenvalues of the hessian of the distance function r are given in (3.1). Com-
bining the two and taking into account the angle between the tangent spaces, we obtain

1g(Q)≤
λ

1+ λg(Q)
−

cos(α(Q))λ
1− λg(Q)

=
(1− cos(α(Q)))λ− (1+ cos(α(Q)))λ2g(Q)

1− (λg(Q))2
,

(3.5)

where δ < g(Q)= dist( fη(Q), Ct∗) < 2δ and λ denotes the positive principal curva-
ture of the surface ∂Ct∗ at the point R.

Let Qn ∈ M be a sequence such that g(Qn)→ δ and |∇g(Qn)| → 0. Denote by
Rn ∈ Ct∗ the closest point to fη(Qn) on the surface ∂Ct∗ and by λn > 0 the positive
principal curvature of ∂Ct∗ at Rn . From (3.2) we conclude that sin(α(Qn))→ 0
therefore cos(α(Qn))→ 1. Putting this information into (3.5), we obtain that

lim sup1g(Qn)≤
−2λ2δ

1− (λδ)2
< 0,

where λ= lim λn . In view of (3.3b) we also have δ < 1/λ.
This implies that

lim inf1g(Qn) < 0,

which contradicts the Omori–Yau principle and concludes the proof of Theorem 1.3. 2
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