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Abstract

In this paper, we prove that if a compact Kähler manifold X has a smooth Hermitian metric l such that ()- , l)
is uniformly RC-positive, then X is projective and rationally connected. Conversely, we show that, if a projective

manifold X is rationally connected, then there exists a uniformly RC-positive complex Finsler metric on )- .
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1. Introduction

It is well known that positivity notions in differential geometry and algebraic geometry are closely related,

and there are many fundamental results demonstrating their equivalences. For instances, Kodaira’s

embedding theorem asserts that a line bundle ℒ over a projective manifold is ample if and only if it

has a smooth positive metric; Yau’s solution to the Calabi conjecture [53] establishes that a projective

manifold - is Fano if and only if it has a Kähler metric l with Ric(l) > 0. As analogous to Yau’s

result, we obtained in [48] the following result, which also confirms a conjecture of S.-T. Yau:

Theorem 1.1 ([48]). A projective manifold - is uniruled if and only if - has a Kähler metric l such

that Ric(l) has at least one positive eigenvalue everywhere.

Motivated by Yau’s theorem and Theorem 1.1, in this paper, we describe the terminology rational

connectedness in algebraic geometry by using notions in differential geometry. It is well-known that

rational connectedness is an intermediate concept between Fano-ness and uniruledness, i.e. Fano

manifolds are rationally connected [7, 25], and rationally connected manifolds are uniruled.
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A projective manifold - is called rationally connected if any two points of - can be connected by

some rational curves. It is well known that on a rationally connected projective manifold, one has

�0(-, ()∗
- )⊗<) = 0, for every < ≥ 1.

A long-standing conjecture of D. Mumford says that the converse is also true:

Conjecture. Let - be a projective manifold. If

�0(-, ()∗
- )⊗<) = 0, for all < ≥ 1,

then - is rationally connected.

This conjecture holds when dim - ≤ 3 [25], and not much has been known in higher dimensions; and

we refer to [25, 7, 17, 24, 19, 41, 6, 9, 11, 5, 8, 28, 12, 49], and the references therein.

In this paper, we obtain a differential geometric criterion for rational connectedness. One of the key

ingredients is the following geometric concept.

Definition 1.2. A Hermitian holomorphic vector bundle (ℰ, ℎ) over a complex manifold - is called

uniformly RC-positive (respectively, semi-positive) if at each point @ ∈ - , there exists some nonzero

vector D ∈ )@- such that for every nonzero vector E ∈ ℰ@ ,

'ℰ (D, D, E, E) > 0 (respectively, ≥ 0). (1.1)

Similarly, (ℰ, ℎ) is called uniformly RC-quasi-positive if it is uniformly RC-semi-positive at all points

of - and uniformly RC-positive at some point of - .

We establish in Corollary 3.1 that if (ℰ, ℎ) is a uniformly RC-positive vector bundle over a compact

complex manifold - , then

�0(-, (ℰ∗)⊗<) = 0, for every < ≥ 1.

As motivated by this result and Mumford’s conjecture, we investigate complex manifolds with uniformly

RC-positive tangent bundles. Indeed, there are many such examples. For instance,

◦ Kähler manifolds with positive holomorphic sectional curvature (Theorem 5.1),

◦ Fano manifolds with non-negative holomorphic sectional curvature [34],

◦ Hopf manifolds S1 × S2=+1 [30, formula (6.4)],

◦ products of complex manifolds with uniformly RC-positive tangent bundles (Proposition 2.15).

Let - be a compact complex manifold. The holomorphic tangent bundle )- is called uniformly RC-

positive if it admits a smooth Hermitian metric l such that ()- , l) is uniformly RC-positive. The first

main result of this paper is a criterion of rational connectedness for compact Kähler manifolds:

Theorem 1.3. Let - be a compact Kähler manifold. If the tangent bundle )- is uniformly RC-positive,

then - is projective and rationally connected. In particular, - is simply connected.

We propose in Section 4 a conjecture converse to Theorem 1.3: if - is rationally connected, then

)- should be (uniformly) RC-positive. We present there some evidence for this conjecture. Theorem

1.3 also holds if the uniformly RC-positive Hermitian metrics are replaced by uniformly RC-positive

Finsler metrics. We refer to Theorem 6.7 for more details.

It is well known that a projective manifold - is rationally connected if and only if it has a very free

rational curve �, i.e. )- |� is ample. Recall that, on a smooth curve �, a vector bundle ℰ is uniformly
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RC-positive if and only if ℰ is ample. Hence, roughly speaking, the uniform RC-positivity of )- is an

analytical analogue of the existence of very free rational curves on - (see also [42, Theorem 6.6]).

Before giving a weak converse to Theorem 1.3, we fix the notations. Let ℰ be a holomorphic vector

bundle over - and P(ℰ∗) be the projective bundle ofℰ. The tautological line bundle of P(ℰ∗) is denoted

by Oℰ (1). For instance, ℰ is called ample if Oℰ (1) is an ample line bundle. The second main result of

this paper is:

Theorem 1.4. A projective manifold - is rationally connected if and only if the line bundle OΛ?) ∗
-
(−1)

is uniformly RC-positive for every 1 ≤ ? ≤ dim - .

It is well known that there exists a one-to-one correspondence between the set of Hermitian metrics on

Oℰ∗ (−1) and the set of Finsler metrics on ℰ
∗. Hence, we can deduce that - is rationally connected

if and only if - has certain ‘RC-positive’ Finsler metrics. It would be more satisfactory if the Finsler

metrics could be turned into smooth Hermitian metrics. We refer to Section 6 for more details about

(uniformly) RC-positive Finsler metrics.

As an application of Theorem 1.3, we obtain the following Liouville type result.

Corollary 1.5. Let - be a compact Kähler manifold. If )- is uniformly RC-positive, then there is no

non-constant holomorphic map from - to a compact complex manifold . without any rational curve.

There are many compact complex manifolds that contain no rational curves: for instance, Kobayashi

hyperbolic manifolds, Abelian varieties, and Hopf manifolds. Corollary 1.5 generalizes many classical

results in differential geometry (e.g. [54]). Note also that the Kähler condition in Corollary 1.5 is nec-

essary. For instance, Hopf manifolds contain no rational curves, and they have uniformly RC-positive

tangent bundles. We refer to [50, 51] for analogous results and some conjectures.

The following result demonstrates that we can deform RC-semi-positive metrics:

Theorem 1.6. Let - be a compact Kähler manifold. Suppose there exists a smooth Hermitian metric

ℎ on )- such that ()- , ℎ) is uniformly RC-semi-positive over - . If ( is an open subset of - such that

()- , ℎ) is uniformly RC-positive over - \ (, and ( is contained in some strongly pseudoconvex domain

of - , then - has a uniformly RC-positive Hermitian metric ℎ̃. Moreover, - is projective and rationally

connected.

As an application of Theorem 1.6, we obtain

Theorem 1.7. Let (-, l) be a compact Kähler manifold with non-negative holomorphic sectional

curvature. If ( is an open subset of - such that ()- , l) is uniformly RC-positive over - \ (, and ( is

contained in some strongly pseudoconvex domain of - , then )- is uniformly RC-positive. Moreover, -

is projective and rationally connected.

A special case of Theorem 1.7 is

Corollary 1.8. Let (-, l) be a compact Kähler manifold with positive holomorphic sectional curvature.

Then ()- , l) is uniformly RC-positive. Moreover, - is projective and rationally connected. In particular,

- is simply connected.

Corollary 1.8 confirms a well-known conjecture [55, Problem 47] of S.-T. Yau. It was first proved in

our previous paper [49, Theorem 1.7]. Recently, Lei Ni and Fangyang Zheng introduced in [38, 39]

some interesting curvature notions that can ensure the projectivity of compact Kähler manifolds.

Inspired by the above results, we propose the following conjecture:

Conjecture 1.9. Let - be a compact Kähler manifold. If - has a smooth Hermitian metric l with

quasi-positive holomorphic sectional curvature (or with uniformly RC-quasi-positive ()- , l)), then -

is projective and rationally connected.
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We need to point out that S. Matsumura confirmed in [33] a special case of Conjecture 1.9: if - is a

projective manifold and has a Kähler metric with quasi-positive holomorphic sectional curvature, then

- is rationally connected (see also an approach in [21]).

The rest of the paper is organized as follows. In Section 2, we introduce the concept of uniform

RC-positivity and investigate its geometric properties. In Section 3, we derive vanishing theorems for

uniformly RC-positive vector bundles and prove Theorem 1.3 and Theorem 1.6. In Section 4, we prove

Theorem 1.4 and propose more questions. In Section 5, we give a proof of Theorem 1.7. In Section 6,

we present further generalizations on Finsler metrics.

2. Uniformly RC-positive Hermitian vector bundles over complex manifolds

Let (ℰ, ℎ) be a Hermitian holomorphic vector bundle over a complex manifold - with Chern connection

∇. Let {I8}=
8=1

be the local holomorphic coordinates on - and {4U}AU=1
be a local frame of ℰ. The

curvature tensor 'ℰ ∈ Γ(-,Λ1,1)∗
-
⊗ End(ℰ)) has components

'ℰ
8 9 UV

= −
m2ℎUV

mI8mI 9
+ ℎWX

mℎUX

mI8

mℎWV

mI 9
. (2.1)

(Here and henceforth, we sometimes adopt the Einstein convention for summation.) If (-, l6) is a

Hermitian manifold, then ()- , 6) has Chern curvature components

'
8 9:ℓ

= −
m26

:ℓ

mI8mI 9
+ 6?@

m6:@

mI8

m6
?ℓ

mI 9
. (2.2)

The Chern-Ricci curvature Ric(l6) of (-, l6) is represented by '8 9 = 6:ℓ'
8 9:ℓ

, and the second

Chern-Ricci curvature Ric(2) (l6) has components '
(2)
:ℓ

= 68 9'
8 9:ℓ

.

Definition 2.1. A Hermitian holomorphic vector bundle (ℰ, ℎ) over a complex manifold - is called

Griffiths positive if at each point @ ∈ - , and for any nonzero vector E ∈ ℰ@ and any nonzero vector

D ∈ )@- ,

'ℰ (D, D, E, E) > 0. (2.3)

As analogous to the Griffiths positivity, we introduced in [49] the following concept.

Definition 2.2. A Hermitian holomorphic vector bundle (ℰ, ℎ) over a complex manifold - is called

RC-positive at point @ ∈ - if for each nonzero vector E ∈ ℰ@ , there exists some nonzero vector D ∈ )@-
such that

'ℰ (D, D, E, E) > 0. (2.4)

(ℰ, ℎ) is called RC-positive if it is RC-positive at every point of - .

Remark 2.3. Similarly, one can define semi-positivity, negativity, etc. A Hermitian line bundle (ℒ, ℎℒ)
is RC-positive if and only if its curvature −

√
−1mm log ℎℒ has at least one positive eigenvalue at each

point of - .

The following vanishing theorem is one of the key ingredients because it introduces the terminology

RC-positivity.

Theorem 2.4. Let - be a compact complex manifold. If (ℰ, ℎ) is RC-positive, then

�0(-,ℰ∗) = 0. (2.5)
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Proof. An algebraic proof is included in [50, Lemma 2.10]. Here we use an alternative proof by a

simple maximum principle. Since (ℰ, ℎ) is RC-positive, the induced bundle (ℰ∗, 6) is RC-negative: i.e.

at every point @, for any nonzero section E ofℰ∗, there exists a nonzero vector D such that

'ℰ
∗ (D, D, E, E) < 0.

For any f ∈ �0(-,ℰ∗), we have

mm |B |26 = 〈∇B,∇B〉6 − 'ℰ
∗ (•, •, B, B). (2.6)

Suppose |B |26 attains its maximum at some point ?, and |B |26 (?) > 0. By applying the maximum principle

to (2.6), we get a contradiction. Hence, we deduce B = 0 and �0 (-,ℰ∗) = 0. �

In particular, we obtain a simple criterion for the projectivity of compact Kähler manifolds.

Corollary 2.5. Let - be a compact Kähler manifold. SupposeΛ2)- is '�-positive; then - is projective.

Proof. By Theorem 2.4, we have �
2,0

m
(-) = �

0,2

m
(-) = 0. Hence, by the Kodaira theorem ([23,

Theorem 1]; see also [22, Proposition 3.3.2 and Corollary 5.3.3]), the Kähler manifold - is projective.

�

We introduce a notion slightly stronger than RC-positivity.

Definition 2.6. A Hermitian holomorphic vector bundle (ℰ, ℎ) over a complex manifold - is called

uniformly RC-positive at point @ ∈ - if there exists some vector D ∈ )@- such that for any nonzero

vector E ∈ ℰ@ , one has

'ℰ (D, D, E, E) > 0. (2.7)

(ℰ, ℎ) is called uniformly RC-positive if it is uniformly RC-positive at every point @ ∈ - .

Remark 2.7. We can define uniform RC-negativity (and, respectively, uniform RC-non-negativity,

uniform RC-non-positivity) in a similar way. We can also define uniformly RC-positivity along :-

linearly independent directions if there exist : linearly independent vectors D1, · · · , D: ∈ )@- such that

for any nonzero vector E ∈ ℰ@ and for each 8 = 1, · · · , : , one has

'ℰ (D8 , D8 , E, E) > 0.

Remark 2.8. It is easy to see that, for a line bundle (ℒ, ℎ), RC-positivity and uniform RC-positivity

are actually equivalent.

Proposition 2.9. Let (ℰ, ℎ) be a Hermitian holomorphic vector bundle over a compact complex manifold

- . Then the following statements are equivalent:

1. (ℰ, ℎ) is uniformly RC-positive.

2. For any Hermitian metric l on - , there exists a positive constant � = � (l, ℎ) such that for any

point @ ∈ - , there exists a unit vector D ∈ )@- such that

'ℰ (D, D, E, E) ≥ � |E |2ℎ , for every E ∈ ℰ@ . (2.8)

Proof. (2) =⇒ (1) is obvious. For (2) =⇒ (1), let

� = inf
@∈-

sup
D∈)@-\{0}

inf
E ∈ℰ@\{0}

'ℰ (D, D, E, E)
|D |2l |E |2ℎ

. (2.9)
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We claim � > 0. Indeed, if � ≤ 0, by compactness of - , there exists some @ ∈ - such that

sup
D∈)@-\{0}

inf
E ∈ℰ@\{0}

'ℰ (D, D, E, E)
|D |2l |E |2ℎ

≤ 0.

Hence, for any unit vector D ∈ )@- ,

inf
E ∈ℰ@\{0}

'ℰ (D, D, E, E)
|E |2

ℎ

≤ 0,

which contradicts the fact that (ℰ, ℎ) is uniformly RC-positive at point @ ∈ - . It is obvious that (2.8)

follows from the definition (2.9) of the constant �. �

Proposition 2.10. If (ℰ, ℎ1) is uniformly RC-positive and (ℱ, ℎ2) is Griffiths semi-positive, then (ℰ ⊗
ℱ, ℎ1 ⊗ ℎ2) is uniformly RC-positive.

Proof. It follows from the curvature formula 'ℰ⊗ℱ = 'ℰ ⊗ Idℱ + Idℰ ⊗ 'ℱ . �

The following results can be deduced by similar methods, as in [49, Theorem 3.5].

Corollary 2.11. Let (ℰ, ℎ) be a Hermitian vector bundle over a compact complex manifold - .

1. If (ℰ, ℎ) is uniformly RC-positive, then (ℰ, ℎ) is RC-positive.

2. (ℰ, ℎ) is uniformly RC-positive if and only if (ℰ∗, ℎ∗) is uniformly RC-negative.

3. If (ℰ, ℎ) is uniformly RC-negative, every sub-bundle � ofℰ is uniformly RC-negative.

4. If (ℰ, ℎ) is uniformly RC-positive, every quotient bundle � ofℰ is uniformly RC-positive.

5. If (ℰ, ℎ) is uniformly RC-positive, every line sub-bundle ℒ ofℰ∗ is not pseudo-effective.

Uniform RC-positivity has some important functorial properties, which are not clearly satisfied by RC-

positivity.

Proposition 2.12. If (ℰ, ℎ) is uniformly RC-positive, then (ℰ⊗<, ℎ⊗<) are uniformly RC-positive for

< ∈ N+. Similarly, Sym⊗:
ℰ (: ∈ N+) and Λ?

ℰ (1 ≤ ? ≤ rk(ℰ)) are all uniformly RC-positive.

Proof. Fix a smooth metric on the compact complex manifold - . For any @ ∈ - , we choose a unit

vector D ∈ )@- such that

inf
E ∈ℰ@\{0}

'ℰ (D, D, E, E)
|E |2

ℎ

≥ � > 0. (2.10)

Let {41, · · · , 4A } be a local unitary frame of ℰ at point @ with respect to ℎ. Then for any local vector

E =
∑

81 , · · · ,8< E
81 · · ·8<481 ⊗ · · · ⊗ 48< ∈ Γ(-,ℰ⊗<), by using the tensor product curvature formula of

(ℰ⊗<, ℎ⊗<), we have

'ℰ
⊗< (D, D, E, E) =

∑

82 , · · · ,8<
'ℰ

(
D, D,

∑

81

E8182 · · ·8<481 ,
∑

91

E 9182 · · ·8<4 91

)
+ · · ·

+
∑

81 ,82 , · · · ,8<−1

'ℰ

(
D, D,

∑

8<

E81 · · ·8<−18<48< ,
∑

9<

E81 · · ·8<−1 9<4 9<

)

≥ �
( ∑

82 , · · · ,8<

∑

81

|E8182 · · ·8< |2 + · · · +
∑

81 , · · · ,8<−1

∑

8<

|E8182 · · ·8< |2
)

≥ <� |E |2,
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where the first inequality follows from (2.10). Hence (ℰ⊗<, ℎ⊗<) is uniformly RC-positive. Similarly,

we can show Sym⊗:
ℰ (: ∈ N+) and Λ?

ℰ (1 ≤ ? ≤ rk(ℰ)) are all uniformly RC-positive. �

Remark 2.13. It is not hard to see that all Schur powers of a uniformly RC-positive vector bundle are

uniformly RC-positive.

It is easy to see that if two vector bundles ℰ and ℱ are uniformly RC-positive, their tensor product

is not necessarily uniformly RC-positive.

Example 2.14. Let - = P1 ×�, where � is a Riemann surface of genus 6 ≥ 2. It is easy to see that both

ℒ1 =  - and ℒ2 =  −1
-

are uniformly RC-positive with respect to metric induced by the canonical

metric on - . However, their tensor product ℒ1 ⊗ ℒ2 is a trivial line bundle that cannot be uniformly

RC-positive.

However, we have the following property.

Proposition 2.15. Let (-, l- ) and (., l. ) be two Hermitian manifolds. Suppose both ()- , l- ) and

(). , l. ) are uniformly RC-positive; then ()- ⊗). , l- ⊗l. ) is also uniformly RC-positive over - ×. .

Proof. For simplicity, we do not use pullback notions. Since both ()- , l- ) and (). , l. ) are uniformly

RC-positive, for any point ? ∈ - and @ ∈ . , there exist vectors D- ∈ )?- and D. ∈ )@. such that

' ()- ,l- ) (D- , D- , E, E) > 0 for any E ∈ )?-

and

' (). ,l. ) (D. , D. , F, F) > 0 for any F ∈ )@. .

The curvature tensor of ()- ⊗ ). , l- ⊗ l. ) is given by

' ()- ⊗). ,l- ⊗l. ) = ' ()- ,l- ) ⊗ Id. + Id- ⊗ ' (). ,l. ) . (2.11)

Given any point (?, @) ∈ - × . , there exists a vector D- ⊗ D. ∈ )?- ⊗ )@. such that for any

E =
∑
E8 ⊗ F8 ∈ )?- ⊗ )@. :

' ()- ⊗). ,l- ⊗l. ) (D- ⊗ D. , D- ⊗ D. , E, E)
=

∑
' ()- ,l- ) (D- , D- , E8 , E8) |F8 |2 +

∑
' (). ,l. ) (D. , D. , F8 , F8) |E8 |2 > 0.

Hence, ()- ⊗ ). , l- ⊗ l. ) is uniformly RC-positive over - × . . �

3. Vanishing theorems and rational connectedness of compact Kähler manifolds

In this section, we derive vanishing theorems for uniformly RC-positive vector bundles and prove

Theorem 1.3 and Theorem 1.6.

Corollary 3.1. If (ℰ, ℎ) is a uniformly RC-positive vector bundle over a compact complex manifold - ,

then

�0 (-, (ℰ∗)⊗<) = 0, for every < ≥ 1. (3.1)

Proof. It follows from Proposition 2.12, Corollary 2.11, and Theorem 2.4. �

The following special case is of particular interest.
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Corollary 3.2. Let - be a compact complex manifold. If there exists a smooth Hermitian metric ℎ such

that ()- , ℎ) is uniformly RC-positive, then �
?,0

m
(-) = 0 for 1 ≤ ? ≤ dim - and

�0 (-, ()∗
- )⊗<) = 0, for all < ≥ 1. (3.2)

Proof. By Corollary 2.11 and Proposition 2.12, we know Λ?)- and ) ⊗<
-

are all uniformly RC-positive.

Hence by Corollary 3.1, �
?,0

m
(-) � �0(-,Λ?)∗

-
) = 0. �

Theorem 3.3. Let (ℰ, ℎ) be a uniformly RC-positive vector bundle over a compact complex manifold

- . Then for any line bundle ℒ over - , there exists a positive constant� = � (ℒ) such thatℰ⊗< ⊗ℒ
⊗:

is uniformly RC-positive for all <, : ∈ N+ with < ≥ �: . In particular,

�0
(
-, (ℰ∗)⊗< ⊗ (ℒ∗)⊗:

)
= 0. (3.3)

Proof. We fix an arbitrary smooth Hermitian metric 6 on ℒ and assume that the curvature of (ℒ, 6)
is bounded from below by a negative constant −�. Fix a point @ ∈ - . Since (ℰ, ℎ) is uniformly RC-

positive, there exist a positive constant � and a unit vector D ∈ )@- such that

inf
E ∈ℰ@\{0}

'ℰ (D, D, E, E)
|E |2

ℎ

≥ � > 0.

By a similar computation as in Proposition 2.12, for any E ∈ ℰ
⊗<
@ , we have

' (ℰ⊗< ,ℎ⊗<) (D, D, E, E) ≥ <� |E |2. (3.4)

We choose a local unitary frame 4 ∈ Γ(-,ℒ) centered at @; then

'ℰ
⊗<⊗ℒ⊗: (D, D, E ⊗ 4⊗: , E ⊗ 4⊗: ) = ' (ℰ⊗< ,ℎ⊗<) (D, D, E, E) + : |E |2'ℒ (D, D)

≥ <� |E |2 − :� |E |2.

Hence if < ≥ :�/� + 1, then

'ℰ
⊗<⊗ℒ⊗: (D, D, E ⊗ 4⊗: , E ⊗ 4⊗: ) ≥ |E |2.

Hence,ℰ⊗< ⊗ ℒ
⊗: is uniformly RC-positive. By Corollary 3.1, we obtain (3.3). �

Recall that {I8}, {4U} are the local holomorphic coordinates and holomorphic frames on - and ℰ,

respectively.

Lemma 3.4. Let ℎ̃ = 4− 5 ℎ for some 5 ∈ �2(-,R). Then the curvature tensor '̃ of (ℰ, ℎ̃) has the

expression

'̃8 9 UV = 4− 5 ('8 9 UV + 58 9ℎUV), (3.5)

where ' is the curvature tensor of (ℰ, ℎ).

Proof. It follows by a straightforward computation. �

Theorem 3.5. Let (ℰ, ℎ) be a Hermitian holomorphic vector bundle over a compact complex manifold

- . Suppose (ℰ, ℎ) is uniformly RC-semi-positive over - . If there exist two open subsets ( and * of -

such that

1. * is strongly pseudoconvex and ( ⊂ *
2. (ℰ, ℎ) is uniformly RC-positive on - \ (

then there exists a smooth Hermitian metric ℎ̃ onℰ such that (ℰ, ℎ̃) is uniformly RC-positive over - .
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Proof. Fix an arbitrary smooth Hermitian metric l on - . We define

� = inf
@∈-\(

sup
D∈)@-\{0}

inf
E ∈ℰ@\{0}

'(D, D, E, E)
|D |2l |E |2ℎ

. (3.6)

Since - \ ( is compact and (ℰ, ℎ) is uniformly RC-positive over - \ (, it is easy to see that � > 0.

Hence, we conclude that there exists a ‘cut-off’ function 5 ∈ �∞ (-,R) such that

1. Over - , we have

(
√
−1mm 5 ) (D, D) ≥ −�

2
|D |2l . (3.7)

2. Over (, we have

(
√
−1mm 5 ) (D, D) ≥ �1 |D |2l (3.8)

for some positive constant �1.

Indeed, since * is strongly pseudoconvex, there exists a smooth strictly plurisubharmonic function

i ∈ Psh(*). In particular, there exists a positive constant �̃1 such that (
√
−1mmi) (D, D) ≥ �̃1 |D |2l over

the compact set (. Next, we can extend the smooth function i|
(

to - and get a new functionΦ ∈ �∞ (-).
It is obvious that there exists a positive constant �̃ such that

(
√
−1mmΦ) (D, D) ≥ −�̃ |D |2l

over - . Now we define 5 = �

2�̃
Φ; then 5 satisfies (3.7) and (3.8) with �1 =

��̃1

2�̃
.

We define a new smooth Hermitian metric ℎ̃ = 4− 5 ℎ onℰ. By formula (3.5), the curvature tensor '̃

of (ℰ, ℎ̃) satisfies

'̃(D, D, E, E) = 4− 5
(
'(D, D, E, E) + (mm 5 ) (D, D) · |E |2ℎ

)
. (3.9)

We claim that (ℰ, ℎ̃) is uniformly RC-positive over - . Indeed, for a point @ ∈ (, since (ℰ, ℎ) is uniformly

RC-semi-positive at @, there exists a unit vector D ∈ )@- such that '(D, D, E, E) ≥ 0 for all E ∈ ℰ@ . By

estimate (3.8), we have

'̃(D, D, E, E) = 4− 5
(
'(D, D, E, E) + (mm 5 ) (D, D) · |E |2ℎ

)

≥ 4− 5 (mm 5 ) (D, D) · |E |2ℎ
≥ �14

− 5 |E |2ℎ ,

for every E ∈ ℰ@ . For a point @ ∈ - \ (, since (ℰ, ℎ) is uniformly RC-positive over - \ (, by formula

(3.6) and Proposition 2.9, there exists some unit vector D ∈ )@- such that

'(D, D, E, E) ≥ � |E |2ℎ (3.10)

for every E ∈ ℰ@ . On the other hand, by estimate (3.7), we have

'̃(D, D, E, E) = 4− 5
(
'(D, D, E, E) + (mm 5 ) (D, D) · |E |2ℎ

)
≥ �

2
4− 5 |E |2ℎ . (3.11)

Hence, we conclude (ℰ, ℎ̃) is uniformly RC-positive over - . �

The proof of Theorem 1.6. By Theorem 3.5, )- has a uniformly RC-positive metric ℎ̃ = 4− 5 · ℎ. By

Proposition 2.12, we know Λ2)- is uniformly RC-positive. By Corollary 2.11 and Corollary 2.5, - is
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a projective manifold. On the other hand, by Theorem 3.3, for any line bundle ℒ over - , there exists a

positive constant � = � (ℒ) such that

�0
(
-, ()∗

- )⊗< ⊗ ℒ
⊗:

)
= 0 (3.12)

for all<, : ∈ N+ with< ≥ �: . Therefore, by a celebrated theorem of Campana, Demailly, and Peternell

[9, Theorem 1.1], - is rationally connected. Indeed, we deduce from (3.12) that for each 1 ≤ ? ≤ dim - ,

any invertible sheaf F ⊂ Ω
?

-
is not pseudo-effective. Otherwise, if there exists a pseudo-effective

invertible sheaf F ⊂ Ω
?

-
, then there exists a very ample line bundle � such that �0(-,F⊗ℓ ⊗ �) ≠ 0

for all ℓ ≥ 0, and so �0 (-, Sym⊗ℓΩ?

-
⊗ �) ≠ 0. Since for some large <, Sym⊗ℓΩ?

-
⊂ ()∗

-
)⊗<, we

get a contradiction to (3.12), in particular when ? = =,  - is not pseudo-effective. Thanks to [6],

- is uniruled. Let c : - d / be the associated MRC fibration of - . After possibly resolving the

singularities of c and / , we may assume that c is a proper morphism and / is smooth. By a result of

Graber, Harris, and Starr [19, Corollary 1.4], it follows that the target / of the MRC fibration is either a

point or a positive dimensional variety that is not uniruled. Suppose - is not rationally connected; then

dim / ≥ 1. Hence / is not uniruled; by [6] again,  / is pseudo-effective. Since  / = Ωdim /
/

⊂ Ωdim /
-

is pseudo-effective, we get a contradiction. Hence - is rationally connected. �

If ( = ∅, we obtain Theorem 1.3. By using rational connectedness, one has

Corollary 3.6. Let - be a compact Kähler manifold. If - admits a smooth Hermitian metricl such that

()- , l) is uniformly RC-positive, then there is no non-constant holomorphic map from - to a compact

complex manifold . without rational curves.

There are many compact complex manifolds that contain no rational curves. For instance, this is the

case of manifolds . such that

◦ . is Kobayashi hyperbolic.

◦ . has a nef cotangent bundle.

◦ . has a Hermitian metric with non-positive holomorphic sectional curvature.

◦ . is an Abelian variety.

4. RC-positive metrics on rationally connected manifolds

In this section, we will discuss a general theory for uniformly RC-positive vector bundles and prove

Theorem 1.4. Let’s recall that a line bundle ℒ is uniformly RC-positive if and only if it has a smooth

Hermitian metric ℎ such that its curvature−
√
−1mm log ℎ has at least one positive eigenvalue everywhere.

In [48, Theorem 1.4], we obtained an equivalent characterization for uniformly RC-positive line bundles.

Theorem 4.1. Let ℒ be a holomorphic line bundle over a compact complex manifold - . The following

statements are equivalent:

1. ℒ is uniformly RC-positive.

2. The dual line bundle ℒ
∗ is not pseudo-effective.

Two key ingredients in the proof of Theorem 4.1 are a conformal (exponential) perturbation method and

an integration criterion for pseudo-effectiveness over compact complex manifolds (e.g. [27]). We refer

to [47, 48] and the references therein. As an application of Theorem 4.1, we obtain the following result.

Corollary 4.2. Let - be a projective manifold. If ℒ is uniformly RC-semi-positive, then the dual line

bundle ℒ
∗ is not big.
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Proof. Let � be an ample line bundle over - . We argue by contradiction. Suppose ℒ∗ is big; then there

exists a large number : ∈ Z+ such that ℒ∗: ⊗�
∗ is big, and so it is pseudo-effective. By Theorem 4.1,

ℒ: ⊗ � is not uniformly RC-positive, which is absurd. �

The following concepts are generalizations of uniform RC-positivity for line bundles.

Definition 4.3. Let ℒ be a line bundle over a compact complex manifold - .

1. ℒ is called @-positive if there exists a smooth Hermitian metric ℎ on ℒ such that the Chern curvature

' (ℒ,ℎ) = −
√
−1mm log ℎ has at least (dim - − @) positive eigenvalues at every point on - .

2. ℒ is called @-ample if for any coherent sheaf ℱ on - , there exists a positive integer <0 =

<0 (-,ℒ,ℱ) > 0 such that

�8 (-,ℱ ⊗ ℒ
<) = 0 for 8 > @, < ≥ <0. (4.1)

Note that the nontrivial range is 0 ≤ @ ≤ dim - − 1. By the celebrated Cartan–Serre–Grothendieck

criterion for ampleness and Kodaira embedding theorem, one has

Theorem 4.4 (Cartan–Serre–Grothendieck, Kodaira). . Let ℒ → - be a holomorphic line bundle

over a projective manifold - . Then the following statements are equivalent:

1. ℒ is 0-ample.

2. ℒ is 0-positive.

In [2, Theorem 14], Andreotti and Grauert proved the following fundamental theorem (see also [18,

Proposition 2.1]).

Theorem 4.5. A @-positive line bundle is @-ample.

In [18], Demailly, Peternell, and Schneider systematically investigated partial vanishing theorems and

proposed the following converse to the Andreotti-Grauert theorem:

Problem 4.6. On a projective manifold, if a line bundle is @-ample, is it @-positive?

This is a long-standing open problem. The key difficulty arises from constructing a precise metric

according to the formal partial vanishing theorem (4.1). Recently, there has been some progress on

this problem (see [14, 44, 31, 40, 4, 26, 20]). In complex dimension two, Demailly proved in [14]

an asymptotic version of this converse to the Andreotti-Grauert theorem using tools related to the

holomorphic Morse inequality; and S. Matsumura obtained in [31, Theorem 1.3] a positive answer to

the question for projective surfaces. However, there exist higher-dimensional counterexamples to the

converse Andreotti–Grauert problem for @ in the range dim -
2

−1 < @ < dim - −2, constructed by Ottem

[40, Theorem 10.3].

As a weak dual to the Cartan–Serre–Grothendieck-Kodaira theorem 4.4, we established in [48] that

Theorem 4.7. Let ℒ → - be a holomorphic line bundle over a projective manifold - . Then the

following statements are equivalent:

1. ℒ is (dim - − 1)-ample.

2. ℒ is (dim - − 1)-positive.

3. ℒ is uniformly RC-positive.

Letℰ be a vector bundle over - and P(ℰ∗) be the projective bundle ofℰ. The points of the projective

bundle P(ℰ∗) of ℰ → - can be identified with the hyperplanes of ℰ. Note that every hyperplane + in

ℰI corresponds bijectively to the line of linear forms inℰ∗
I that vanish on + . Let c : P(ℰ∗) → - be the

natural projection. There is a tautological hyperplane sub-bundle ( of c∗ℰ over P(ℰ∗) such that

( [b ] = b
−1 (0) ⊂ ℰI
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for all b ∈ ℰ
∗
I \ {0}. The quotient line bundle c∗ℰ/( is denoted Oℰ (1) and is called the tautological line

bundle associated withℰ → - . Hence there is an exact sequence of vector bundles over P(ℰ∗)

0 → ( → c∗ℰ → Oℰ (1) → 0. (4.2)

A holomorphic vector bundleℰ → - is called ample if the line bundle Oℰ (1) is ample over P(ℰ∗).

Proposition 4.8. Let (ℰ, ℎ) be an RC-positive vector bundle over a compact complex manifold - . Then

1. Oℰ (1) is (dim - − 1)-positive over P(ℰ∗).
2. Oℰ∗ (1) is not pseudo-effective over P(ℰ).
3. Oℰ∗ (−1) is uniformly RC-positive over P(ℰ).

Proof. It follows from the curvature formulas of Oℰ∗ (−1) and Oℰ (1) induced by (ℰ, ℎ) (e.g. [49,

Proposition 4.1], [50, Proposition 2.6]) and Theorem 4.1. Indeed, for any Hermitian metric ℎ onℰ, the

induced Hermitian metric 6 on the line bundle Oℰ (1) has curvature form over P(ℰ∗)

'Oℰ (1) =
√
−1

(∑
'ℰ
8 9 UV

0V0U

|0 |2
3I8 ∧ 3I 9 + 1

|0 |2
A−1∑

�,�=1

(
1 − 0�0�

|0 |2

)
3F� ∧ 3F�

)
(4.3)

where |0 |2 =
∑A

U=1 |0U |2, 0A = 1, and A = rank(ℰ). Hence, if (ℰ, ℎ) is RC-positive, then (Oℰ (1), 6)
has one extra positive eigenvalue from the curvature term

∑
'ℰ
8 9 UV

0V0U

|0 |2
3I8 ∧ 3I 9 ,

and (Oℰ (1), 6) is (dim - − 1)-positive, i.e. (Oℰ (1), 6) has at least A positive eigenvalues everywhere,

i.e. Oℰ (1) is (dim - − 1)-positive. Similarly, Oℰ∗ (−1) has curvature form over P(ℰ)

'Oℰ∗ (−1) =
√
−1

(∑
'ℰ
8 9 UV

0V0U

|0 |2
3I8 ∧ 3I 9 − 1

|0 |2
A−1∑

�,�=1

(
1 − 0�0�

|0 |2

)
3F� ∧ 3F�

)
.

We deduce that if (ℰ, ℎ) is RC-positive, then Oℰ∗ (−1) is uniformly RC-positive. �

By adapting ideas in [48], we can show that three conclusions in Proposition 4.8 are equivalent on

projective manifolds.

Theorem 4.9. Let ℰ be a holomorphic vector bundle over a projective manifold - . Then the following

statements are equivalent:

1. Oℰ (1) is (dim - − 1)-ample.

2. Oℰ∗ (1) is not pseudo-effective.

3. Oℰ∗ (−1) is uniformly RC-positive.

Proof. (1) =⇒ (2). If Oℰ (1) is (dim - − 1)-ample, we deduce that Oℰ∗ (1) is not pseudo-effective.

Otherwise, if Oℰ∗ (1) is pseudo-effective, it is well known that there exists an ample line bundle ℒ on

P(ℰ) such that

�0(P(ℰ),Oℰ∗ (<) ⊗ ℒ) ≠ 0 for all < ≥ 0. (4.4)

More precisely, ℒ can be chosen in such a way: fix a very ample line bundle ℋ over P(ℰ), and if ℒ is

an ample line bundle such that

ℒ ⊗  −1
P(ℰ) ⊗ℋ

−(dimP(ℰ)+1)
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is ample, then (4.4) holds. We can choose ℒ in a special form

ℒ = Oℰ∗ (<0) ⊗ c∗ (�⊗<1 ) (4.5)

where � is an ample line bundle over - , and <0, <1 are two large positive integers with <1 ≫ <0,

and c : P(ℰ) → - is the projection. For the reader’s convenience, we write down the construction

explicitly. Indeed, for large : ,ℰ∗ ⊗�
⊗: is an ample vector bundle over - , i.e. Oℰ∗ (1) ⊗ c∗(�⊗: ) is an

ample line bundle over P(ℰ). There exists a large :1 such that ℋ = Oℰ∗ (:1) ⊗ c∗(�⊗(::1) ) is a very

ample line bundle over P(ℰ). On the other hand,

 P(ℰ) = Oℰ∗ (−A) ⊗ c∗ ( - ) ⊗ c∗(detℰ∗)

where A is the rank ofℰ. There exists a positive number :2 such that

�
⊗:2 ⊗  −1

- ⊗ detℰ

is ample over - . Now we can take

<0 = :1 (= + A) − A + 1 and <1 = :2 + ::1 (= + A) + :

and so

ℒ ⊗  −1
P(ℰ) ⊗ℋ

−(=+A ) = Oℰ∗ (1) ⊗ c∗ (�⊗: ) ⊗ c∗
(
�

⊗:2 ⊗  −1
- ⊗ detℰ

)

is ample over P(ℰ).
Therefore, by the Le Potier isomorphism, (4.4) is equivalent to

�0 (-, Sym⊗:
ℰ

∗ ⊗ �
⊗<1 ) ≠ 0 (4.6)

for large : . Applying the Serre duality on - and the Le Potier isomorphism again, we obtain

�= (P(ℰ∗),Oℰ (:) ⊗ c∗1 ((�∗)⊗<1) ⊗ Ω=
P(ℰ∗) ) ≠ 0

for large : , where c1 : P(ℰ∗) → - is the projection. Let ℱ = c∗
1
((�∗)⊗<1) ⊗ Ω=

P(ℰ∗) , and we know

Oℰ (1) cannot be (= − 1)-ample. This is a contradiction. Hence Oℰ∗ (1) is not pseudo-effective.

The equivalence of (2) and (3) follows from Theorem 4.1.

(3) =⇒ (1). We need to show that for any line bundle ℱ over P(ℰ∗), there exists :0 > 0 such that

when : > :0, one has

�= (P(ℰ∗),Oℰ (:) ⊗ ℱ) = 0. (4.7)

It is well known that ℱ takes the form Oℰ (<) ⊗ c∗1 (ℒ), where < ∈ Z, and ℒ is a line bundle over - ,

and c : P(ℰ∗) → - is the projection. Since Oℰ∗ (−1) is uniformly RC-positive, by Theorem 3.3, there

exists :1 > 0 such that

Oℰ∗ (−:) ⊗ c∗(ℒ ⊗  −1
- )

is also uniformly RC-positive when : ≥ :1, where c : P(ℰ) → - is the projection. By Theorem 2.4,

�0(P(ℰ),Oℰ∗ (:) ⊗ c∗(ℒ∗ ⊗  - )) = 0

for : > :1. By Le Potier isomorphism and Serre duality, we deduce

�0 (-, Sym⊗:
ℰ

∗ ⊗ ℒ
∗ ⊗  - ) � �= (-, Sym⊗:

ℰ ⊗ ℒ) = 0.
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Hence, we have

�= (P(ℰ∗),Oℰ (:) ⊗ c∗1ℒ) = 0

for : > :1. The proof of (4.7) is completed. �

On the other hand, we have

Proposition 4.10. Let - be a projective manifold. Suppose Oℰ (1) is (dim - − 1)-ample; then the

restriction of Oℰ (1) to every smooth sub-manifold . ⊂ P(ℰ∗) with dim. = dim - is (dim - − 1)-
positive.

Proof. Let 5 : . → P(ℰ∗) be the inclusion map. Using the projection formula and the Leray spectral

sequence, one has

�8 (.,ℱ ⊗ ( 5 ∗Oℰ (<))) = �8 (P(ℰ∗), 5∗(ℱ) ⊗ Oℰ (<)).

Hence, if Oℰ (1) → P(ℰ∗) is (dim - − 1)-ample, 5 ∗(Oℰ (1)) → . is also (dim - − 1)-ample. On the

other hand, since dim. = dim - , by Theorem 4.7, the (dim - − 1)-ample line bundle 5 ∗(Oℰ (1)) over

. is (dim - − 1)-positive. �

Motivated by these properties, we propose the following conjecture.

Conjecture 4.11. Letℰ be a holomorphic vector bundle over a projective manifold - . Then the following

statements are equivalent:

1. Oℰ∗ (−1) is RC-positive.

2. Oℰ (1) is (dim - − 1)-ample.

3. Oℰ (1) is (dim - − 1)-positive.

4. ℰ is RC-positive.

Note that the implications (4) =⇒ (3) =⇒ (2) ⇐⇒ (1) in Conjecture 4.11 are known by Proposition

4.8, [2] and Theorem 4.9. On the other hand, when rank(ℰ) = 1 or dim - = 1, Conjecture 4.11 is true

by Theorem 4.7 and [10]. Note also that Conjecture 4.11 is analogous to a conjecture of P. Griffiths:

Conjecture 4.12. Letℰ be a vector bundle over a projective manifold - . Then the following statements

are equivalent:

1. Oℰ (1) is positive.

2. ℰ is Griffiths positive.

It is easy to see that ifℰ is Griffiths positive, then so is Oℰ (1).

As an application of Theorem 4.9, we obtain a differential geometric characterization of rationally

connected manifolds.

Theorem 4.13. Let - be a projective manifold. Then the following statements are equivalent:

1. - is rationally connected.

2. The line bundle OΛ?) ∗
-
(−1) is uniformly RC-positive for every 1 ≤ ? ≤ dim - .

Proof. If - is rationally connected, then by a variant of [9, Theorem 1.1] (e.g. [8, Proposition 1.4]), for

any ample line bundle ℒ on - , there exists a positive integer <0 such that

�0 (-, Sym⊗< (
Λ?)∗

-

)
⊗ ℒ

⊗: ) = 0

for < ≥ <0: and all 1 ≤ ? ≤ dim - . We claim OΛ?) ∗
-
(−1) is uniformly RC-positive. Otherwise, by

Theorem 4.9, OΛ?) ∗
-
(1) is pseudo-effective. Hence, by using a similar proof as in Theorem 4.9, we can
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find an ample line bundle � over - such that (4.6) holds forℰ = Λ?)- : that is,

�0(-, Sym⊗< (
Λ?)∗

-

)
⊗ �

⊗<1) ≠ 0

for all large <. This is a contradiction.

On the other hand, if OΛ?) ∗
-
(−1) is uniformly RC-positive over P(Λ?)- ), then by the Le Potier

isomorphism and Theorem 3.3, for any coherent sheaf of the form ℱ = c∗ (ℒ⊗: ) over P(Λ?)- ), we

have

�0 (-, Sym⊗< (
Λ?)∗

-

)
⊗ ℒ

⊗: ) � �0(P(Λ?)- ),OΛ?) ∗
-
(<) ⊗ ℱ) = 0 (4.8)

for large <. Therefore, by the proof of [49, Theorem 1.4] (see also [9, Theorem 1.1] or [8, Proposition

1.4]), - is rationally connected. �

As motivated by Theorem 4.9, Theorem 4.13, and Conjecture 4.11, we propose the following:

Problem 4.14. Let - be a projective manifold. Suppose - is rationally connected. Does )- admit an

RC-positive Hermitian metric?

More generally, we expect the following.

Problem 4.15. The following statements are equivalent on a projective manifold -:

1. - is rationally connected.

2. )- is RC-positive.

3. )- is uniformly RC-positive.

In [49, Corollary 1.5], we obtain the following result.

Corollary 4.16. Let - be a compact Kähler manifold. If there exist a Hermitian metric l on - and a

(possibly different) Hermitian metric ℎ on )- such that

trl'
()- ,ℎ) ∈ Γ(-,End()- )) (4.9)

is positive definite, then - is projective and rationally connected.

In particular, by the celebrated Calabi-Yau theorem [53], one gets the classical result of Campana [7]

and Kollár-Miyaoka-Mori [25] that Fano manifolds are rationally connected. We propose a conjecture

converse to Corollary 4.16, which is also analogous to the classical fact: a compact complex manifold

is Fano if and only if it has a Hermitian metric with positive first Chern-Ricci curvature.

Problem 4.17. The following statements are equivalent on a projective manifold -:

1. - is rationally connected.

2. There exist a Hermitian metric l on - and a (possibly different) Hermitian metric ℎ on )- such that

trl'
()- ,ℎ) is positive definite.

Remark 4.18. Problem 4.17 is also known to J.-P. Demailly [15]. A positive solution to Problem 4.17

gives an affirmative answer to Problem 4.14.

5. Compact Kähler manifolds with non-negative holomorphic sectional curvature

A compact Kähler manifold (-, l) has positive (respectively, non-negative) holomorphic sectional

curvature if for any nonzero vector b = (b1, · · · , b=),

'
8 9:ℓ

b8b
9
b:b

ℓ
> 0 (respectively, ≥ 0)
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at each point of - . The negativity and non-positivity of the holomorphic sectional curvature can be

defined in a similar way.

Theorem 5.1. Let (-, l) be a compact Kähler manifold with positive (respectively, non-negative)

holomorphic sectional curvature; then ()- , l) is uniformly RC-positive (respectively, uniformly RC-

semi-positive).

Proof. Let ^ be the positive holomorphic sectional curvature of (-, l), i.e.

^ = inf
@∈-

inf
* ∈)@-\{0}

'(*,*,*,*)
|* |4

. (5.1)

For any point @ ∈ - , let 4 ∈ )@- be a unit vector such that

'(4, 4, 4, 4) = inf
* ∈)@-\{0}

'(*,*,*,*)
|* |4

. (5.2)

We know '(4, 4, 4, 4) ≥ ^ > 0. On the other hand, by [49, Lemma 6.1], for any unit vector , ∈ )@- ,

we have

2'(4, 4,,,,) ≥ (1 + |〈,, 4〉|2)'(4, 4, 4, 4) ≥ ^. (5.3)

Hence, for any vector E ∈ )@- , we obtain

'(4, 4, E, E) ≥ ^

2
|E |2,

and so ()- , l) is uniformly RC-positive. �

Remark 5.2. If a compact Kähler manifold (-, l) has negative (respectively, non-positive) holomorphic

sectional curvature, then ()- , l) is uniformly RC-negative (respectively, uniformly RC-non-positive).

As an application of Theorem 5.1 and Theorem 1.6, we obtain Theorem 1.7, i.e.

Theorem 5.3. Let (-, l) be a compact Kähler manifold with non-negative holomorphic sectional

curvature. If ( is open subset of - such that ()- , l) is uniformly RC-positive over - \ (, and ( is

contained in some strongly pseudoconvex domain of - , then - has a uniformly RC-positive Hermitian

metric. Moreover, - is a projective and rationally connected manifold.

Corollary 5.4. Let (-, l) be a compact Kähler manifold with positive holomorphic sectional curvature.

Then ()- , l) is uniformly RC-positive. Moreover, - is projective and rationally connected. In particular,

- is simply connected.

Remark 5.5. It is not hard to see that Theorem 5.3 can also hold under certain weaker conditions. For

related topics on holomorphic sectional curvature, we refer to [21, 1, 46, 29, 3, 45, 13, 32] and the

references therein.

6. RC-positive Finsler vector bundles over complex manifolds

Letℰ be a holomorphic vector bundle over a complex manifold - with complex rank A . Let (I1, · · · , I=)
be the local holomorphic coordinates on - and (F1, · · · , FA ) be the holomorphic coordinates on the

fiber ofℰ. Letℰ \ {0} be the complement of the zero section ofℰ.

Definition 6.1. A pseudoconvex complex Finsler metric F on ℰ is a continuous function F : ℰ →
[0, +∞) satisfying the following:

1. F is smooth onℰ \ {0}.
2. F(I, F) > 0 for all F ≠ 0.
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3. F(I, _F) = |_ |2F(I, F) for all _ ∈ C.

4. The (A × A) Hermitian matrix
(

m2F

mFUmFV

)
is positive definite overℰ \ {0}.

Let F be a pseudoconvex complex Finsler metric onℰ → - . It is well known that

(
ℎUV

)
=

(
m2F

mFUmFV

)

defines a smooth Hermitian metric on the holomorphic vector bundle c∗ℰ → P(ℰ∗), where c :

P(ℰ∗) → - is the projection. Note that, in general, F does not give a Hermitian metric onℰ → - .

Definition 6.2. Let F be a complex Finsler metric onℰ → - . (ℰ,F) is called an RC-positive (respec-

tively, a uniformly RC-positive) Finsler vector bundle if F is pseudoconvex and the induced Hermitian

vector bundle (c∗ℰ, ℎ) is RC-positive (respectively, uniformly RC-positive) over P(ℰ∗).

Remark 6.3. If (ℰ, ℎ) is a Hermitian holomorphic vector bundle, then it induces a pseudoconvex Finsler

metric F onℰ. Moreover, if (ℰ, ℎ) is RC-positive (respectively, uniformly RC-positive), then (ℰ,F) is

RC-positive (respectively, uniformly RC-positive).

Theorem 6.4. Let - be a compact complex manifold. Suppose (ℰ,F) is an RC-positive Finsler vector

bundle. Then we have

�0 (-, Sym⊗<
ℰ

∗) = 0, for all < ≥ 1.

Moreover, for any line bundle ℒ → - , there exists a positive constant 2ℒ such that

�0 (-, Sym⊗<
ℰ

∗ ⊗ ℒ
∗⊗: ) = 0

for all positive integers <, : with < ≥ 2ℒ: .

Proof. If (ℰ,F) is an RC-positive Finsler bundle, then the induced Hermitian vector bundle (c∗ℰ, ℎ)
is RC-positive, where c : P(ℰ∗) → - is the projection. Let ℱ = c∗ (ℰ) and . = P(ℰ∗). By Proposition

4.8, Oℱ∗ (−1) is an RC-positive line bundle over the projective bundle c̃ : P(ℱ) → . . Hence, by

Theorem 3.3, we have

�0
(
P(ℱ),Oℱ∗ (<) ⊗ c̃∗

(
c∗(ℒ∗⊗: )

))
= 0, (6.1)

for all positive integers <, : with < ≥ 2ℒ: . By the Le Potier isomorphism, we have

�0(-, Sym⊗<
ℰ

∗ ⊗ ℒ
⊗: ) � �0 (P(ℰ∗), c∗

(
Sym⊗<

ℰ
∗) ⊗ c∗(ℒ⊗: ))

� �0 (P(ℰ∗), Sym⊗<c∗ (ℰ∗) ⊗ c∗(ℒ⊗: ))
= �0 (., Sym⊗<

ℱ
∗ ⊗ c∗(ℒ∗⊗: ))

� �0
(
P(ℱ),Oℱ∗ (<) ⊗ c̃∗

(
c∗ (ℒ∗⊗: )

))

= 0.

If we take ℒ to be a trivial line bundle, then there exists a large positive integer < such that

�0 (-, Sym⊗<
ℰ∗) = 0. It is easy to see that �0(-,ℰ∗) = 0 and so �0(-, Sym⊗<

ℰ∗) = 0 for all

< ≥ 1. �

Theorem 6.5. Let - be a compact complex manifold. Suppose (ℰ,F) is a uniformly RC-positive Finsler

vector bundle. Then we have

�0 (-, (ℰ∗)⊗<) = 0, for all < ≥ 1.
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Moreover, for any line bundle ℒ → - , there exists a positive constant 2ℒ such that

�0(-, (ℰ∗)⊗< ⊗ ℒ
⊗: ) = 0

for all positive integers <, : with < ≥ 2ℒ: .

Proof. The induced Hermitian vector bundle (c∗ℰ, ℎ) is uniformly RC-positive. By Proposition 2.12,

c∗ (ℰ⊗<) � (c∗ (ℰ))⊗< is uniformly RC-positive for all < ≥ 1. On the other hand,

�0
(
-, (ℰ∗)⊗< ⊗ ℒ

⊗:
)
� �0

(
P(ℰ∗), (c∗ (ℰ∗))⊗< ⊗ c∗ (ℒ⊗: )

)
.

Hence, Theorem 6.5 follows from Theorem 3.3. �

As an application of Theorem 6.4 and [49, Theorem 1.4], we obtain

Theorem 6.6. Let - be a compact Kähler manifold of complex dimension =. Suppose that for every

1 ≤ ? ≤ =, there exists a Finsler metric F? on Λ?)- such that (Λ?)- ,F?) is RC-positive; then - is

projective and rationally connected.

Similarly, as an application of Theorem 6.5, we obtain the following generalization of Theorem 1.3.

Theorem 6.7. Let - be a compact Kähler manifold. If - admits a Finsler metric F such that ()- ,F)
is uniformly RC-positive, then - is projective and rationally connected.

Remark 6.8. It is well known that there exists a one-to-one correspondence between the set of Hermitian

metrics on Oℰ∗ (−1) and the set of Finsler metrics on ℰ
∗ or ℰ. We can also define that a Finsler vector

bundle (ℰ,F) is RC-positive if the induced Hermitian metric on Oℰ∗ (−1) is RC-positive. In this case,

similar results as in Theorem 6.6 and Theorem 6.7 can be obtained.
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