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Abstract

A subgroup H of an abelian p-group G is pure in G if the inclusion map of H into G is an isometry
with respect to the (pseudo-) metrics on H and G associated with their p-adic topologies. In
this paper, those subgroups (called here imbedded subgroups) of abelian groups for which the
inclusion is a homeomorphism with respect to the p-adic topologies are studied, the aim being
to compare the concepts of imbeddedness and purity. Perhaps the main results indicate that
imbedded subgroups are considerably more abundant than pure subgroups. Groups for which
this is not the case are characterized.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 20 K 10.

This paper seeks, in part, to repair a gap in the recent literature of abelian
groups. A preliminary version of the paper, written by the second and third
authors in 1970 and accepted for publication but never published, has been
cited as "to appear" in several subsequent papers, including [6], [7] and [8].
Meanwhile, additional relevant results have been found; they are included in
this expanded version. Although some of the underlying ideas of this paper
can be treated in a more general group-theoretic context (as in [8]), the author
feel that these ideas flow most naturally from specific consideration of the
p-adic topology.

The subgroups of an abelian group G that interest us are those subgroups
H for which the p-adic topology in H coincides with the topology that H

Some of the results in this paper appear in the second author's Ph.D. dissertation, Syracuse
University, 1969; others appear in the first author's Ph.D. dissertation, Wesleyan University,
1976. This work was supported in part by National Science Foundation Grants GP-5878 and
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acquires as a subspace of G. This means that there should exist a function /
from the non-negative integers into themselves satisfying Hdp'^G Q p"H
for all n. Then H is p-pure in G if and only if the identity function serves,
and the degree of complication of the function / indicates the extent to which
H is not p-pure. Section 1 establishes some elementary general facts. In
Section 2 we give some examples to show that the functions / can be quite
complicated. Section 3 discusses subgroups that are "almost pure." Section
4 relates the subgroups of interest to us with kernels of purity, and its results
are applied in Section 5 to characterize the subgroups discussed in Section
3. Section 6 characterizes those groups G all of whose imbedded subgroups
are "almost pure". Finally, Section 7 settles a conjecture raised in [6]. All
groups considered are abelian and our notation is that of [1] and [2].

1. Imbedded subgroups

DEFINITIONS 1.1. A subgroup H of a group G is imbedded (respectively
p-imbedded) in G provided there exists a function / from the non-negative
integers N into themselves such that Hnl(n)G c nH (Hnpl{n)G c pnH) for
all n. We call / an imbedding function for H in G and write H < G {H <p G)
to indicate its existence. If / is an imbedding function for H in G we call 3,
denned by n + 6{n) = /(«), the corresponding difference function.

Clearly, if / is an imbedding function for H in G and if /' is any function
from N to N such that l'(n) > l(n) for all n, then /' is also an imbedding
function for H in G. Moreover, the collection of all imbedding functions
for H in G contains its (pointwise) infimum, which we call the minimal
imbedding function. It is also clear that H < G if and only if H <p G for
all primes p. For the relation between the global imbedding function and the
local ones for an imbedded subgroup H of G we have

PROPOSITION 1.2. Let H < G with minimal function I. Then I is multi-
plicative. if{n,m) = 1, then l(nm) — l{n)l(m).

PROOF. The prime divisors p of l(n) must occur among those of n, for
if (p, n) = 1 and l(n) = pes, with (s,p) = 1, let x e H n sG. Then pex e
H n l(n)G C nH and, for suitable integers a and b, an + bpe = 1, so x =
anx + bpex e nH. Thus HnsG C nH, implying 5 > /(«) by the minimality
of /. This gives e = 0, as desired.

Now suppose (n, m) = 1. By the remarks above, this implies (/(«), l{m)) =
1, so

Hnl(n)l(m)G = Hn l(n)GnHn l(m)G QnHnmH = nmH,
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implying

l(nm) < l(n)l(m).

For the opposite inequality, put l{nm) = rs, where (r, m) = (s, n) = 1, and
let as + bn= 1. Then, for x e H n rG,

5x € H n l{nm)G c /zmtf c

so JC = asx + bnx € «//. This yields /(«) < r. Similarly, /(w) < s, so

<rs = l

COROLLARY 1.3. Let H < G with minimal imbedding function I {p-imbed-
ding functions lp) and suppose n = n*=i pf for distinct primes />,. Then

and

A number of elementary properties of imbeddedness are collected in the
proposition below, whose proof is omitted. We state the local version, but
this implies the global version. In the case of p-groups, and somewhat less
successfully in general, the following lemmas reduce certain questions about
imbedded subgroups to the case of direct sums of cyclic groups. Proposition
1.7 is one such example, which will be applied later. Of course, for p-groups,
imbeddedness and p-imbeddedness coincide, so we omit the reference to p
in this case.

PROPOSITION 1.4. Let H and K be subgroups ofG with K CH.
(i) IfK <p G, then K <p H.
(ii) IfK <p H and H <p G, then K <p G.
(iii) IfH <p G, then H/K <p G/K.
(iv) IfK <p G and H/K <p G/K, then H <p G.
(v) IfH <p G, then Hf\pwG = pmH.

Sometimes it is useful to know that in (ii) above, if l\ and h are imbedding
functions for H in G and for K in H, respectively, then the composite l\ o l2

is an imbedding function for K in G. Similarly, in (iv), if h and l2 are
imbedding functions for K in G and for H/K in G/K, respectively, then
h o l\ is an imbedding function for H in G. Also, if / is an imbedding
function for H in G, then l(n) > n unless pn~lH is divisible.
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LEMMA 1.5. Suppose that H <p G and G/H is p-divisible. Then H is
p-pure in G.

PROOF. Let / be a p-imbedding function for H in G and suppose

x=pngeHnp"G.

Choose k > max{0, l(n) - n) and write g = pkg\ + h. Then

x = pn+kgi +pnh, n + k> l(n),

so
x-pnh= pn+kgi e Hnp'{n)G c p"H.

Thus x E p"H, as required.

LEMMA 1.6. Let H <p G with minimal imbedding function I and suppose
C is pure in H with H/C p-divisible. Then I is the minimal imbedding function
forC.

PROOF. By the remarks following Proposition 1.4, / is an imbedding func-
tion for C. Let /' be the minimal function, so that /' < /. For h e Hnp''wG
we may choose h\ e H with pmh\ - h e C, where m — max{/'(n),«}. Then

pmhi-heCnpl'{n)GCp"C,

so he pnC + pmH C p"H. This gives l(n) < /'(«), as required.

PROPOSITION 1.7. Let G be a p-group, H a subgroup ofG, and C a basic
subgroup of H. Then H < G if and only ifC<G. In this case lc = IH and
there exists a basic subgroup BofG such that Bc\H — C andB/C is basic
in G/C. Moreover, if pkP c C c P for some pure subgroup P of B, then
pkPo c H c Po for some pure subgroup PQ ofG.

PROOF. If H < G, then C, being pure in H, is imbedded in G, and (by
Lemma 1.6) C and H have the same imbedding function. Conversely, if
C < G, then H/C is divisible, and hence pure in G/C. Thus, by Proposition
1.4(iv), H <G.

Now, since H/C is divisible, we can write G/C - H/C @ L/C for some
subgroup L of G. Choose B\ such that B\/C is basic in L/C. Then B\ is
imbedded and dense in G, and hence is pure in G by Lemma 1.5. Clearly, B\ n
H = C and B\/C is a direct sum of cyclic groups. Finally, by a well-known
theorem of Kovacs [1, Theorem 33.4], C is contained in a basic subgroup B
of Bu which clearly is also basic in G. We have CCBnHCBlnH=C
and B/C c B\/C, so B/C is a direct sum of cyclic groups.
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Now suppose P is pure in B and pkP C C C P for some k. Then
pk(H + P)CHCH + Pand

/* + / > „ / / _
i> ~HnP~ '

since C c H n P C i / n 5 = C, so (H + P)/P is divisible and hence pure in
G/P. But P is pure in G, so Po = # + P is pure in G.

2. The difference function

By Proposition 1.7, one need look no further than direct sums of cyclic
groups to find the most general difference functions arising from imbedded
subgroups, at least for ^-groups. In this section we establish a condition for
a subgroup of a direct sum of cyclic ^-groups to be imbedded and use it to
construct imbedded subgroups with a wide variety of difference functions.

Let B = ®(6,) be (for the sake of simplicity) a standard basic subgroup,
so that (bi) is cyclic with generator &, of order p'. Any subgroup H of B is
also a direct sum of cyclic groups so we may write H = ©(a*)- Denote the
exponent of a^ by p(k). Let a^ = J2i akibi and let £(k, i) be the exponent of
the highest power of p dividing a^,. Then p(k) — Max{i-£(k, /)|afc, ^ 0} and
we have the following lemma. We write fi(n, m) — Min{«, m) for integers n
and m.

LEMMA 2.1. With the notation above, H is imbedded in B with imbedding
function I if and only if the following conditions holds: for any sequence {Xk}
of integers almost all of which are zero,

(*) />"('>/(n))l £**«*, for alii
k

implies

{**) P"{p{k)-n)\Xk for all k.

PROOF. Divisibility condition (*) simply expresses the fact that the ele-
ment JC = Y^k Xkak °f ff lies in p'^B, while condition (**) is equivalent to
xep"H.

To state our condition, we need one further bit of notation:

Lk = {i\<*ki ¥> 0}; X(k) = sup Lk.

In the following proof we use the easily verified fact that, to show that a
subgroup is imbedded, it suffices to define an imbedding function on an un-
bounded set of integers.
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PROPOSITION 2.2. With the notation above, H is imbedded in B with min-
imal difference function satisfying

Sp(k)_x=S{k,X{k)) for all k

provided that
(1) ifj / k andk{j) < Mk), then X(j) < infLk;
(2) for each k, £(k, i) = Ofor some i e Lk;
(3) for each k, p{k) > i - £{k, i) + 2 for all i e Lk, i < X(k).

PROOF. Condition (3) and p(k) - Max{/ - £(k,i)\i e Lk) imply that
p(k) = k(k) - £,(k,k(k)). By (1), the sets Lk are mutually disjoint, hence,
(2) and (3) imply that {p(k)\k e iV} is an unbounded set of integers, so
{p(k) - l\k G N} is an unbounded set of integers, so {p(k) - \\k e Â } is
also. Now fix j , and let n - p(j) = 1, 5n = £(j,k{j)). Because the Lk are
mutually disjoint, (*) of Lemma 2.1 becomes, with l(n) = n + Sn,

h for a l l / 6 L,.

By definition of £(k, /), this implies

(*)' pK(/.»+*.)-«*.0|Zifc> fora l l /eL f c .

Now, if X(k) < n + dn, then ju(i, n + 8n) — i for all / e Lk and we obtain

In particular, / = k{k) yields pp(k)\Xk, so p^p(k^\Xk, as required.
Suppose now that k is such that i < n + 8n < X{k) for some / e Lk.

Recalling that

« + dn = p(j) - i + S

we have
/ < AC/) - 1 < Kk), for all i e Lk.

Now (1) implies j — k. Taking / = X(k) = X(j) in (*)' yields

Since j = k and Sn — £{j,k{j)), this implies pn\Xk-
Finally, for A; such that n + 8n < inf Lk, (*)' yields

By (2), for some /, Z(k, i) = 0, so pn+s°\Xk, so again pn\Xk-
We have thus shown that H is imbedded in B and the minimal difference

function evaluated at p{j) - 1 does not exceed £(j,A(J))- To complete the
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proof, we show that x = ppi-j)~2aj, clearly not an element oi pp^~lH, is,
however, in pn+5"~lB = p^~2B:

where a,-,- — /^• ' )S / / - . It suffices to show that

p(j) -2 + Z(j, i) > MM - 2, i) for all i e Lj,

and this is guaranteed by (3).

More general conditions could be stated (at the expense of a certain amount
of notational simplicity) but we feel that the ones given in 2.2 are general
enough to provide insight into the following theorem, yet simple enough to
handle conveniently.

THEOREM 2.3. Let B be a standard basic subgroup and let {dn} be any
sequence of non-negative integers. Then there exists an imbedded subgroup H
ofB whose minimal difference function 8 has {dn} as a subsequence.

PROOF. Define X(0) = 0, X(k) = dk + X(k - 1) + 3, k > 1 (actually, any
sequence k{n) with A(n + 1) - A(n) > 2 would suffice), and put

Lk = {X(k - 1) + l,X(k)}, ak = V - D + i +Pdkbx(k),

where {&,} is a basis for B. Clearly, {ak} forms a basis for the subgroup H
it generates, and

so (3) of Proposition 2.2 holds. Conditions (1) and (2) are clear.

It is not true that an arbitrary sequence of non-negative integers will itself
be a minimal difference function for some imbedded subgroup. In fact, if /
is a minimal imbedding function for H < G, then

Hnpl{n+l)GCpn+lHCp"H

implies /(«) < /(« + 1), so the corresponding difference function must satisfy
S(n + 1) > S(n) - 1 for every n. Thus, it is natural to ask: if {dn} is any
sequence of non-negative integers satisfying dn+\ >dn-\ for every n, does
there exist a group with an imbedded subgroup whose minimal difference
function is {*/„}? Theorem 2.4 answers this question affirmatively, and in
fact shows that all these different varieties of imbedded subgroups may be
accommodated within a single countable group.
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THEOREM 2.4. There exists a countable group B with the following property,
if {dn} is any sequence of non-negative integers satisfying dn+\ > dn - 1 for
every n, then there is an imbedded subgroup H ofB whose minimal difference
function 8 is given by d(n) = dn for every n.

PROOF. Let B( = 0 ~ , (.*(/,«)), where a(x(i,n)) = p", and let B =
®°f, Bi. Clearly, B is countable. Given the sequence {dn} of non-negative
integers satisfying dn+\ >dn-\ for all n, define

hi = x{i, i - 1) + pdlx{i, i + dt), / = 1,2,...,

where JC(1,O) = 0. Let i / C B b e the sum of the subgroups (ht) for all /, and
observe that this sum is direct. We must show that, for all k,Hf\pk+dkB c
pkH b\xtHnpk+dK-lB <£ pkH.

Leth€Hnpk+d"B. Then

h = alP
d>x(l, 1 + d{) + a2(x(2, l)+pd*x(2,2 + d2))

+ ••• + a t ( x ( i , i - 1 ) + p d ' x { i , i + d t ) ) + ••• ,

where ai, a2,..., a,•.,... are integers, and there exists b e B such that pk+d*b =
h. Thus, pk+dk must divide each summand; that is, for each / there are
integers q, r, s, t such that

(1) a,• - qpk+dk + rp'~l and
(2) aipdi = spk+d<< + tpi+d'.

Now, if i < k, then i + dj < k + *4 by hypothesis (since an easy induction
argument yields <4 > ^ - (* -o - (k - 0 f° r e a c n s u c n ')» s o P' divides a, by
(2), implying

If / > k, then pk divides a, by (1). Hence, h epkH.
Finally, for the direct summand

(hk) = {x(k,k-\)+pd*x(k,k

of H, we have pk~lhk = pk+dk~xx{k)k+dk € pk+d^lB, but pk~xhk £ pkH
because pk{hk) = 0.

Theorem 2.4 does not completely replace Theorem 2.3, in that 2.3 applies
to a single standard basic subgroup, whereas 2.4 requires a countable sum
of standard basic subgroups. This suggests the question: given a particular
direct sum of cyclic groups G, what additional restrictions must be imposed
on a sequence of non-negative integers in order that it describe the minimal
difference function of some imbedded subgroup of G?
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3. Some trivially imbedded subgroups

We have remarked that if G is a p-group, P is pure in G, and there exists
k such that pkP c H c P for some subgroup H of G, then / / is imbedded
in G. To state the general version of this fact, we say a group is p-locally
bounded if its p-primary component is bounded.

PROPOSITION 3.1. Let H be a subgroup of a group G and let M be a p-pure
subgroup of G containing H with M/H p-locally bounded. If pm is a bound
for (M/H)p, then

Hnpn+mG = pn(HnpmG) for all n.

In particular, H <p G with bounded difference function.

PROOF. It suffices to prove that Hnpn+mG c p"(HnpmG). LetxeHn
pn+mQ _ Hnp"+mM. Then x = pn+my, for some y e M, so y+H e (M/H)p.
But then pmy e H C\pmG, so x e p"{H npmG), as required.

We shall eventually see that Proposition 3.1 has a converse (Theorem 5.4).
It seems surprising that the existence of a pure subgroup P of B such that
pkP c H c P is not equivalent to H being imbedded with a bounded differ-
ence function. In fact, we have

THEOREM 3.2. The subgroup H of the standard basic subgroup B con-
structed in Theorem 2.3 satisfies pmP c H c P for some pure subgroup P
ofB and some integer m if and only ifd(n) = 0 for all sufficiently large n.

PROOF. In 2.3 we denned k{k) = dk + X(k - 1) + 3 with A(0) = 0, so
by induction X{k) = 3k + £)?=1 </,-. The subgroup H had elements ak =
bx(k-\)+i +Pdkbx(k) as basis and, because

k k

is a summand of B containing H, we may restrict attention to S.
Now suppose x € S and p'x e H. Let x = £ c,-6,-, where / ranges over the

integers of the forms X(k - 1) + 1 and X(k). Then

But p'x € H, so
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Thus,p'cX{k_i)+l = Ck ( m o d ^ - ' ) + 1 ) andp'cm=pd"Ck (modp^) for all
k. From the first congruence we obtain

and from the second,

so

Using this value for p'c^k)
 we obtain

Now,

so finally we have

p'x =Pl [
\ k J k

Moreover, p^k~^+lak has order p2 for each k.
Thus, we have shown that

Hnp'SCp'H + H[p2]

for each t. Suppose now that Hf]pn+mB C pn(Hf)pmB), which by 3.1 would
be implied by the existence of a pure subgroup P of B with pmP c H c P.
Then Hnp"+mS = HnSnpn+mB = Hf)p"+mB and HnpmB = HnSnpmB =
H n pmS, so a similar situation holds for S in place of B. For n > 2, we
obtain

Hnpn+mS C p"(HnpmS) C p"(pmH + H[p2]) = p"+mH;

that is, //n/?'S C />'// for * > w+1. Clearly, this yields d(t) = 0fort>m+l.
Conversely, suppose 8{t) - 0 for t > m, so that Hnp'B c p'H for t > m.

Let J* = E*>m<a*>- Since afc = bX(k_l)+x + bm for k > m, P is clearly pure
in 5. The H/P is bounded and imbedded in B/P, hence is discrete, so there
exists a bounded pure subgroup M/P of 5//* containing H/P (for example,

https://doi.org/10.1017/S1446788700035692 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700035692


[11] Imbedded subgroups of abelian groups 291

if H/Pnp'B/P = 0, let M/P be p'-high in B/P containing H/P). Then M
satisfies the conditions of the theorem.

It should be mentioned that, for p-groups G, subgroups H satisfying/?"1//
C P C H with P pure in G need not be imbedded since H/P need not be
discrete in G/P. One can show that such a subgroup H is imbedded if and
only if H np'G — p'H for all large /. This condition on H is in fact equivalent
to the existence of a pure subgroup P as above.

4. Regular imbeddedness and kernels of purity

Section 3 suggests the following definitions.

DEFINITIONS 4.1. A subgroup H of a group G is m-regularly p-imbedded,
where m is a non-negative integer and p is a prime, provided that H n
pm+nQ _ p»(H c\pmG) for all n. We say that H is regularly p-imbedded
if / / is m-regularly p-imbedded for some m, and that H is regularly imbed-
ded if / / is regularly p-imbedded for all p.

Our aim here is to establish a relation between regularly imbedded sub-
groups and kernels of purity. This will be applied in the next section to
characterize regularly imbedded subgroups. First we need several lemmas.

LEMMA 4.2. Let H be a subgroup of G and let N be a minimal neat
subgroup of G containing H. If, for some prime p and integer n, G[p] =
H[p]+p"G[p], then Nnp'G = p'N for allt<n + \.

PROOF. Our hypotheses yield H[p] - N[p] and NnpG — pN. Assume that
Nnp'G -p'N for some t < n and let x e Nnp'+lG. then x =p'+lg = py,
y e N, so y - p'g e G[p] = N[p] + (p'G)[p]. If y - p'g = z + p'w with
z € N[p] and p'w e [p'G)\p], then y - z = p'(g + w) e N np'G = p'N.
Hence, x — p(y - z) e p'+lN, as required.

LEMMA 4.3. Let H be m-regularly p-imbedded in G and let N bea minimal
neat subgroup containing H. If N np'G = p'N for every t < m, then N is
p-pure in G.

PROOF. We must show that if k > 1 and x € Nnpm+kG, then x e pm+kN.
We may assume x ^ 0; so (x) n H ^ 0, since H is essential in N. Thus, there
is a smallest positive integer cx satisfying cxx e H. We use induction on cx.
lfcx = 1, then xeH;sox e Hnpm+kG = pk(HnpmG) Cpk(NnpmG) =
pk+mN. For the induction hypothesis we assume that every x € N npm+kG
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t

with cx < n satisfies x e pm+kN. Let x e N (~)pm+kG with cx = n, and let
n = qpj with (q,p) = 1. Then

nx € Hnpj+m+kG = pJ+k(HnpmG) C pJ+k(N f\pmG) = pJ+k+mN.

There exist integers r and s such that 1 = rq + spm+k, so

pJx = {rnx + spm+k+jx) e pm+k+jN.

Thus, there exists y e N, as desired; otherwise, pj"1(x-pm+ky) € N[p] c 7/
and pj~' < rc, so JC -pm+ky g pm+kN by the induction hypothesis. Therefore,
xepm+kN.

LEMMA 4.4. LeJ H be a kernel of purity in G and let p be a prime. Ifm > 0
andHnpm+lG £ pH, then G[p] = //[/>] + (p

PROOF. Let h = pm+lg e H n pm+lG with /z £ /?#. then /?m# + z ^ / / for
every z e G[p]. Let x e G[p] and let y = x +pmg. Let K = {y, H) and let iV
be minimal neat in G containing K. Then K is essential in iV and, since y & H
and py e H, H is also essential in N. Thus, N is minimal neat containing
H, so N is pure. Hence there exists w € N such that pm+lg = /?m+1io, so

pmg-pmwe(pmG)[p].

Thus, >> - pmw = x + pmg - pmw <E N n G[p] = N\p) = H[p], so x e
H[p] + (pmG)[p]. Therefore, G[p] = H[p] + (pmG)[p].

THEOREM 4.5. A subgroup H of G is a kernel of purity if and only if H
satisfies either (I) or (2) for each primep:

(1) H[p] is dense in G[p] (in the p-adic topology ofG) (compare [5]).
(2) There exists an integer m > 1 such that

(a) G[p] = H[p]+pm-lG[p], and
(b) H is m-regularly p-imbedded in G.

PROOF. Let JV be minimal neat containing H and let p be a prime. If
(1) holds, then N is p-pure by 4.2. If (2) holds, then (a) and 4.2 imply
Nnp'G = p'N for t < m. Then (b) and 4.3 imply N is p-pure. Thus, H is
a kernel of purity.

Conversely, assume H is a kernel of purity and p is a prime. If (1) does
not hold, let m be the least positive integer such that G[p] ^ H[p] + (pmG)[p].
Let N be minimal neat containing H and let JC e H C\pm+lG. Lemma 4.4
implies x = ph, h e H, and the purity of TV implies x = pm+1y,y G N. Thus
h -pmy € N[p] = H[p], so there exists z e H[p] such that h - z eHnpmG.
Therefore, x = p(h-z) e p(HnpmG), proving that Hnpm+nG = pn(HC\pmG)
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for n = 1. A routine induction argument completes the proof for n > 1.
Thus, H is zn-regularly /^-imbedded, so (2) holds.

5. Regularly imbedded subgroups

We can now characterize regularly imbedded subgroups as those which are
"approximately pure." We need a few lemmas.

LEMMA 5.1. Let H be a subgroup ofG. For any prime p and nonnegative
integer m, there exists a decomposition

G[p] =A®B®C®D

such that
= B®C,

{2)pm-iG[p] = C®D, and
(3)

PROOF. Let C = H n (pm'lG)[p]. Let D be a complement of C in
(pm~lG)[p]. Then [pm~lG)\p] = C ® D. Let B be a complement of C in
H[p]. Then H[p] = B©C and H[p] + {pm~lG)[p] = B®C®D. Finally, let A
be a complement of H[p] + (pm-lG)[p] in G[p], so that G[p] = A®B®C®D
and Anpm-1 (7 = 0.

LEMMA 5.2. Lef /f Z>e mt-regularly pt-imbedded in G for every prime />,.
77jere exists a kernel of purity K such that H c K, K/H is a torsion group,
and K[p] n pf'"' G c H for every i.

PROOF. For each prime /?, consider the decomposition G[pi\ = At ® B, ®
Cj ® Dt given by 5.1. Let K = H ® Y.T Ak. It is easy to check that K[p{\ n
p™'-lGc H for every i. Let x e Knp™i+"G. Then x = A+Ef ak, forheH
and afe e Ak. Now, £)**•** e p?(Knp?'G), implying (A + a,-) e p?"+nG.
Thus, p,7i e //n,p,m'+"+IG = p?+l(Hnp?'G). Let A, €Hnp?>G such that
p,7i = pf+1/ii. Then h - p?hx = h2 e H[p,], so /i2 + a, = (ft + a,) - pffti e
(p™'+nG)[pi]. It follows from the construction of At that at = 0. Hence,
A € Hnp"'+"G = pf(Hnp^G), andx = h + Y,"ake p?(Knp™'G). Thus,
ATlpf ' ^G = p?{Knp?"G), so AT is w,-regularly ^/-imbedded. Also, it is
clear that G[pi] = K\pi\ + {p™1'1 G)\pi). Therefore, by 4.5, A" is a kernel of
purity.
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LEMMA 5.3. Let l(n) be a p-imbedding function for H in G satisfying /(«) >
n.for all n. If{pkG)[p] C H, then p'^+^Gp c H.

PROOF. We use induction on n to show that (pl^k+l^G)[p"] c H for ev-
ery n > 1. The case n = 1 follows from the hypothesis. Thus, assume
(p'(i<+VG)[pn] C H and let x € (p"-k+^G)[pn+i]. Then px 6 f f n p ' ( * + " 6 C
Pk+1H, so there exists yeH such that x-pky e (pkG)[p] C / / . Thus x e H
and (p'(*+»>G)[p»+i] c tf, as desired.

THEOREM 5.4. A subgroup H is regularly imbedded in G if and only if there
exists a pure subgroup M such that H c M and M/H is a locally bounded
torsion group.

PROOF. Assume H is regularly imbedded in G; say H is m-regularly p-
imbedded for the prime p. By 5.2 there exists a kernel of purity K such
that K/H is a torsion group and K[p] npm~lG C H. Let M be minimal
neat containing K. Then M is pure and M[p] = K[p]. Thus (pm~lM)[p] —
M[p]npm~lG = K[p]npm~lG C / / . Since M is pure, i / is also m-regularly p-
imbedded in M, so p2mMp C. Hby 5.3. Now, from the fact that /(«) = n + m
is an imbedding function for H in Af, it follows that (M/H)p is bounded by
p3m. Finally, M/H is torsion, since K/H is torsion and M/K is torsion.

The converse follows from Proposition 3.1.

6. A Serre class

In this section we determine those groups all of whose subgroups are
imbedded.

PROPOSITION 6.1. The following are equivalent:
(1) Every subgroup ofG is imbedded;
(2) every homomorphic image ofG is locally bounded;
(3) every homomorphic image ofG is reduced.

PROOF. Suppose (1) holds and let G/K be an image of G. Then K and
H = {x G G\px 6 K} are both imbedded in G, so H/K = [G/K)\p] is
imbedded in G/K, and hence is discrete. This yields (2).

The existence of a non-reduced image of G implies the existence of a non-
zero divisible image, hence of a torsion divisible image, which cannot be
locally bounded. Thus, (2) implies (3).
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Now assume (3) and let H be an arbitrary image of G. If Hp is unbounded
form some p, then Hp contains a proper basic subgroup B and Hp/B is non-
zero and divisible. Hence, HpjB is a summand of H/B, so it is an image of
H/B, so also of G. Thus, (2) holds.

Finally, (2) obviously implies (1), by Proposition 3.1.

Denote by W the class of abelian groups all of whose subgroups are imbed-
ded. Thus, G e W if and only if G has no non-zero divisible images.

THEOREM 6.2. Let 0 -> A -> 5 -> C -> 0 be exact. Then B € & if and
only if A and C belong to W.

PROOF. If B e ^ , since any image of C is an image of B, C € 9 \ On the
other hand, if A —• D —> 0 is exact with Z) divisible, then

0 - • ^ — 5
I
D
I
0

yields B -> Z) -+ 0. Thus £» = 0 and ^ e g7.
Conversely, suppose /I, C e ^ and let 0 —»• K —* B —• Z) —»• 0 be exact with

D divisible. Then B/(A + K) (taking the monomorphisms to be inclusions)
is an image of both C = B/A and D = B/K, so it is a divisible image of C.
Since C e f this gives B = A + K and we have

D B = A + K A
K K ADK'

But A e &, so D = 0.

By the theorem above, to characterize the elements of 9* it suffices to
characterize the torsion groups in W (and these are simply the locally bounded
torsion groups) and the torsion free elements of W. Clearly, every finitely
generated group is in W, and a free abelian group is in 9" if and only if it has
finite rank. For the general torsion free case we have

THEOREM 6.3. A torsion free group G is in W if and only ifG is a subdirect
sum of finitely many rank 1 groups the types of which contain no oo's.

PROOF. Clearly, a rank 1 torsion free group whose type has no oo's is in
W; hence (by induction using Theorem 6.2), any finite direct sum of such
groups is in ff; hence (by 6.2 again), any subgroup of such a direct sum is in
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Conversely, let G be a torsion free group in ^ and let A' be a maximal
independent set in G. Then the free group on X is contained in G, hence is
in W, so has finite rank by our remark above. Thus, G has finite rank. Let
Lx be the pure subgroup of G generated by {y e X\y ^ JC} for x e l , and
let (px:G -* G/Lx be the natural map. Then G/Lx is rank 1 and in W so its
type is of the desired form. Finally, the map cp: G —» 0 G/Lx induced by the
q>x has kernel f]x&x Lx = 0.

It is easy to see that in a torsion free group, every imbedded subgroup is
regularly imbedded. Many characterizations of p-groups with bounded basic
subgroups have been given, and it may be of interest that these groups also
are precisely the />-groups in which every imbedded subgroup is regularly
imbedded. Slightly more generally, we have

PROPOSITION 6.4. For a torsion group G, every imbedded subgroup is regu-
larly imbedded if and only if the reduced part ofG is locally bounded.

PROOF. Any unbounded reduced p-group has, by Theorems 3.2 and 5.4,
imbedded subgroups that are not regularly imbedded, so the necessity is clear.
For sufficiency it is enough to treat the case of p-groups. Thus, let G = D®R
with D divisible and R reduced and suppose R is bounded. Then any basic
subgroup of G is bounded and the result follows from Propositions 1.6 and
3.1.

7. Totally quasi-complete groups

Despite the similarity in the definitions of purity and imbeddedness, The-
orems 2.3 and 2.4 establish the existence of a wide variety of imbedded
subgroups that are not pure. This fact led one of us (in [6]) to consider
for imbeddedness a question originally posed for purity by Head in [3] and
settled by Hill and Megibben in [4].

DEFINITIONS 7.1. A group G is torsion complete if it is the torsion part of
the p-adic completion of a direct sum of cyclic groups. G is quasi-complete
{l-quasi-complete) if the closure of every pure (/-imbedded) subgroup is itself
pure (/-imbedded); G is totally quasi-complete if it is /-quasi-complete for
every /.

Hill and Megibben showed that quasi-complete groups need not be torsion
complete, although the reverse implication holds. It was shown in [6] that
every torsion complete group is totally quasi-complete. That paper ends with
the conjecture that an abelian /?-group is torsion complete if and only if it
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is totally quasi-complete. However, we have subsequently found that this is
not the case; a modification of Hill and Megibben's arguments in [4] yields
the following theorem. For convenience, we first restate here a lemma from
[6] that is needed in the proof.

LEMMA 7.2 ([6], COROLLARY 2.8). Let h be imbedded in G. Then H~ is
imbedded if and only if(GfH)1 is divisible.

LEMMA 7.3. Let Abe a separable p-group. The following are equivalent:
(a) A is quasi-complete,
(b) A is I-quasi-complete for some imbedding function I (greater than or

equal to the identity function);
(c) A is totally-quasi-complete.

PROOF. It is clear that (c) implies (b), and (b) implies (a) because the iden-
tity function is an imbedding function for pure subgroups. To show (a) im-
plies (c) we use Hill and Megibben's characterization of quasi-completeness
([4], Theorem 2).

A separable /?-group A is quasi-complete if and only if

(*) A\p] + S~ = B\p]

for every nondiscrete subsocle 5 of A.
(Here B denotes a basic subgroup of A, and closures are understood to be in
B~, the torsion completion of B.)

Let A be quasi-complete. If G < A and G is bounded, then G is discrete
and thus G~ < A. Hence, assume G is unbounded and is /-imbedded in
A, where 1(1) = k. Consider pka e G~ for some a e A. G~/G = (B/G)\
and, since 5 is totally quasi-complete, G~ < B, so (B/G)1 is divisible by
Lemma 7.2. Thus there exist g € G, h € G~ such that pkh — pka + g. Now,
pk(h - a) = pg' for some g' € G (since A pure in B implies G is /-imbedded
in B), so

pk~lh - (ph-la + g') G B[p] = A[p) + G~[p]

by (*). Hence, there exist a' € A[p], h' 6 G~[p] such that

pk~lh - h' = pk~la + a' + g' e G~ n A.

Now, p(pk~la + a' + g') = pka + pg', so pk~la + a' + g' is a solution of
px =pka(mod G). Hence, any element of (A/G)1 = (G~ (~)A)/G is divisible
by p in (G~ n A)/G, so

(G~ n A)/G = p((G~ n
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t

That is, (G~ f)A)/G is divisible and hence pure in A/G. Thus, by Proposition
1.4(iv) and the remark following it, / is an imbedding function for G~ n A
in G.
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