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I. INTRODUCTION 

The use of entropy as a basis for object/image reconstruction proT 
cedures is not new , but with the appearance of new, faster algorithms 
the actual use of these algorithms for the reconstruction of objects 
from 'real' data is likely to increase. 

The purpose of this contribution is not to discourage such applic
ations, but to illustrate that, under certain circumstances, there is a 
need for caution in interpreting the results obtained from such algorithms. 
Specifically, we shall show that the application of statistical methods 
to problems of object reconstruction, in situations where only the modulus 
of the object Fourier transform is known, could lead to wholly false con
clusions. Indeed, we shall primarily be concerned here with situations 
for which there is no 'aovveot' solution. In such situations it is point
less to speak of 'safe' object reconstruction algorithms. The important 
point here is that the user of a statistically based 'object reconstruct
ion algorithm' may be totally ignorant of whether or not he is working 
in this regime. 

The problem thus formulated, i.e. the reconstruction of an object 
from its autocorrelation, is the so-called phase problem, which occurs 
in fields as diverse as electron microscopy, radio and optical astronomy 
and X-ray diffraction. It has long been recognised that, in general, 
the solution to such problems cannot be unique. In all cases it is nec
essary to provide additional information, such as the phase of the object 
Fourier transform, in order to resolve the inherent ambiguities associated 
with this problem. 

The key point to this paper, is that to speak of 'safe' reconstruct
ion procedures, one must show that the problem posed has a unique solution. 
If one can show that this is indeed the case, any algorithm which yields 
a solution consistent with the defined problem will give the correct 
solution. In this sense all such algorithms may be regarded as 'safe'. 
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The choice of algorithm will then be dictated by the speed and ease with 
which it may be implemented, and its stability against the effects of 
noise and data truncation. It is in this latter sense that maximum 
entropy algorithms may be regarded as 'safe'. 

By application of the theory of entire functions we shall demonstrate 
the fundamental ambiguity associated with phase problems and illustrate 
this with some specific examples. We shall also give consideration to 
the conditions under which the degree of ambiguity may be reduced, or 
where a unique solution may be obtained. 

Initially, we shall consider the situation where the recorded modulus 
data is perfect and complete. The situation where the data is noisy and/ 
or where some phase information is available, will be considered later. 

2. THEORY 

It is not our intention here to give a rigourous treatment of the 
phase problem in terms of entire function theory, but we shall briefly 
indicate the results of this analysis . 

Let the object field to be reconstructed be represented by f(£) and 
its Fourier transform by F(x), then 

F(x) = d£ f(C) exp(-iCx) (1) 

where the limits of integration (a,b) will always be finite, either be
cause of the finite field of view of the instrument or due to the finite 
extent of the object. Attention will be confined to this one-dimensional 
case, since this simplifies the analysis and illustrates all the features 
we wish to discuss. 

The use of equation (1) to describe the system, imposes some severe 
and far reaching restrictions on the behaviour of F(x). Specifically, 
any F(x) which is a solution to an equation such as (1), must be the limit 
on the real(x-) axis of an analytic function which is of order unity and 
of finite type. Thus F(z), which may be generated by replacing x with 
z = x + iy in equation (1), is analytic for all finite values of z and 
may be specified, to within trivial ambiguities, from a knowledge of the 
set of points at which it is identically zero. In this respect F(z) is 
like a polynomial whose roots (i.e. zeros) must occur at isolated points. 
For an F(z) generated from equation (1) there will always be a denumerable 
infinity of such roots. These zeros are distributed so that in any finite 
region of the z-plane there will only be a finite number of roots, their 
density being proportional to (b-a) . Furthermore, all such zeros must 
lie close to the real axis and will tend to lie along the x-axis at the 
Nyquist sampling rate as x->-±°°. Thus with any finite section of the x-
axis we may associate a finite number of zeros. It has been noted that 
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this is the same as the number of degrees of freedom of the system. 
Formally, we may express the relationship between F(x) and the roots 

of F(z) by 

00 

F(x) = F(0) exp(-ix{^2.}) .II (1-|) (2) 

where z., j=l,2,... are the roots of F(z) arranged such that |z. | >_ 
|z.|. JIn writing equation (2) it has been assumed that F(0)^0, this 
is always true in astronomy where objects are real and positive; the 
condition can be relaxed if required. 

When the phase of F(x) has been lost, the observable magnitude is 
the scattered intensity, which is proportional to 

I(x) = |F(x)|2 = F(x) F*(x) (3) 

.Now visual inspection of (2) shows that F (x) will have its roots 
at z., j=l,2,... . Thus I(z), the continuation of I(x) into the z-plane 
has zeros at z. and z. and so has twice as many zeros as F(x). Thus, 
when attempting to reconstruct F(x) , or equivalently f(£), from I(x) 
roots of F(x) which occur on the x-axis may be identified with certainty 
but for the complex roots, i.e. those not on the real axis, it is imposs
ible to decide whether F(z) has a root above or below the x-axis. If 
there are M complex zeros, the repetition of this twofold ambiguity for 
each such zero given rise to 2 M possible alternative solutions for F(x), 
all of which correspond to the same intensity, I(x), and all of which 
have inverse Fourier transforms which are confined to £e(a,b). On the 
basis of measurements of I(x) alone, there is no possible way to distin
guish between these alternatives. It has been known for some time that, 
with perfect data and given the constraints imposed by equation (1), 
this is the only source of ambiguity.& 

In some situations it is possible to resolve or reduce this ambigu
ity by making f(£) satisfy certain a priori conditions. For example, 
if f(C) is forced to take a known value over some £-range within the 
interval (a,b) , or if it is known a priori that all zeros lie in one 
half of the complex plane3, a unique solution may be ensured. A special 
case of all zeros being in one half plane occurs when they are all real. 
The existence of a unique solution in this case has been exploited to 
determine the structure of nerve myelin from X-ray data^. If f(£) is 
known to be real, the zeros of F(z) must satisfy certain symmetry prop
erties which reduce the ambiguity by a factor of 2M' . 

Given that difficulties of this kind exist with perfect intensity 
data it is essential that any reconstruction algorithm which uses intens
ity data is capable of resolving this implicit ambiguity. It is not 
clear that statistically based 'object reconstruction' algorithms, such 
as maximum entropy, can take any account of such ambiguities, the import
ance of which are illustrated in the following section. 
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Figure 1 Four examples of ambiguous object reconstruction. The upper 
four graphs in each column show four different objects having the same 
I(x), which is shown in the lower graph. For discussion see the text. 
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3. EXAMPLES OF AMBIGUOUS RECONSTRUCTIONS 

In figure 1 we show four examples of ambiguity in object reconstru
ction from measurements of I(x) alone. In each example we have constr
ucted an F(z) which has just six complex zeros, the remainder being real. 
Each example therefore has 2° possible solutions for f(£), all wholly 
consistent with equation (1). If we specify that f(£) must be real, then 
there must be a symmetry of the zeros of F(z) about the y-axis. Enforc
ing this symmetry reduces the ambiguity to 2^ equally acceptable real 
solutions for each example. Now, reflecting any given distribution of 
zeros about the x-axis is equivalent to replacing f(£) by f(-£)- This 
difference we shall neglect, so reducing the ambiguity by another factor 
of two. For each example this leaves four equally valid, real and posit
ive solutions for f(£). These are shown in figure 1. 

Each example occupies one column of the figure, the upper four gra
phs of each column being the four possible object reconstructions which 
may be made from the observed intensity shown in the lower graph of each 
column. In each case the top graph of each column corresponds to the 
minimal or Hilbert phase solution^, with all zeros in one half plane. 

Note that for none of these examples may one speak of a 'correct 
solution', in each case the four alternatives represent equally valid 
object reconstructions. There can be no question of any algorithm pro
viding the 'correct solution' unless other information is available. 
The examples in figure 1 show that this statement is non-trivial. 

In the first example, shown in the left hand column, one cannot 
even say with certainty how many peaks there are in the object distribut
ion. In the second example it is clear that the object consists of a 
single peak of reasonably well defined width, but what can one say with 
certainty about the structure superposed on that peak? The ambiguities 
in the third and fourth examples are less severe but even here the width, 
relative position and height of each peak is somewhat uncertain. 

1 
! 4. INCOMPLETE AND NOISY DATA, WITH AND WITHOUT PHASES 

So far it has been assumed that no information about the phase of 
F(x) is available. Clearly, if both the modulus and phase of F(x) are 
available and the data is perfect and complete, the ambiguity is resolved, 
thus the zero positions are specified exactly. 

If we incorporate the effects of noise and data truncation into our 
previous description, it is evident that, even when phase information is 
available, we can only obtain estimates for the positions of the zeros 
of F(z). If no phase information is available and I(x) is contaminated 
with errors, not only is the exact position of each zero uncertain but 
the fundamental ambiguity, i.e. determining in which half plane each 
zero belongs, must also be resolved. Since errors are inherent in meas
ured data we must resign ourselves to defining regions in which the 
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zeros must be located, rather than exact zero positions. More exactly, 
we should define a probability density function for the position of each 
zero. In the absence of •phase information this p.d.f. will be symmetric 
with respect to the real axis. 

When some phase information is available we may expect the p.d.f.s 
to exhibit a maximum to one side of the real axis. Under these circum
stances some algorithm for selecting an, in some sense, optimum set of 
zero positions consistent with the p.d.f.'s.would be useful. Such a 
procedure, based on the theory of entire functions, has already been 
proposed and used to reduce radio astronomical data. This method relies 
on the experimental observation that when both the phase and modulus are 
measured experimentally the uncertainty in the phase frequently exceeds 
that in the modulus. One may therefore use I(x) to determine the zero 
co-ordinates, with the phase used merely to decide in which half plane 
each zero belongs. The resulting reconstructions may be considerably 
more accurate than those made using the raw data. The maximum entropy 
algorithm may well fulfil the same role without the need to invoke the 
theory of entire functions explicitly. 

5. CONCLUSIONS 

We have demonstrated the well known result that in the absence of 
additional information it is, generally, impossible to restore an object 
unambiguously from measurements of the modulus of its Fourier transform. 
We have shown with counter examples that positivity of the solution does 
not constitute the additional information needed to resolve this ambig
uity. Nor do statistically based algorithms, e.g. maximum entropy, 
provide such information. Thus they offer no way out of the dilemma and 
they cannot be regarded as giving a 'safe', i.e. unique, restoration of 
the objects from the modulus of their Fourier transforms. Arguments that 
errors in real data may negate these conclusions are equivalent to 
suggesting that ignorance provides a suitable basis for inference. 

If phase information is available, the maximum entropy algorithm 
may represent a useful approach to the problem of selecting an optimum 
set of zero positions consistent with imperfect data. In the absence of 
phase information, statistical algorithms should provide an optimized 
version of one of the 2^ possible object reconstructions (perhaps the 
Hilbert solution). They will not, in general, provide any information 
about the other possible solutions. This 'lost' information could be 
retrieved by using the optimized f(£) to calculate the roots of F(z) and 
proceeding as above. Note, however, that in the examples discussed here 
M has been deliberately kept small. In 'real' experiments it may be much 
larger with a consequent increase in the number and range of solutions. 
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DISCUSSION 

Comment J.E. BALDWIN 
In the complex plane analysis it is easy, given one solution, to produce 
any other by transferring zeros across the real axis. Starting with a 
solution comprising point sources separated by regions of zero intensity, 
I believe that all the other solutions have strong negative features, so 
that the solution for a point source case is almost certainly unique. 

For extended objects it may be that regions of zero intensity inside 
the area within which the source lies, even though we do not know where 
they are, may be sufficient to make the solution unique. Have you in
vestigated this possibility or think it likely to be useful? 
Reply A.H. GREENAWAY 
Although I have not experimented with distributions comprised of 
isolated point sources I am inclined to agree with you that, if we 
ignore 180° ambiguities, the solution is probably rendered unique by 
application of the positivity constraint. 

With regard to extended objects, the exact knowledge of any small 
internal region of the object is certainly sufficient to allow a unique 
reconstruction from the modulus data (see ref. 7), even in the absence 
of a positivity constraint. Your suggestion that for objects with 
internal gaps the positivity constraint alone may be sufficient is very 
interesting. One may certainly quote counter examples for which this 
information does not lead to a unique solution - for example an object 
consisting of two identical regions separated by a blank space would 
not give a unique solution if the regions in question individually give 
rise to ambiguities of the type shown in figure 1. If the two regions 
are dissimilar, but have one or more complex zeros in common one would 
also expect ambiguities which would not be resolved by these constraints. 
However, these are rather trivial examples and it may well be that the 
use of positivity with an internal gap in the object will, in many cases, 
lead to a unique solution. 
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