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Simulations of anisotropy and fabric development
in polar ices
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ABSTRACT. The preferred orientation of ice crystals in polar ice sheets develops
as a result of intracrystalline slip. Polycrystalline plasticity theory has been successfully
used to simulate development of fabrics in rocks. In this study, we present a simple
theory for plastic deformation and fabric evolution. Each crystal within the aggregate
is assumed to deform only by basal glide, and recrystallization processes are not
directly taken into account. \'Ve have adopted the uniform stress bound, that is, stress is
supposed to be homogeneous in the polycrystal. Simulated fabrics in uniaxial
compression and tension are similar to those observed in ice sheets. In simple shear,
simulations show that c axes rotate toward the direction of the maximal compression,
in contradiction to the intuitive conclusion that stable orientations correspond to the
easy glide position. But, these results are in agreement with predictions of Taylor
theory and self~consistent approaches. We suggest that eHects of vertical compression
and/or rotation recrystallization are of great importance for fabric evolution in polar
ice sheets. The proposed model can reproduce viscosities of anisotropic ice samples
tested in compression or tension but it is not able to reproduce the low viscosity of ices
with a single-maximum fabric when tested in simple shear.

1. INTRODUCTION

Ice-flow modeling requires a constitutive relation gl\ilng
the mechanical response of ice to stresses. Calculations
described in most ice-sheet models are based on non-linear
isotropic flow laws. Discrepancies between calculated and
in-situ data can be due to deficiencies in the flow law (Van
der Veen and Whillans, 1989). Anisotropic flow laws
accounting for polar ice fabrics observed on deep ice cores
have been proposed by Lliboutry and Duval (1985) and
Van der Veen and Whillans (1990). A simpler procedure
accounting for anisotropic effects is to introduce an
enhancement factor, defined as the ratio of the measured
strain rates to that corresponding to isotropic ice (Dahl-
Jensen and Gundestrup, 1987). But this technique is not
satisfactory since the flow law is always isotropic. Data
from laboratory tests on Antarctic ices have already
demonstrated the importance of anisotropy in the
constitutive relations. for example, ice with c axes
aligned with the vertical axis is stiffer to horizontal
normal stresses and softer with respect to shear stresses
on horizontal planes (Pimienta and others, 1987).

Since fabrics change with time, the anisotropic
constitutive equations must be associated with a model
giving the evolution of the preferential orientation of
c axes. To develop such a model, deformation and
recrystallization mechanisms must be determined. For
conditions prevailing in polar ice sheets, intracrystalline
dislocation glide is the main deformation mechanism
(Pimienta and Duval, 1987; Alley, 1992). Grain growth
driven by grain-boundary energy is observed in the first

hundred meters of central parts of the ice sheets. In warm
ice, typically above -12°C, near to 'the bedrock, a
recrystallization regime involving rapid migration of
grain boundaries is observed. Multi-maxima fabrics are
associated with this termed "migration recrystallization".
Between these two zones, new grains are formed during
creep polygonization, and grain-boundary migration is
driven by both grain-boundary and strain energies
(Pimienta and Duval, 1989). As a result, grain-size
generally does not increase. This recrystallization regime
is termed "rotation recrystallization" (Poirier, 1990). The
boundary between rotation and migration recrystal-
lization regimes corresponds to a limited range of
depths. Clear evidence of this transition was observed by
Gow and Williamson (1976) at a depth of 1800 m in the
Byrd Station ice core. An evolution from slow impurity-
controlled to fast impurity-free grain-boundary migration~
as proposed by Guillope and Poirier (1979), may be the
origin of this rapid change of the recrystallization regime.

The purpose of this paper is to introduce a deform-
ation model for the evolution of fabrics in polar ices. The
effect of recrystallization is not taken into account. The
formation mechanism offabrics is based on the rotation of
c axes induced by basal glide. The mechanical response of
the polycrystal is obtained by an appropriate average of
the response of each grain.

A first approach to this problem has been given by
Azuma and Higashi (1985). The implicit assumption of
their theory is that basal glide occurs at the same rate in
each grain, regardless of its orientation. They found that
the model predicts the observed fabric development at
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vVe call T the average stress tensor applied to the
polycrystal, expressed in (Oxyz). With the assumption of
a uniform stress state, the stress tensor TC in cach grain is
given, in the crystallographic axes, by:

for n = 1.5:
A = 5.6 X 10-17 Pa -Ui S-I, which gives
Bo = 1.9 x 1O-17Pa-1.5s-1 (li'om Pimienta
and Duval, 1987).

A simple calculation shows that, in our deformation
model, the exponent n is necessarily the same for the bulk
sample and the monocrystal. Simulations were done using
two values of the stress exponent n. The value n = 1.5
was chosen from data obtained by Pimienta and others
(1987) on polycrystalline ice at low stresses. The value
n = 3 was taken with refercncc to the commonly adopted
value for polycrystalline ice.

The coeflicient A is fitted to reproduce the viscosity of
an isotropic ice sample; we have found, in order to
reproduce the Glen law coefficient Bo at -15'C,

where QT is the transposed matrix of Q.
vVe assume that monocrystals can deform only by

basal glidc. Hutchinson (1977) noted that the self,
consistent theory could provide reasonable estimates of
the flow strength for hexagonal polycrystals displaying
less than five independent slip systems. From Hutchinson,
the overall deformation of polycrystalline ice is possible
with only basal and prismatic slip. From Duval and
others (1983), non-basal glidc rcquires a stress at least 60
times larger than that required for basal slip at the same
strain rate. Thc introduction of prismatic slip therefore
has little effect on the dcformation of ice crystals.

Thus, only the stress components T\v and T;;v can
induce basal glide.

The velocity gradient tensor LC for each crystaL
expressed in (OAJW), is given by:

for n = 3:
A = 1.4 x 10-24 Pa-:3 S-I, which gives
Bo = 3.2 X 10-25 Pa-3 S-1 (from Legac,
1980);

It is important to compare these values with the
coefficient of the power law obtained using mechanical

y

/
x

2. THE MODEL

Let (O.ryz) be the reference fi'ame of the laboratory
(fixed) and (OAI-W) be the coordinate system of each
crystal (crystallographic coordinate system), where (Ov)
corresponds to the c axis (see Fig. 1). The Euler angles
used are lp andiJ. To bring into correspondence the set of
axes (Oxyz) with the set (OApV), two rotations arc
necessary: first, (Oxyz) is rotated by the angle lp about the
y axis; then, the new system is rotated by the anglef} about
the z axis. A third Euler angle is not necessary, because
there is no prefcrential slip direction in the basal plane.

Let Q be the corresponding transformation matrix
(expressed in (OApV)); Q is given by:

Dyc 3, Grecnland. This model, modified for uniaxial
tension and pure shear, also describes fabrics observed in
the Vostok ice corc (Allcy, 1988). But this kind of model
has not been tested for simple shear or other strain
configurations.

Considcrable effort has been made to apply poly-
crystalline plasticity theory to rocks. The Taylor theory
(Taylor, 1938), which assumcs homogeneous dcform-
ation, has been successfully used to simulate fabric
development as long as the plastic anisotropy of crystals
is not too large. In viscoplastic self-consistent approaches
(Yl01inari and others, ]987), which compromise between
stress equilibrium and strain continuity, each grain is
considered as an inclusion in a homogeneous isotropic
medium, representing the "weighted" average of all
grains. The interaction formula is solved by minimizing
stress and strain-rate deviations. This theory can provide
good results for materials with a small number of
independcnt slip systems (Wenk and others, 1989, 1991;.

Following Lliboutry and Duval (1985), the uniform
stress approximation may be applicable to polar icc, since
grain-boundary migration associated with gTain growth
or rotation recrystallization should accommodate intra-
crystalline dislocation glide. In this paper, the uniform
stress bound (lower bound) is adopted to model both the
creep and the developmcnt of fabrics in polar icc.

Fi/!,. 1. Orientation of ice CI)'stals difined in the crystaL-
lographic axes jystem (0ApV) relative to the fixed
external axes (OxyZ). (Ov) corresponds to the c axis.
(0p) is in the pLane (Oxy).

z
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tests on a monocrystal, even if the exponent of the flow
law is different (Duval and others, 1983). For a single
crystal, strain rates for basal glide are at least two orders
of magnitudc higher than those determined using the
above coefficients. Ina polycrystalline aggregate, grain-
boundary migration and/or recrystallization should
accommodate strain incompatibilities (Lliboutry and
Duval, 1985) but not enough to impede completely
grain interactions.

The expression of the velocity-gradient tensor L of
each grain in the laboratory axes is:

which can be decomposed into the sum of the strain-rate
tensor D (symmetric) with the rotation-rate tensor IV
(antisymmetric) :

L = D+ I'V

In the case of irrotational transformations (irrotational
uniaxial compression, tension or pure shear), Ii/be is given by:

In the case of a simple shear in the plane ~Oxy), in the
direction (Ox):

o
o
o

Now let vVbc be the rotation rate that is necessary to add
to the velocity gradient L to satisfy the local boundary
conditions. The final velocity gradient of each grain is
then given by:

(5)

I.e.

with

D = (L + LT)/2 and IV = (L - LT)/2. Equations

Df = D and Wf = W + IVj}C.

and (5) then give:

The bulk velocity gradient I (in Oxyz) of the sample
is given by averaging all tensors L:

."Jow we apply the boundary conditions: let Ir be the
final average velocity gradient of the polycrystal after
applying the boundary conditions (with the decom-
position: Ir = Df + vfTr), and Lf the final velocity
gradient of each grain (with: Lf = Dr + vVr), both
expressed in (Oxyz).

\Ve make the assumption that during the transform-
ation, the rotation of the matrix of material containing
the considered grain is equal to the bulk final imposed
rotation IVr. In the most rigorous way, the rotation of this
matrix has to be taken equal to the average rotation of the
direct environment of the inclusion (in our case about five
to ten grains). The assumption made here does not allow
us to calculate local effects concerning the crystal
orientations but it does not affect significantly the
average fabric evolution. Furthermore, the rotational
part IVf of the final velocity gradient of each grain has to
be equal to the rotation of the matrix, i.e.

_ 1 Tn

L=-LL
m

1

where m is the number of grains.
I, in the same way as L, can be decomposed as:

- --. -

L=D+W.

Wr = Wf.

(2)

(3)

(6)

The tensor IVbc then corresponds to the rotation rate of
the c axis of the considered grain.

The caleulation step used for the simulations is 1%
eq uivalent strain, which is defined as:

fcq = Lfcq .dt

where dt is the time step, and feq is the equivalent strain
rate, defined as:

This calculation step is small enough to consider all
tensors constant during one step.

The gradient transformation tensor F;, corresponding
to the c-axis rotation is given by:

where the exponential function IS defined, for second-
order tensors, with the relation:

A2 An
exp(A) = I +A +-, +...+-, + ...

2. n.

with I the identity tcnsor.
The final (-axis orientation is given by the vector Cf

(expressed in Oxyz), with:

Let IVbc be the rotation rate that is necessary to add to the
average velocity gradient L to satisfy the boundary
conditions:

I.e.

- - -
Lf = L + IVb",

Df = D and I'Vf= W + Wbc.

(4)

where C is the unit vector of the(O/.l) aXIS m (Oxyz)

(

sin y. COSO)
C = sin y. sin 19 .

CoSy

In the same way, the transformation gradient tensor F of
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the bulk sample, corresponding to the considered
calculation step, is given by:

F = exp( dt.Lr)

and the total (cumulative) transformation gradient tensor
Ft by:

F; = F.Fo

where Fa is the initial transformation of the polycrystal.
Results of this model can then be separated in two parts:

Equation (6) gives the fabric development

Equation (4) gives the rheological law of the
anisotropic ice sample.

3. RESULTS AND DISCUSSION

3.1. Fabric evolution

Figure 2 displays the simulated fabrics in (a) uniaxial
compression, (b) uniaxial extension, (c) pure shear and
(d) simple shear, respectively, at 45%, 30%, 50% and
40% equivalent strain. All these fabrics were simulated
with n = 1.5 and with a constant applied stress. However,
for simple shear, it is necessary to impose axial stresses
increasing with strain to impede axial deformation,
particularly when the preferential orientation of c axes
becomes pronounced. The corresponding evolution of the
normalized equivalent strain rate is given in Figure 3. As
the fabric develops, basal glide becomes impossible and,
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Fig. 3. Evolution of the normalized equivalent strain rate
with the equivalent strain obtained by simulation in: (a)
uniaxial compression; (b) uniaxial extension; ( c) pure
shear; (d) simPle shear. Ceq = 0 corresponds to a
randomly oriented aggregate. n = 1.5.

1Il the framework of our model, deformation of the
polycrystal cannot occur any more.

Fabric patterns in compression, extension and pure
shear are in agreement with those simulated by Azuma
and Higashi (1985) and Alley (1988), and with fabrics
observed in ice sheets, e.g. Dye 3 (Herron and others,
1985) and Vostok (Lipenkov and others, 1989) cores.

In simple shear, the c axes rotate toward the direction
of the maximal compression. This behavior is contrary to
the intuition that the slip plane orients itself into the shear
plane. Strong single-maximum fabrics observed in several
deep ice cores are attributed to the rotation of the c axis
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Fig. 2. Simulated c-axesJabric diagrams for an initially isotropic ice sample deformed: (a) to 45% equivalent strain in
uniaxial compression; (b) to 30% in uniaxial tension; ( c) to 50% in pure shear and (d) to 40% in simple shear; arrows
denote the sense of deformations; calculations were done with the exponent of the jlow law n = 1.5; 200 grains.
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by shear, and basal planes arc parallel to the permanent
shear plane (Alley, ]988).

It is interesting to compare these simulated fabrics
with those obtained by the viscoplastic self-consistent
theory on anisotropic rocks. The simulations for peridotite
by Wenk and others (1991) gave results similar to those
obtained above for ice, and especially for peridotites
containing 30-100% enstatite. Enstatite has, as for ice, a
single easy-slip plane.

For a-quartz, for which basal slip predominates, the c-
axis fabric diagrams in simple shear deduced from both
the Taylor and self-consistent theories (\Venk and others,
1989) are qualitatively similar to those obtained using the
homogeneous stress bound.

Therefore, strong single-maximum fabrics cannot be
attributed to simple shear alone. But, a metastable
orientation of the c axis along the normal to the
permanent shear plane is found with the homogeneous
stress bound. This orientation can be made stable if a
compression normal to the macroscopic shear plane is
imposed. These conditions are found in ice sheets; a more
or less constant vertical strain rate is associated with the
imposed horizontal shear stress (Dahl-Jensen, 1989).

Another explanation of the strong single-maximum
fabrics is to associate rotation of basal planes by
dislocation glide and rotation recrystallization. Such an
explanation was given by Kamb (1972) and..Bouchez and
Duval (1982). A review of mechanisms for the develop-
ment of fabrics in ice sheets was recently given by
Paterson (1991).

3.2. Rheological parameters of the flow law

As seen in section 2, the model is able to produce the
evolution of the rheological parameters of a polycrys-
talline aggregate, corresponding to the imposed stress
state (or strain history).

Experimental results from uniaxial compression,
biaxial compression and torsion tests on ice samples
!i'om the Vostok and Law Dome (Antarctica) ice cores
have been analyzed by Pimienta and others (1987).
Values of the rheological parameters at -15°C, corres-
ponding to the anisotropic power law given by Lliboutry
and Duval (1985), were determined.

We call B the coefficient of the extended Glen law for
anisotropic ice corresponding to an imposed deformation,
and Bo the coeflicient of the Glen law for isotropic ice.

Table 1 gives the ratios BI Bo for three different
deformation configurations: uniaxial compression in
direction (z Iz), uniaxial compression in direction (x Ix)
and simple shear parallel to (XiX), where the axis system
(xyz) is shown in Figure 2. These ratios are compared
with those deduced from the homogeneous stress model
with an exponent n = 3. The input fabrics are those given
by the model with simulations in uniaxial compression
(Eeq = 45%) and uniaxial extension (Eeq = 30%) (see
Fig. 2), using 200 grains. The value of Bo is that
obtained with a randomly oriented aggregate (isotropic).

Comparison of these results shows that our model is
able to reproduce with quite good fidelity the different
viscosities of both ice samples tested in compression.

Data from laboratory tests were obtained at high
stresses for which the exponent n is equal to 3. The basic
assumption for the homogeneous stress theory is probably
not well adapted since high internal stresses must be
present at high stresses (Duval and others, 1983). But
experimental data from mechanical tests on anisotropic
samples at low stresses (about 0.01-0.05 MPa) are not
available.

Both ratios BI Bo obtained for the Law Dome sample
in simple shear experiments are quite different (by a
factor of 4). The simulated value cannot be higher than
4.3 (simulation with a single crystal where 'P = 0),
whereas a value of about 10 is obtained from laboratory
tests on ice with a strong single-maximum fabric
(Pimienta and others, 1987; Budd and Jacka, 1989).

These discrepancies probably originate from the value
of the coefficien t A of the flow law of ice crystals, fitted to
reproduce the viscosity of isotropic polycrystalline ice.
From Lliboutry and Duval (1985), this parameter must
depcnd on the fabric. The viscosity of ice crystals inserted
into an anisotropic aggregate with a strong single-
maximum fabric is probably lower than that associated
with an isotropic icc.
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Table J. Experimental data (from Pimienta and others, 1987) and simulated values of the ratios BIBo, where B is the
.flow-law coefficient for Vostok (-2039 m) and Late Dome anisotropic ices and Bo is the average coefficient for isotropic
ice samples (from Legac, 1980). Fabrics taken Jar simulations are gwen in Figure 2a and b; the external axes are
rejnesented in Figure 2; n =3

BIBo Law Dome Vostok (- 2039 m)

Compression (z Iz)
Compression (XiX)
Simple shear (XiX)

Experimental

0.4
0.19

10

Simulation

0.39
0.30
2.74

Experimental

0.7
0.06
0.7

Simulation

0.93
0.03
1.43
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