
Proceedings of the Edinburgh Mathematical Society (1999) 42, 469-480 ©

GENERALIZED HENSEL'S LEMMA

by SUDESH K. KHANDUJA and JAYANTI SAHA*

(Received 14th July 1997)

Let (X, u) be a complete, rank-1 valued field with valuation ring Ra and residue field fc0. Let \f be the
Gaussian extension of the valuation v to a simple transcendental extension K(x) defined by
v"(J2iaix') = minjMa,)}. The classical Hensel's lemma asserts that if polynomials F(x), G0(x), H0(x) in R,[x)
are such that (i) v'(F(x) - G0(x)//0(x)) > 0, (ii) the leading coefficient of G0(x) has K-valuation zero, (iii) there
are polynomials A(x), B{x) belonging to the valuation ring of v* satisfying v*{A(X)G0(X) + B(x)//0(x) - 1) > 0,
then there exist G(x), H(x) in K[x] such that (a) F(x) = G(x)ff(x), (b) deg G(x) = deg G0(x), (c) »*(G(x)-
GoM) > 0, v"(H(x) — H0(x)) > 0. In this paper, our goal is to prove an analogous result when vx is replaced
by any prolongation w of v to K(x), with the residue field of w a transcendental extension of k0.

1991 Mathematics subject classification: 12D05, 12J10.

0. Introduction

Let (K, v) be a complete, rank-1 valued field with valuation ring Rv and residue field
kv. Let vx be the Gaussian extension of the valuation o to a simple transcendental
extension K(x) defined by vx(^2t atx') — min{y(a,)}. The classical Hensel's lemma [2,
Thm. 16.7] asserts that if polynomials F(x), G0(x), H0(x) in Rv[x] are such that
(i) v*(F(x) — G0(x)H0(x)) > 0, (ii) the leading coefficient of G0(x) has u-valuation
zero, (iii) there are polynomials A(x), B(x) belonging to the valuation ring of vx

satisfying vx(A(x)G0(x) + B(x)H0(x) - 1) > 0, then there exist G(x), H(x) in K[x] such
that (a) F(x) = G(x)H(x), (b) deg G(x) = deg G0(x), (c) ^(G(x) - G0(x)) > 0, vx(H(x)-
H0(x)) > 0.

In this paper, our goal is to prove an analogous result when vx is replaced by any
prolongation w of v to K(x), with the residue field of w a transcendental extension of
kv. Such a valuation will be referred to as a residually transcendental prolongation of v.
A generalization of Hensel's Lemma dealing with residually transcendental
prolongations of v has already been formulated and proved by Elena-Liliana Popescu
[6]. However, there is an error in her proof. We state her result in the last section as it
involves cumbersome notation and give an example to show that it is false. Our proof
of the generalized Hensel's Lemma holds for all real valuations v, whereas the proof
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in [6] uses strongly the hypothesis that v is discrete. Moreover our construction of the
necessary sequences of polynomials used in the proof is completely different from the
one given in [6].

1. Notation, definition and statement of results

Throughout, v will stand for a fixed prolongation of the henselian valuation v
defined on K to an algebraic closure K of K with value group Gv. A pair
(a, i i ) € K x G , will be called minimal (with respect to (K, v)) if for every b e K, the
condition v(a — b) > 8 implies [K(a) : K] < [K(b): K\. The valuation vv of K(x), given
on K[x] by

( ) c.) + '*> 0)

will be referred to as the valuation defined by the pair (a, 8).
Let w be a residually transcendental extension of v to K(x). Let vv be a prolongation

of vv to K(x). By virtue of [1, Prop. 2.1, Thm. 2.2], there exists a minimal pair (a, d)
such that the valuation defined by it coincides with vv on K(x); moreover, if (a', 5') is
another minimal pair with the above property then 5 — 5'. The element 5 will be
referred to as the defining value of vv. Observe that the defining value of the Gaussian
extension vx is zero. We shall prove:

Theorem 1.1. Suppose that (K, v) is a complete, rank-1 valued field. Let vv be a
residually transcendental prolongation of v to a simple transcendental extension K{x) with
defining value 5. Let F(x), G0{x), H0(x) be polynomials over K, each having w-valuation
zero and satisfying

(i) w(F(x) - G0(x)H0(x)) > 0,

(ii) the leading coefficient a of G0(x) has v-valuation —md, where m is the degree of
G0(x),

(iii) there are polynomials A(x), B(x) in the valuation ring of vv with w(A(x)G0(x)+
B(x)H0(x) - 1) > 0.

Then there exist G(x), H(x) e K[x] such that

(a) F(x) = G(x)H(x),

(b) degree G(x) = m and the leading coefficient of G{x) is a,

(c) w(G(x) - G0(x)) > 0, w(tf (x) - H0(x)) > 0.

An example given in the last section shows that the hypothesis (ii) in the above
theorem cannot be removed. We shall deduce from this theorem the following.
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Corollary 1.2. Let (K, v) be a complete, rank-] valued field with value group Gv and
F(x) = OQ 4- a,x + . . . + anx" be a polynomial over K. If there exists an element 8 in the
divisible closure of Gv such that (i) v(an) + nd > 0, (ii) u(a,) + id > 0 for all i, (iii) there
exists j , 1 > j < n — 1 with y(a;) +j8 = 0, then F(x) is reducible over K.

Corollary 1.3. Let Qp be the field of p-adic numbers {i.e. the completion of the field
of rational numbers with respect to the p-adic valuation) with valuation v characterized by
v(p) = 1. Let n > 2 be an integer which is not divisible by p. If a,, bt are p-adic integers
for 0 < i < p - 1 and ap_, = ftp_, # 0(modulo p), then the polynomial

F0(x) =

is reducible over Qp.

The result of Corollary 1.3 does not hold in general when n = l; this can be
visualized on taking the ground field to be the field Q2 of 2-adic numbers and F0(x) to
be x2 - 6 = (x2 - 2) — 22 which clearly is a polynomial of the type discussed in the
above corollary (when n — 1) and is irreducible over Q2, because 6 is not a square in Q2.

2. Some preliminary results

Lemma 2.1. Let a be an element of a field Kt with valuation i>, and S be in the
divisible closure of the value group of vt. Let w, be a prolongation of vx to a simple
transcendental extension Kt(x) defined by

wYy>l(x-a)')=min{.,1(C|) + tf},cl6K1.( J2ci(x - a)j = miri{yi(c,

Suppose that G(x) = XXo^C*"" a ) ' e ^ i M " a polynomial of degree m>\ with
w^Gix)) — 0 and V\(bm) — -md. If any polynomial F(x) e Kt[x] is written as

F(x) = G(x)q(x) + r(x), degr(x) < deg G(x), q(x), r{x) e K,[x],

then we have w^rfa)) > w,(F(x)).

Proof. If degF(x) < deg G(x), then r(x) — F(x) and there is nothing to prove.
Suppose that degF(x) = n > m and F(x) = X!"=oa.(x ~ a)'< a< e ^ i - T n e polynomial

F,(x) = F(x) - anb^'G(x)(x - a)"~m has degree less than n. Keeping in view that
wi(^m) = — m& and Wi(G(x)) — 0, it can be easily seen that

w,(fl>-'G(x)(x - a)""") = Vl(an) + n5 > w,(F(x)).

The desired assertion now follows by induction on the degree of F(x).
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Lemma 2.2. Let v be a valuation on a field K, a be an element of K and k be in the
divisible closure of the value group of v. Suppose that G(x) = £ \ bpn' — £ . cfx — a)'
is a polynomial over K of degree n such that v(Cj) > k for each j , 0 < j < n. Then
v(bj) > min {k, k + (n —j)v(a)} for all j .

Proof. Keeping in view the Taylor's expansion for the polynomial G(x) in powers
of (x - a), we see that

n

cn = bn, cn_, = bn_i + nbna,..., c0 = ] T b{d.

On taking the v-valuations of cn, cn_,,..., c0 respectively, the desired assertions can be
quickly verified.

Lemma 2.3. Let (K, v) be a complete, rank-] valued field with respect to a real
valuation v and w be a valuation of K(x) defined by a minimal pair (a, 8). Let
{Gn(x)} c K[x] be a sequence of polynomials with bounded degrees. Suppose that
vv(Gn(x) — Gm(x)) -*• <xi as n, m -> oo. Then there exists a polynomial G(x) e K[x] such
that w(G(x) — Gn(x)) -> CXD as n ->• oo.

Proof. Suppose that deg Gn(x) < N for all n. Write

G_(x) = J2 V ' = T, C"M ~ °y> b"> e K> C"J e Z-
)=0 j=0

By virtue of the definition of vv, we have for 0 < j < N

w(cni)>w(Gn(x))-N\d\,

where \S\ = max{5, — 3}. Applying Lemma 2.2 to Gn(x) — Gm(x), it can be easily seen that

vibnj - bmj) > w(Gn(x) - Gm(x)) - N\5\ - N\v(a)\
for 0 < j < N. Since vv(Gn(x) — Gm(x)) -»• ex) as n, m -» oo, it follows that {bn }nj is a
Cauchy sequence of elements in the complete field (K, v) and hence converges to an element
bj (say) of K. If we set G(x) = YljLo bjX*, then clearly vv(G(x) — Gn(x)) -> oo as n -*• oo.

3. Proof of Theorem 1.1 and Corollary 1.2

By virtue of the hypothesis, the polynomials P(x), C(x) defined by

F(x) = F(x) - G0(x)H0(x) (2)
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C(x) = i4(x)G0(x) + B(x)H0(x) - 1 (3)

have w-valuation greater than zero. Set

Ai = min{w(P(x)), w(C(x))) > 0. (4)

Let N denote the maximum of the degrees of the polynomials F(x) and P(x). It is
immediate from (2) that deg H0(x) < N — m.

We shall construct Gn(x), Hn(x) in K[x] (« = 0, 1, 2,...) satisfying

(I) degGn(x) = m, degHn(x) < N — m and the leading coefficient of Gn(x) is a,

(II) w(Gn(x) - Gn_,(x)) > nn, w(Hn(x) - Hn_,(x)) > nft,

(III) w(F(x) - G.(x)H.(x)) >(n+ l)/x.
Observe that the polynomials G0(x), H0(x) in K[x] clearly satisfy these conditions

(condition (II) being void). To obtain the polynomials G,(x), H,(x) with these
properties, divide B(x)P(x) and C(x)P(x) respectively by G0(x) and write

B(x)P(x) = G0(x)qi (x) + r, (x), deg r, (x) < m, (5)

C(x)P(x) = G0(x)9(x) + r(x), deg r(x) < m. (6)

Multiply both sides of (3) by P(x) and then substituting for B(x)P(x) and C(x)P(x)
from (5) and (6), we obtain

M(x)P(x) + qi(x)H0(x) - q(x)}G0(x) + r,(x)H0(x) = P(x) + r(x).

If the expression between { } is denoted by st(x), then the above equation can be re-
written as

s,(x)G0(x) = P(x) + r(x) - r,(x)tfo(x). (7)

Set

G,(x) = G0(x) + r,(x), • (8)

H,(x) = /fo(x) + s,(x). (9)

Since degr,(x) < m, it follows that the polynomial G,(x) is of degree m, with leading
coefficient the same as that of G0(x). Our claim is that degtf,(x) < N -m. To prove
the claim, observe first that by virtue of (9), we have

deg(G0(x)//,(x)) < max{deg(G0(x)H0(x)), deg(G0(x)s,(x))}. (10)

It is clear from (2) that deg (G0(x)/f0(x)) < N. Using the fact that the degrees of r{x)
and r,(x) do not exceed the degree of G0(x), it quickly follows from (7) that
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deg(s,(x)G0(x)) < max{deg(r,(x)tfo(x)), degr(x), degP(x)}

< max{deg(G0(x)tf0(x)),degP(x)} < N.

Thus in view of (10), the claim is proved.
We now prove that G,(x),//,(x) satisfy (II) for n= 1. By (5), (6) and Lemma 2.1,

we have

w(ri(x)) > w(B(x)P(x)) and w(r(x)) > w(C(x)P(x)).

Keeping in view (4) and the fact that w(B(x)) > 0, we conclude that

w(r,(x)) > w(P(x)) > ^, (11)

i) > w(C(x)P(x)) > w(P(x)) + [i. (12)

Taking into consideration that w(G0(x)) = w(H0(x)) — 0, it quickly follows from (7),
(11) and (12) that

w(s, (x)) = w(Sl (x)G0(x)) > w(P(x)) >n. (13)

It is immediate from (8), (9), (11) and (13) that

w(G,(x) - G0(x)) >// and w(tf,(x) - H0(x)) > //

as desired.
Now it remains to be shown that w(F(x) — G^x)//,^)) > 2//. Define

x). (14)

Substituting the expressions for F(x), G,(x), H^x) from (2), (8) and (9) respectively in
(14) and then using (7), we obtain

P,(x) = -r(x) - r,(x)s,(x). (15)

Since w(r(x)) > 2fi by (12) and w(r,(x)s,(x)) > 2/i by (11) and (13), it follows from (15)
that w(Pt(x)) > 2/i.

Thus we have obtained polynomials G,(x), H^x) satisfying the conditions (I), (II) and
(III). Furthermore, a simple calculation shows that /l(x)G|(x) 4- B(x)H,(x) = 1 4- Ct(x),
where

C,(x) = C(x) + ^(x)r,(x) + B(x)s,(x)

is such that w(C,(x)) > fi. On replacing G0(x), H0(x) and P(x) by G,(x), H,(x) and
P,(x), and arguing as above, we can construct polynomials G2(x), H2(x) in K[x] such that
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G2(x) = G,(x) + r2(x), H2(x) = H,(x) + s2(x), where r2(x) is a polynomial of degree less
than m, w(r2(x)) > w(P,(x)) > 2/z, H2(x) is a polynomial of degree not exceeding N — m,
w(s2M) ^ w(pt(x)) a n d w(F(x) - G2(x)H2(x)) > w(P,(x)) + jz > 3/i. Using induction, we
obtain polynomials Gn(x), Hn(x)(« = 0, 1, 2,...) satisfying (I), (II) and (III).

By virtue of (II), the sequences {Gn(x)} and {Hn(x)} are Cauchy with respect to w.
So by Lemma 2.3, there exist polynomials G(x), H(x) e K[x] such that the sequences
{Gn(x)}, {Hn(x)} converge to G(x), H(x) respectively with respect to w. But (III) implies
that the sequence {Gn(x)Hn(x)} converges to F(x); therefore F(x) = G(x)H(x). Clearly
w(G(x) — G0(x)) > fi > 0 and w(H(x) — H0(x)) > [i > 0. Since each Gn(x) is a polynomial
of degree m with leading coefficient a, it follows from the proof of Lemma 2.3 that
G(x) is a polynomial of degree m with leading coefficient a. Thus the polynomials
G(x), J7(x) satisfy the requirements (a), (b) and (c).

4. A note on Popescu's result

In this section, we give an example to show that a generalization of Hensel's lemma
proved in [6] for discrete, complete, rank-1 valued fields does not hold. Before stating
the result referred to above, we give some of the notation used in [6].

Let (K, v) be a complete, discrete, rank-1 valued field with unique prolongation V
to an algebraic closure K of K and w be a residually transcendental extension of v to
K(x). Let (a, d) be a minimal pair with respect to K such that the valuation defined by
it (see equation (1)) on K(x) coincides with w on K(x). For any ^ in the valuation ring
of w, £* will stand for its w-residue, i.e., the image of ^ under the canonical
homomorphism from the valuation ring of w onto the residue field of w. Also /(x) will
stand for the minimal polynomial of the element a over K of degree n and y will stand
for the w-valuation of/(x). Let e be the smallest natural number such that ey belongs
to the value group of the valuation v' obtained by restricting v to K(a). For any
F(x) = E , fiML/X*)]' e K[x], where each F,(x) e K[x] is of degree less than n, the
formula

W(F(x)) = mm[v'(Fi(a)) + iy} (16)
i

holds (see [4]). Let h(x) e K[x] be a polynomial of degree less than n such that
w(/i(x)) = v'Qi{a)) = ey. We denote \f(x)]'/h(x) by r(x). Then the residue field of w is the
simple transcendental extension kv>(r*) of the residue field kv> of v (cf. [4] or [5]). As
in [5,Cor.l.5], it can be easily verified that if F(x) e K[x] is such that w(F(x)) = 0, then
F' e kAr'].

With the above notation, Elena-Liliana Popescu has proved the following generaliza-
tion of HensePs lemma.

Theorem A. Let (K, v) be a complete, discrete, rank-1 valued field. Let w be a
residually transcendental prolongation of v to K(x) and F(x) e K[x] be a polynomial such
that w(F(x)) = 0. Assume that F' = <j)\ji, where the polynomials 4> and []/ belonging to
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kv>[rm] have no common factor. Then we can write F(x) = G(x)H(x), where G(x) and
H(x) belonging to K[x] are such that w(G(x)) = w(H(x)) = 0, G* = 0, /T = ip and the
degree of G(x) is equal to en(deg 4>).

The following example shows that Theorem A is false.

Example. Let (K, v) be the completion of the field Q of rational numbers with
respect to the valuation D of Q characterized by u(7) = 1. Let v be the unique
prolongation of v to the algebraic closure K of K with value group contained in the
group of rationals. It can be easily seen that (77,1) is a minimal pair with respect to
(K, v). Let w be the restriction to K(x) of the valuation w, defined on K(x) by the pair
(7?. 1).

In the present situation, one can easily see that /(x) = x2 — 7, which is the minimal
polynomial of ,/7, has w-valuation 3/2 and e—l. Since w(x — ^/7) — \, i.e.,
w((x/./7) - 1) = 1/2 > 0, it follows that the vv-residue (x/77)* of (x/77) is 1* (to be
denoted by 1). In particular, w(x) = w( /̂7) = 1/2. So one can take h(x) — 7x and
r(x) = (x2 — 7)/7x. Consider the polynomial

F(x) = ( (x 2 -7 ) 2 /7 3 ) - l .

By virtue of (16), we see that w(F(x)) = 0. On writing F(x) as ((x2 - 7)/7x)2(x2/7) - 1
and keeping in view that (x2/7)* = 1, we have

[F(x)r = (r*)2 - 1 = (r* + l)(r* - 1).

Our claim is that there do not exist any polynomials G(x), H(x) e K[x] with w-valuation
zero such that

F(x) = G(x)H(x), [G(x)r = (r* + 1), [H(x)]' = (r' - 1). (17)

To prove the claim, observe first that if ((x — c)/d) is any linear polynomial over K
of w-valuation zero, then ((x — c)/d)* is not transcendental over the residue field of v.
For if it were so, then as proved in [3, Prop. 4.3], it can be easily seen that the
valuation w on K(x) would be given by

a,(x - c)M =

which in turn implies that

1 = w(x - 77) = mm{v(d), v(c - 77)}.

Thus v{c — 77) > 1. This gives v(c) — v(y/l) = 1/2, which is impossible as c e K.
Now suppose that there exist polynomials G(x), H(x) e K[x], each with w-valuation
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zero and satisfying (17). Then in view of the above observation degG(x)>2,
deg H(x) > 2 and hence both are of degree 2 as the degree of F(x) is 4. Write
G(x) = s(x2 - 7) + tx + u, where s,t,ue K. By virtue of (16),

O = w(G(x)) = min{v(s) + 3/2, v(tjl + «)}.

The desired contradiction is obtained as soon as we show that v{s) + 3/2 = 0. If
v(s) 4- 3/2 > 0, then (r* + 1) = [G(x)]* - (tx + u)\ which contradicts the fact that no
linear polynomial over K has its w-residue transcendental over the residue field of v.

Remark 4.1. Incidentally the above example can be used to show that the
hypothesis (ii) in Theorem 1.1 can not be removed. Let w, F(x),r(x) be as above.
Take

G0(x) = (x(x2 - 7)/72) + 1, H0(x) = (x(x2 - 7)/72) - 1.

Since (x2/7)* = 1, we have

[G0(x)Y = (r- + 1), [H0(x)Y = (r* - 1).

A simple calculation shows that

W(F(x) - G0(x)H0(x)) = w((x2 - 7)3/74) = 1/2,

and hence condition (i) of Theorem 1.1 is satisfied. Since l/2[G0(x)]— l/2[H0(x)] = 1,
the condition (iii) is also satisfied. But as shown in the above example, F(x) can not be
factored over K as G(x)H(x) with [G(x)]* = [G0(x)]' and [H(x)]' = [H0(x)]\

Remark 4.2. The error in the proof of Theorem 2.1 of [6] creeps into the seventh
line of the proof as the choice of the polynomial G, therein with the desired properties
is not always possible.

5. Proof of Corollaries 1.2,1.3

Proof of Corollary 1.2. Let w be a valuation of K(x) defined by

w

Clearly w is defined by the minimal pair (0, S) and is a residually transcendental
extension of v to K(x). Let; be the largest index, 1 < j < n - 1, such that u(a;) +jd = 0.
Consider

G0(x) = a,x> + ay_,x'-' + . . . + flj,

H0(x)=l.
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By virtue of the hypothesis and the choice of j , we see that w(F(x)) — w(G0(x)) — 0,

w(F(x) - G0(x)tf0(x)) = w(anx" + a^x""1 + . . . + aj+lx'+1) > 0.

So by Theorem 1.1, there exist polynomials G(x), H(x) e K[x] with degG(x) =j such
that F(x) = G(x)H(x). Thus F(x) is reducible over K.

Proof of Corollary 1.3. Let K denote the algebraic closure of K = Qp and v the
unique extension of v to K. We first show that (p1/p, l/(p — 1)) is a minimal pair with
respect to K and v. If jSeK is such that v(pl/l> - 0) > I/O — I), then
v{p) = v(p1/p) — \/p. So the index of ramification of K(p)/K is not less than p and
consequently

[K(fi) : K ] > p = [K(j>]"): K].

Let w denote the valuation of K(x) defined by the minimal pair (p1/f>, l/(p — 1)) and w
be the valuation of K(x) obtained by restricting w. Let £ be the primitive plh-root of
unity. Then

Y\ - C) = xp-] + x"-2 +... + \-
i=l

in particular

As the factors of the product on the left hand side of the above equation are conjugates
of each other, we have

Consequently

It follows that for 1 < i < p - 1,

w(x - p'"C') - min{vv(x - p1'"), w(pl»(l - C))}

= I /O- l).
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Therefore

J^w(xp - p) = J^ w(x - P1/PC) = P/(P - 1).
i=l

By virtue of (16), for any g(x) 6 K[x] with (xp — p)-expansion

we have

w(g(x)) = m i n ^ p 1 " - ) + ip/{p - 1)}. ({)
I

If v' is the valuation obtained by restricting v to K(p}/P), then clearly the index of
ramification of v'/v is p and consequently the residual degree of v'/v is 1. Clearly, p — 1
is the smallest positive integer such that (p — l)w(xp — p) is in the value group of v.
So by the result stated in the paragraph preceding Theorem A in Section 4, the residue
field of w is the simple transcendental extension kv(r*) of the residue field kv of v, where
r* is the w-residue of r(x) = (xp - p)p~x/f. Set

Fix) = F,{x)/f\

Goto - ((xp - pT'/f) - 1 - r(x) - 1,

tfo(x) = ViMx)-1 + Kx)""2 + . . . +1].

It is enough to show that F(x), G0(x), H0(x) satisfy the three conditions of
Theorem 1.1.

Keeping in view ({) and the fact that v(bp_{) — 0, i;(a,) > 0 and u(fc,) > 0, it can be
easily seen that

w(F(x)) = w(G0(x)) = w(H0(x)) = 0.

Since w(xf> — p) > 0, it follows that w(x) > 0, i.e., the w-residue of x is 0. Therefore
by virtue of the fact that ap_, = bp_x(modulo p), we have

V.)*

where * stands for w-residue.
It is now clear that
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[F(x)Y = fc;_,(r'" - 1),

[H0(x)Y = K_x[{r'"-X + r'"-1 + ... + 1)].

Therefore
[F(x)Y = [G0(x)]'[H0(x)]'

and the first condition of Theorem 1.1 is satisfied.
It only remains to verify the third condition, as the second is trivially true.
If Y is an indeterminate, then on dividing Y""1 + Y"'2 + . . . + 1 by (Y - 1), we see that

[Y"-1 + Y""2 + . . . + Y + 1] = (Y - 1)[Y"-2 + 2Y"-3 + . . . + « - 1] + n,

i.e.,

[Y"-1 + Y"-2 + . . . + \)/n - [(Y - 1)/«][Y"-2 + 2Y""3 + . . . + n - 1] = 1.

Keeping in view the hypothesis that v(ri) — 0, it is now clear that is we take

A(x) = -(l /n)[(r(x)r2 + 2(r(x))-3 + . . . + « - 1],

B(x)=l/«&,_!.

then

[A(x)Y[G0(.x)Y +[B(x)Y[H0(x)Y = 1,

which implies condition (iii) of Theorem 1.1 and hence the corollary.
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