7

Floating Substructures

As energy production from offshore wind expands, new and deeper ocean areas are
being considered for development. As discussed in Chapter 4, floating support
structures should be considered for water depths beyond 50 m. Floating support
structures introduce several new aspects with respect to dynamic behavior com-
pared to bottom-fixed support structures. These aspects will be discussed in more
detail in this chapter.

The starting point is equations of motion for a rigid body in six degrees of
freedom (6DOF). The forcing mechanisms from waves are addressed as well
as the inertia effects due to the surrounding fluid, the added mass, hydrostatics
and the effect of mooring. The effect of wind forces is discussed in Chapter 3.
This chapter further discusses the combined effect of wind forces and the
motion control system.

Floating support structures can take several geometric shapes. Various methods
for computing the wave loads on rectangular pontoons, barges etc. will therefore
be outlined in more detail. In Chapter 6, the boundary element method for
computing wave loads on a 3D body of general shape was discussed. This method
is well suited also for floating bodies. However, simpler and computationally
faster methods are useful in the design process, in particular for optimization
purposes. Therefore, strip theory methods are outlined in some detail. Most of the
derivations in this chapter are based upon linear methods. This implies that forces
are computed at the initial or mean position of the structure, and that inertia,
damping and restoring effects are also linearized and referred to the initial or
mean position. The linearization also implies that all dynamic rotations of the
support structure are assumed to be small. The linearization makes the computa-
tions efficient and allows for solving the dynamics in the frequency domain.
However, in real design processes the importance of various nonlinear effects
must be assessed.

213
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For floating support structures, a great variety of shapes have been proposed, as
illustrated in Chapter 4. In most cases the floater is assembled of slender horizontal
pontoons and vertical columns. Both the pontoons and the columns may have a
cross-sectional area that varies along the length. In addition, flat solid or perforated
plates may be introduced to obtain the wanted dynamic characteristics of the floater.
Some floating foundations have a barge-like shape; thus, the applicability and
accuracy of the various methods must be evaluated for each case. For example, in
a preliminary design phase involving an optimization process, strip theory methods
may be applied. Having concluded on a geometry, the results obtained by strip
theory should be compared to results obtained by 3D methods.

7.1 Wave-Induced Motions: Equations of Motion

Considering the six rigid-body degrees of motion, the dynamic equations may be
written as:

(M + A)ﬂ+(Bv+Br)“+(Cm+Ch)“ :Fwa+Fwi+Fcu+Fwt- [7 1]

Here, 1 is the vector of the six degrees of motion, as illustrated in Figure 7.1.
The figure also shows the common naming convention for the motions. The
linear motions in direction (x,y,z) are denoted (1,,7,,#;) and the rotations
about the (x,y,z) axes are denoted (#4,7s,7,). It is here is assumed that the
(x,y)-plane coincides with the mean water surface and that z is vertical, zero at
the mean free surface and positive upward. M is the 6 x 6 dry mass matrix of the
complete wind turbine and A is the hydrodynamic mass matrix. The damping
matrix is split into two parts, the radiation part, B.(x, y, z), related to wave gener-
ation, and the remaining damping, B,, mainly linearized viscous damping from
water and air. The damping could also contain effects due to the control of
the wind turbine, but these effects may also be included in the forcing term.
The restoring matrix is split into a hydrostatic part, Cy, and a mooring part,
Cm. The four excitation force vectors are the wave force vector; the wind
force on the structural parts; the current force; and the force due to the
action of the wind turbine.

If the equations are linearized, [7.1], and a stationary, dynamic response is
considered, the force vector may be written as F = Foe™’ and the response as
N = n,e’, where o is the frequency of oscillation and m, is the complex
response vector. The equation of motion in frequency domain may thus be
written as:

{~0*M + A()] + ioB(w) + Cin(w) = F(). [7.2]
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Sway, 1 Heave, 13

L. Yaw, 7

Pitch, g Surge, 74

Roll, 774

Figure 7.1 The six rigid-body motion degrees of freedom for a floating wind
turbine. Surge is in direction of the wind, perpendicular to the rotor plane. The
(x, ¥) plane is located at the mean water surface. z is vertical and positive upward.

Here, it is indicated that in the general case, the added mass as well as the damping are
frequency-dependent. The frequency domain format of the equation of motions is
useful when wave forces dominate the excitation. If significant nonlinear effects are
present, which is the case for wind turbines during operation and active control
functions, the equations must be written and solved in time domain. If the hydro-
dynamic forces are assumed to be linear but frequency-dependent, a convolution
integral is needed in the time domain version of the equations to account for the
frequency dependence. In time domain the frequency dependence represents a memory
effect. In the 1D case the equation of motion in time domain may then be written as:

(M + A, )ii + Jh(t — 2)i(e)dr + Oy = F(2). 73]

The convolution term now accounts for the frequency dependency of added mass
and damping (these are related) and A, is the high-frequency limit of the added
mass. Further discussion of time domain formulation of the equation of motion with
frequency-dependent coefficients is found in, e.g., Falnes (2002). Further details
are given in Section 7.4.8.
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7.2 The Mass Matrix
7.2.1 The Dry Mass Matrix

The mass matrix for the dry body can be written as:

M 0 0 0 MZG
0 M 0 —MZG 0
0 0 M 0 0
0 —MZG 0 M44 0

MZG 0 0 0 M55

0 0 0 0 0 M

[7.4]

SO O oo

Here, it assumed that the center of gravity (CG) is located at (0, 0,z¢) and that
the (x,z) and the (y,z)-planes are planes of symmetry, which frequently is the
case for floating bodies. M is the mass of the body, and the moments of inertia
are given by:

My = 114 JZ +y dm_]11G+ZGM
M
Mss = Iy = J X +Z dm = Ig +ZGM

M
Mes = 3 = J y +x dm VESYe [7.5]
M

Here, I; refers to the mass moment of inertia about axis 7 and /;;; refers to the mass
moment when the axis has origin in CG.

In the more general case without symmetry and where the CG is located in
(xG,Y6,zc), the mass matrix may be obtained by:

7.6]

| Mlz,3 —MS
M- s,

where
1 0 0 0 —z¢ g V422 —Xxy —Xz
13*3 =10 1 0 y S = zZG 0 —XG and Ibb = J —)yX 22 +x2 —)yz dm.
0 0 1 -V Xg 0 wl o —zx —zy  X* 4y

For further details, see Perez and Fossen (2007).
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7.2.2 The Added Mass Matrix

In many of the proposed designs for offshore wind support structures, the floater is
composed of slender horizontal pontoons and vertical columns. Both the pontoons
and the columns may have a cross-sectional area that varies along its length. In
addition, flat solid or perforated plates may be introduced to obtain the wanted
dynamic characteristics of the floater.

There are two main options to obtain the added matrix for such structures: strip
theory or 3D ideal fluid theory based upon, e.g., boundary element techniques, as
discussed in Chapter 6. Strip theory approach will be addressed here.

7.2.2.1 Vertical Columns

Consider a slender, circular and vertical column of constant radius R and extending
from z, to z;, where z, <z,<0. The cylinder axis is located at (x.,y.). The added
mass for linear motion in the horizontal direction can then be approximated by:

Ay = A%P)(z; — z) = BpR*CapL, 7.7]

where the length of the column is L and C,, is the 2D added mass coefficient for the
cylinder. The added mass for oscillation in the vertical direction can similarly be
written as:

Ay = (Cayp + Cone)pR>. [7.8]

Here, the indices b and ¢ refer to the bottom and top of the column respectively. If
the column pierces the free surface, C,,; = 0, and if the column is sitting on top of a
pontoon, C,,, = 0. If two columns are sitting on top of each other, an approximate
value for the added mass contribution at the junction may be applied; see Section
7.4.2. A 3 x 3 added mass matrix for linear motions is obtained as:

AP0 0
Ac=1| 0 4%PL o |. [7.9]
0 0 4,

As compared to the dry mass matrix, it is observed that the mass values differ
between the three directions. A, will now constitute the new submatrix correspond-
ing to the upper-left part of [7.6]. Similarly, the submatrix mS is replaced by
S4c = AcxS., where:

1
0 —E(zb +z;) e
S.= |1 . 7.10
¢ E(Zb +2z) 0 —X, [ ]
—Ve Xe 0

The rotational coupling terms are obtained as:
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;=

I = J(yZ _|_22)dm zygAv —l—%A(zD) (23 2}37)

L
Iy = | —xydm = —x.y A,
L
1
I3 = | — xzdm = —x, EA(zD) (zt2 —Zi)
L

Ly = (x2 + zz)dm = ngv + lA(ZD) (zf — zi)

3
L
1
I = | — yxdm = _)’LEA(ZD) (2 — =)
L
Iy = | (P +x%)dm = (v +x2)A%P)(z, — z3). [7.11]
L

With [;; = Ij;, the rotational submatrix becomes:

I Iy Iz
Ibpe = |1 D2 D3 |. [7.12]
Ly Ly I3

The full added mass matrix for one vertical column thus becomes:

Ac _SA"]. [7.13]

ACOI - [SAc Ibbc

It should be kept in mind that in this derivation it has been assumed that the 2D
added mass is equal at all sections, i.e., no end effects are accounted for when
integrating the 2D added mass along the column. If end effects are to be accounted
for, the various terms involved should be obtained from [7.7] and [7.11] by
performing integration along the axis and accounting for variation in 4>?),

The added mass related to the end surfaces of a long slender cylinder is
frequently taken to be the mass of a half-sphere with the same radius as the column,
i.e., C, = 2/3. If two columns are located on top of each other, a rough estimate of
the vertical added mass can be obtained by setting the vertical added mass for the
surface of the column with the smallest diameter to zero and for the column
with the largest diameter to the difference between two half-spheres. l.e.,
A,~% (R3 — R}), where the indices 2 and 1 refer to the largest and smallest radius
respectively. Experience has shown that this approach may overestimate the vertical
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added mass; however, it provides the correct results in the limits of R = R,
and R; = 0.

7.2.2.2 Horizontal Pontoons

Consider a horizontal pontoon of rectangular cross-section extending from (xy, yy,z;)
to (x2,2,22), see Figure 7.8. As the pontoon is horizontal, z; = z, = z,. To establish
the added mass matrix in this case, we employ strip theory once more. The pontoon is
split into short transverse sections over which the flow is assumed to be 2D. It is
assumed that the 2D added mass in the horizontal and vertical direction differs, i.e.,
A,(fD) +A4 £2D) . Further, the added mass in the axial direction due to the end surfaces of the
pontoon may be included. Consider a section of length AL of the pontoon. The mid-
point of the center axis through the section is located at (x, y, z). The pontoon axis
forms an angle o with the x-axis. Considering an acceleration in x direction 7, the
forces acting on the fluid in direction 1, 2 and 3 due to this acceleration are:

AF = anAfD) sina = ij, sina AEIZD) sina = 1'1'1A§,2D) sin’a.
AFy = a,,A,(fD) coso = ﬁlAElZD) sin o cos o [7.14]
AF53 = 0.

The same procedure applies for the two other directions. Integrating over the length
of the pontoon thus gives the following added mass matrix for linear translations

in (x,,z):
Ahx Ahxy 0
A, = |Apy Ap 0|, [7.15]
0 0 A4,
where:

Ape = AEIZD)L sina + 24, cos?a.

Apy = AE,ZD)L cos?a + 24, sin’a

p) . [7.16]
Apyy = (—Ah L+ 2Ae)cosa sina

A, = AL,

Here, the end surfaces are also accounted for, the added mass due to an acceleration

in axial direction is 24,. The angle of the pontoon relative to the x-axis is given by
-

a = arctan (f%) and L is the length of the pontoon.

Considering rotational acceleration around the x-axis, and the resulting moments
about the other axes AL, the following contributions are obtained:
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AMyy = —AF,z + AF;y = —AFj, cosa z + AF.y

= —ahAEfD)AL cosa z+ avAgzD)ALy
. (2D) . (2D)
=iz cosa A, AL cosa z +1j,yAy ALy

— [zzAézD) cos2a + y24*P))ii AL

[7.17]

Here, AM,; is the moment around the x-axis from a small section of the pontoon of
length AL located at (x,y,z) due to an acceleration around the x-axis, 7j,. Similar
considerations are made for the other moments. The contributions from each
section are integrated over the length of the pontoon. The result is a symmetric
rotational inertia matrix, [;;) due to the sectional added mass of the pontoon
(details are given in Appendix D):

1
Ty = 43" 2} cos’a + APP)L <y§ +5 L Sin20f> 7.18]
1
by = -4 <xpyp + EL2COS a sin a> + A,(fD)Lz}Z; cosasina  [7.19]
Ly = —A7PL i 20
51y = —4;, 'L 2 cos a(ypsina + x,cos a) [7.20]
1 .
by = APPL <x[27 + ELZ cos2a> +A§12D)Lz§ sin’a [7.21]
Lo gD : -
32L) = i Zp s1na(ypsm0z + x,co0s a) [7.22]
1
Ly = APP'L [(xpcos a+ysina)’ + ﬁLz] : [7.23]

(xp, Vo zp) is the volume center of the pontoon. The end surfaces will only experience
pressure in axial direction and only if they are wetted. However, if the pontoon is
attached to a column, as illustrated in Figure 6.5, one will normally ignore the effect of
the pontoon when considering the added mass of the column. Thus, one should evaluate
if the total added mass is better represented by considering the pontoon ends to be wet or
dry. This may be done by using a 3D panel method. The contributions from a wetted end
to the rotational inertia are given in Appendix D. The total rotational added mass matrix
thus becomes:

Ip3*3 :I(L)—Fl(e) . [7.24]

The total 6 x 6 added mass matrix for one horizontal pontoon becomes thus:

— A[’ _AP*SP
Apon - |:AP*SP Ip3*3 9 [725]
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with:
0 -z, Y
Ss=12 0 —x|. [7.26]
—Vp Xp 0

Added Mass of a Horizontal Pontoon

Consider a horizontal pontoon with length L = 30 m, width B = 5 m and height

H = 3 m. The axis of the pontoon is 8.5 m below the free surface. The 2D added mass in
vertical and horizontal direction for the pontoon section is estimated to be

AszD) = 1.67HB and AEZD) = 0.72HB respectively. The added mass of the end sections,
A, is ignored in this example. The pontoon is located with one end of the axis at
(x=10m, y=0m, z= —8.5m). The angle between the pontoon axis and the
x-axis is 30 deg, see Figure 7.2.

The 6 x 6 added mass matrix is computed using the strip theory approach as well as
using a 3D boundary element method as described in Section 6.4. The distribution of
the quadrilateral, constant potential boundary elements are shown by the black lines in
Figure 7.2. Note that the panel sizes are reduced toward the edges of the pontoon. This
is to improve the computational accuracy. The 3D method accounts for the free surface
effect. The added mass thus becomes frequency-dependent. In Table 7.1, the added mass
matrix as obtained by strip theory as well as 3D results at a low frequency (0.087 Hz)
and a high frequency (0.5 Hz) are presented. The matrix is symmetric. In general, the
strip theory method and 3D results do not differ much. One exception is Ayy, which is
sensitive to the added mass related to the end surfaces. This effect was ignored in the

strip theory method example.

35

Figure 7.2 The horizontal pontoon used in the example. Quadrilateral panels as
used in the 3D boundary element method.
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(cont.)

Table 7.1 Nondimensional added mass for the pontoon shown in Figure 7.2 as
computed by strip theory and at a low frequency (0.087 Hz) and a high frequency
(0.5 Hz) using a 3D panel method. The added mass values are made dimensionless in
the following way: Zu = /%, withy =3 for (i,j) = (1:3,1:3), y =4 for
(i,j))=(1:3,4:6)and (i,j) = (4:6,1:3)andy =5 for
(i,j)=(4:6,4:6). B=5m.

i/ 1 2 3 4 5 6
Strip 1 0.650 -1.126 0.000 -1.913 -1.105 -6.150
3D high 1 0.871 -0.959 0.000 -1.648 -1.448 -5.717
3D low 1 0.937 -1.015 0.000 -1.696 -1.647 -6.071
Strip 2 1.949 0.000 3314 1.913 10.652
3D high 2 1.979 0.000 3.351 1.648 10.537
3D low 2 2.109 0.000 3.605 1.696 11.218
Strip 3 6.001 9.002 -27.594 0.000
3D high 3 5.740 8.610 -26.394 0.000
3D low 3 6.381 9.571 -29.340 0.000
Strip 4 23.637 -45.934 18.108
3D high 4 22.254 -42.810 17.878
3D low 4 24.382 -47.567 19.120
Strip 5 142.260 10.455
3D high 5 134.417 9.749
3D low 5 149.038 10.268
Strip 6 66.000
3D high 6 63.498
3D low 6 67.291

7.2.2.3 Horizontal Disks

In some cases, the substructures are equipped with horizontal plates of almost
circular shape and with small thickness (as discussed in Section 4.4.1). The
reason for using such plates is to tune the dynamic behavior of the platform.
The plates will add inertia to the system, thus moving the natural periods in
heave, roll and pitch to higher values. At the same time, plates with sharp
edges will contribute to viscous damping and thus reduce the motion response
in the resonant domain. To improve the damping properties, perforation of the
plates is an option. A perforation will, however, reduce the added mass effect
of the plate (Molin and Nielsen, 2004).
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The added mass of a circular disk with radius R oscillating in infinite fluid is

given by Lamb (1975, 144):
A, SR [7.27]
3
In most cases, the plate will be located at the bottom of a vertical column. In
such cases the added mass will be somewhat smaller, depending upon the ratio of
the disk radius to the column radius (see discussion on vertical columns in Section
7.2.2.1).

Figure 7.3 shows examples of the importance of the perforation to the added
mass and linearized damping. The figures are from Molin and Nielsen (2004). The
nondimensional added mass and damping is presented as a function of the “porous
Keulegan—Carpenter number”:

1 —174

KCypp = —5— .
PO 2ut? R

[7.28]

Here, 7 is the perforation ratio (open area divided by total area of disk) and y is the
“discharge ratio”, relating the pressure drop over the disk and the relative fluid
velocity through the disk. It is thus related to the flow resistance through the disk,
which again is dependent upon the local geometry of the perforation. x usually has a

3 T T
Ags/pR3
o5 [|= = ©Bgy/pR®

1.5

107" 100 10! 102
KCpor

Figure 7.3 Added mass and linearized damping for a perforated disk as a function
of the “porous Keulegan—Carpenter number,” KC,,,. Period of oscillation 20 s,
water depth 100 m, radius of disk 10 m and submergence of disk 20 m.
According to theory as described by Molin and Nielsen (2004).
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value between 0.5 and 1.0. Molin (2011) discusses various approaches to estimate
the discharge ratio. It is observed from Figure 7.3 that for small KC,,,, the added
mass as well as the damping tends to zero. This case corresponds to a situation with
a very large perforation area, 7— 1. On the one hand, as r — 0 the added mass tends
toward the solid disk value of [7.27]. The computed damping tends to zero because
the damping due to the edge effect of the disk is not accounted for in this theory.
Including the edge effect (see Molin, 2011), a better agreement with the experi-
ments is obtained for the damping.

7.2.2.4 Transformation of the Added Mass Matrix to a New Coordinate System

Frequently the added mass matrix is computed in a local coordinate system, for
example, as referred to the center axis of a column or pontoon. For further
analysis a different platform coordinate system may be preferred. The trans-
formation between the two coordinate systems may be done as follows. Denote
coordinates in the original (local) coordinate system by x¢ = (x¢,0,z0) and the
new (platform) coordinate system by x; = (x1,)1,2;). Assume the two systems
are parallel, so that:

AX = x1—X9 = (Ax, Ay, Az). [7.29]

The kinetic energy in the fluid while oscillating the body in a certain direction must
be independent of the coordinate system used. By considering the kinetic energy
using the velocity potentials, it can be shown that the 6 x 6 added mass matrix in the
new coordinate system, Ay, is related to the added mass matrix in the original
coordinate system, Ay, by:

A=K"A¢K, [7.30]
where: | K
K=| 3 211 7.31
{03*3 13*3} [7:31]
Here:
0 —Az Ay 1 0 0 0 0 O
Ki=| Az 0 —Ax|,Iz={0 1 0[,053=1[0 0 0. [7.32]
—Ay Ax 0 0 0 1 0 0 O

Details of the derivation as well as the more general form valid also when rotations
are involved may be found in Korotkin (2008).
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7.3 Damping

The damping terms in [7.1] consist of several contributions that may be handled
independently. The following terms will be discussed in more detail.

 Linear radiation damping, related to the radiated waves.

* Viscous damping, mainly due to flow separation around the hull.

* Aerodynamic damping, due to the wind turbine, and to some extent the wind
forces on the tower.

Most floating structures are lightly damped. This means that the damped natural
frequencies are not very different from the undamped natural frequencies. This
implies that damping in most cases is important to the responses close to the natural
frequencies only. However, the damping is generally both frequency-dependent and
amplitude-dependent. This makes it difficult to establish accurate damping esti-
mates. Normally, good physical insight as well as engineering experience is
required to come up with realistic damping estimates. Frequently, model testing
is applied to study the motion behavior of floating structures. If the tested structure
is sensitive to resonant motion, model test results should be interpreted with great
care as viscous damping normally is overestimated in model scale as compared to
full scale.

7.3.1 Radiation Damping

Radiation damping is considered to be a linear damping contribution. For a general,
rigid floating structure the damping matrix will be a full 6 % 6 matrix with frequency-
dependent coefficients. To establish this damping matrix, a 3D radiation-diffraction
approach is needed (see Section 6.4). A structure’s capability to generate waves is
reduced if the structure is deeply submerged. This implies that a surface-piercing
vertical column generally contributes more to the wave radiation damping than, e.g.,
a horizontal pontoon. However, in a strip theory approach, the 2D damping of a
pontoon section may be applied to establish an estimate on the damping for the
complete pontoon. The horizontal, normal force on the pontoon due to a harmonic
motion 7, = 1€’ normal to a section of the pontoon may be written as:

Fin(®) = 1427 @) (~0?) + B3 (@) )L 1,
_ HA,?D)(CO) + %Bﬁim(w) dL(~o™n,) . 7.33]
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The subscript r indicates radiation damping. In [7.33] it is indicated that both the added
mass and damping are frequency-dependent. The radiation effect will only account for
waves radiated perpendicular to the pontoon axis. The 6 by 6 damping matrix can now
be established similarly as shown for the added mass matrix. A strip theory approach
accounts neither for the interaction of the radiated waves from each of the pontoon
strips, nor for the interaction between the pontoons. The interaction effects may in
some cases be significant for some frequencies and directions of oscillation.

Within the context of ideal fluid flow and linear wave dynamics, there exists a
reciprocity relation that relates the wave forces on a fixed body to the forces needed
to oscillate the body in otherwise calm water. This is called the Haskind relation (for
further discussion, see Newman, 1977; Faltinsen, 1990). The relation is valid for
general 3D bodies. Applying the Haskind relation on a vertical column with a
rotational symmetry, simple relations between the wave excitation forces and the
diagonal of the damping matrix are obtained:

2

KBS 7.34)

Brii(w) =V
pgCe

F;
Ca

Here, F; is the wave force in direction i, i = (1, 3, 5) when the waves are propagat-
ing along the x-axis. y = 1/4 fori = 1 and 5 and y = 1/2 for i = 3. In deep water,
[7.34] may be written as:

a)3

y [—
pg’

F|?
oo [7.35]

Bn’i(w) = P

The computation of the wave force on a vertical column is addressed in Chapter 6.
Note that for a substructure with several columns, there may be significant wave
interaction between the columns, modifying the radiated waves and thus the
damping. A summation of the damping contribution from each of the columns
will thus cause errors. One should rather make a summation of the radiated wave
fields, taking phases properly into account, and estimate the damping based upon
the radiated energy. This is what is obtained by using 3D potential theory methods.

The Haskind relation may also be invoked to estimate the radiation damping for
horizontal pontoons. Having established the wave excitation force on a segment d
of the pontoon, the corresponding contribution to the damping may be obtained.
Newman (1962) derived a relation between the 2D wave force and damping for a
long horizontal body in deep water and beam seas. For a segment of the pontoon
this relation is identical to [7.35] using y = 1 and considering three degrees of
freedom: the transverse horizontal direction, the vertical direction and rotation
about an axis parallel to the body axis.
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7.3.2 Viscous Damping

Viscous damping has contributions from all structural elements where flow separ-
ation occurs. Pure skin friction is in most cases so small that it may be disregarded.
The viscous force is normally expressed as a quadratic quantity with respect to the
relative velocity, i.e., on a short, 2D section of a vertical column, the viscous force
may be written as:

AF e = %pCDDUrel’Urel’AZ . [736]
Here, Cp is the drag coefficient, D is the column diameter and U,.; = v, — X(z) is
the relative horizontal velocity between water and structure at the z-level con-
sidered. Az is the length of the short vertical section considered. It is observed that
the viscous force contributes both to excitation via the v% term and damping via xfl .
Further, there is a coupling term between the two that contributes to damping or
excitation depending upon the phase between the wave particle velocity and the
motion velocity.

7.3.3 Linearization of Viscous Damping

In linear dynamic analysis there is a need for linearization of the viscous effect. This
is in particular the case when accounting for viscous damping in frequency domain
analyses. Due to the nonlinear nature of the damping and the coupling to the fluid
velocity, i.e., wave particle and current velocities, it is in general not possible to
perform a consistent linearization of the viscous damping. However, disregarding
the fluid velocities and considering a single-degree-of-freedom (SDOF) system, an
equivalent linear damping can be derived as follows. Consider a long slender
structure, e.g., a cylinder. Denote the 2D damping force acting normal to a short
section of length, dz by Fdz. The force is assumed to be composed of a linear and a
quadratic contribution, i.e.:

The body velocity normal to the cylinder axis is assumed to be harmonic, i.e.,
X = —wxy sin(wt). To find the equivalent linear damping B,, the dissipation of
energy over one cycle of oscillation, 7 = 27/, is considered. By requiring the
dissipated energy to be the same for the equivalent linear system and the quadratic
system, B, is thus found from:

JFB)&a’t = J[le + Box|x|Jxdt = JBe)'czdt : [7.38]
T T T
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Inserting for x and working out the integrals, the equivalent damping is
obtained as:

8
Be = Bl + —(J)xABz . [739]
37

It is observed that the equivalent linear damping is proportional to the velocity
amplitude, wx,4. That implies that an iteration procedure usually must be imple-
mented to establish a proper damping estimate. As the damping is of key import-
ance to the resonant response, one will have to guess a resonant response amplitude,
estimate the equivalent damping, then compute the response and correct the
damping according to the computed response.

Viscous Damping

Consider the following simple 1D example. A small body is exposed to an oscillating
Sflow given by v = vyexp(iwt). The body is moving harmonically in the same direction
with a velocity X = X 4exp (i(a)t + 0) ). The relative velocity is thus given by

Uret = Re{v — X} . The viscous force is given from [7.36]. Considering one cycle of
oscillation, the average dissipated power becomes:

T
1
P=—— JFvichdl,
T
0

where T = 27/ w. In Figure 7.4 the dissipated power is plotted as a function of phasing
between the fluid velocity and the body velocity. It is observed that for cases with

4
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Figure 7.4 Average dissipated power as a function of phase between fluid velocity
and body velocity. Amplitude ratio v,/ ranging from 0 to 2.
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(cont.)

v4 /X4 <1, the damping (dissipated power) is positive independent of phasing between
the fluid motion and the body motion. However, for v4 /X 4> 1, the damping may become
negative for certain phases, implying an excitation effect. For zero fluid velocity the
average dissipated power amounts to % [% pCDsz'J .

The above procedure works fine for a SDOF and in cases where the various
modes of motion are uncoupled or close to uncoupled. For most substructures
the heave mode has little coupling to other modes, while, for example, the
surge and pitch modes may have significant coupling. Frequently the surge
motion is referred to the waterline level, while the eigenmode for pitch may
have a center of rotation far below the waterline. This causes a significant
coupling between the surge and pitch motion when viscous drag forces are
accounted for.

To illustrate this point, consider a spar platform designed as a vertical cylinder
with constant diameter and a pure surge motion. The drag forces in surge and pitch
may then be written as:

Fit) = cjxl\xl ldz = Cir | (21 — 23) = Ca i1 |L

Zb

[7.40]
“ 2 2
Fs(t) = ch 1k |dz = cxlyxly@ .
Zp
Here, z; = 0 and z;, = —L are the top and bottom coordinates of the cylinder.

C = 1/2pCpD, with D being the diameter of the cylinder. Computing the dissi-
pated energy as above, the linearized damping in surge is obtained as:

8 .
B]]]i,, = gxlACL . [741]

Similarly, integrating the pitch moment over one cycle of oscillation and comparing
the quadratic and the linear process, a linearized coupling term between the surge
motion and pitch moment is obtained as:

8 .
Bsyiin = &me (z—z) - [7.42]
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The above approach may be repeated for a pure pitch motion, with the pitch
motion referred to z = 0. The surge and pitch forces corresponding to [7.40]
now become:

2

33
Fif) = Cszs l2is|dz = Cis w@
! [7.43]
; 4 4
Fs(t) = CJZ Zis|is|dz = Cks |xsy(z’4—z”) .

Zp
The linearized damping coefficients for the pure pitch motion are obtained as:

8 ..
Bisiin = %CXSA ( —2)
[7.44]

Bssiin = QCXSA (z/—2) .

From the above relations it is observed that the linearized damping depends upon
the choice of surge and pitch velocity amplitude used as basis for the linearization.
If one focuses on a good linearization of the pitch damping at the pitch natural
period, the coupling effect will cause damping also in surge that may be unrealistic.
To succeed in linearization of the damping, one should aim at reducing the coupling
terms in the damping matrix as much as possible. This is normally obtained by
using a coordinate system in which the modes of motions are close to the eigen-
modes of the system.

Viscous Damping in Coupled Motion

Consider a vertical cylinder with length equal to draft 100 m and diameter 10 m. Center
of gravity is at -70 m. The 2D added mass and drag coefficients are both set to 1.0. A
horizontal mooring system with stiffness 50 kN/m is attached at the waterline level. The
natural periods in surge and pitch are 118.6 and 17.70 s. The pitch eigenmode has a
center of rotation at z = -61.5 m. The linearized coupled damping matrix has been
established by assuming a surge amplitude of 0.7 m and a pitch amplitude of 0.5 deg.
The system is set into free oscillations in calm water. The initial surge amplitude is
1.0 m, while the initial pitch and all initial velocities are set to zero. Two cases are
considered, one using the quadratic damping and one using the linearized damping
matrix. Figure 7.5 shows the results for the two cases.
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(cont.)

It observed that the surge motion is well reproduced using the linearized damping
(upper-left), even if the surge damping force contains large contributions from the pitch
motion (lower-left). Initially, the pitch motion obtained by the linearized equations
follows the motions obtained by using quadratic damping well (upper-right). This is
because the inertia effects dominate initially. After a while, however, the pitch motion is
more and more dominated by the surge natural period in the linearized case. Large
differences are also observed in the pitch drag moment (lower right).

(a) Surge displacement (b) Pitch displacement
1 T T T i 0.2 ! ! ! . .
luadratic drag Quadratic drag
0.8 ===~ Linear damping |4 015 | I | - - -~ Linear damping | |
0.6 H
01 |
04 i I
0.2 | il 0.05 | |
= =)
% of 128 o AT RRtTY
< ) g q
-0 -0.05 f
0.4 —
-0.1 i
—0.6 | 1 I
— [ g
08 B 0.15
1 . . . . . 02 . . . . .
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Time (s) Time (s)
(c) Linear and quadratic damping force (d) Linear and quadratic damping moment

4 T T T T

Quadratic
Linear

Surge damping force (kN)
Pitch damping moment (MNm)
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Figure 7.5 Motion decay in surge and pitch for a floating vertical circular cylinder
using quadratic and linear damping. Upper figures: displacements after an initial
surge of 1.0 m and zero pitch; lower figures: damping force in surge and moment in
pitch.
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7.3.4 The Drag Coefficient

In most practical cases, the viscous forces are related to the pressure distribu-
tion over the structure due to flow separation. That implies that the drag
coefficient, Cp, depends upon the body geometry, including surface roughness
as well as flow conditions. The flow conditions are expressed via three
nondimensional numbers: the Reynolds number, Re = %; the Keulegan—
Carpenter number, KC = %T; and the relative current number, = U./U, . Here,
U is a characteristic flow velocity; Uy is the amplitude of the oscillatory velocity,
either of the body or the flow; U. is a steady current velocity; D is a characteristic
cross-sectional dimension of the body; v is the kinematic viscosity of the fluid; and
T is the period of oscillation. Thorough discussions of the relations between these
parameters and the drag coefficient are given in, e.g., Sarpkaya and Isacsson (1981)
and Faltinsen (1990). Recommended values to be used are found in, e.g., DNV
(2021¢).

For circular cylinders the drag coefficient is sensitive to where flow separation
takes place, which again is sensitive to all the above parameters. For cross-sections
with a rectangular shape, the drag coefficient is less dependent upon the flow
conditions as flow separation occurs at the sharp corners. Classical results for the
drag coefficient for a 2D circular cylinder in steady flow as a function of the

Reynolds number are shown in Figure 7.6. A drop in the drag coefficient for

1.2

Cp

0.6 -

0.4 r

0.2

4 4.5 5 55 6 6.5 7
logo (Re)

Figure 7.6 Drag coefficient for a 2D circular cylinder in steady flow as a function
of the Reynolds number and surface roughness £. Reproduced from DNV (2021¢).
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the Reynolds number in the order of 10° is observed. As the surface roughness of
the cylinder increases, the drop occurs at a lower Reynolds number, and is less than
for a smooth cylinder.

7.4 Wave Excitation Forces
7.4.1 Slender Bodies of General Shape

The estimation of wave excitation forces on floating substructures is now to be
addressed. As for the discussion on the added mass coefficients above, structures
composed of slender vertical cylinders and a horizontal pontoon using strip theory
will be addressed. One of the advantages with this approach is that it is straightfor-
ward to use in a finite element analysis of the structure based upon beam elements.
However, the global forces are focused upon here as these are needed for estimating
the rigid-body motions. Some floating substructures may have a barge-like shape
(see Section 4.4.4). To estimate the wave forces on such structures, 3D methods as
discussed in Chapter 6 should be used.

As for the added mass, the forces need to be referred to a common point of
reference. Further, by using the strip theory approach, it is assumed that the flow
over any cross-section of the columns or pontoons may be considered to be 2D,
even if the cross-sectional dimensions are changing. No hydrodynamic interaction
is assumed between the various structural components.

In computing the six degrees of freedom of rigid-body wave forces, it may be
convenient to refer to a coordinate system located at the mean sea surface, with
z = 0 at the surface level and positive upward.

7.4.2 Wave Forces on a Vertical Column

Consider regular waves propagating in direction S relative to the x-axis. The
complex wave potential may, see Chapter 2, be written as:

_ igCA COSh[k(Z + d)] ei(wtka cosfi—ky sinf)
@  cosh(kd)

. [7.45]

There are two options to estimate the wave force on a vertical circular
column. One may either assume a very slender column, with no diffraction
effects, and apply the Morison equation or one may include diffraction effects
and apply the MacCamy and Fuchs theory. Both these approaches are dis-
cussed in Chapter 6. However, the expressions need to be modified to account
for the fact that the column does not extend to the sea floor. Using a strip
theory approach, this implies that the sectional force is integrated from the
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bottom to the top of the column, i.e., from z =2z, to z =z, (z,<z<0). Itis
assumed that the column axis is located in (x.,y.). Similarly as for the monopile,
the surge and sway forces are now obtained as:

sinh(ks;) — sinh(ksp)
cosh(kd)

F, = ”pgRZCA Cm{ } ei(wt+67kx£cosﬂfkycsinﬁ) COSﬁ.

sinh(ks,) — sinh(ksy)
cosh(kd)

Fy = npgRZCACm{ }e"<wf+5—’“fC°Sﬁ—’<ycsinﬂ> sinf.  [7.46]

Here, C,, and ¢ are given in [6.15], s; = z, + d and s, = z + d. It is observed that
the forces have an extra phase shift as the column is offset from x =y = 0. The
vertical force may be estimated using the pressures from the undisturbed wave, the
Froude-Krylov pressure at the bottom and top surfaces of the column, i.e.:

o 06 (z,
F3 = _”pRZ{Vb ¢a(jb) 7 ¢a(tz)}

y,cosh(ksy) — y,cosh(ks it —lor.cos B—kv.sin
- gRZCA{ : (cth(kc;) B} -t [7.47]

If the column is surface-piercing, z, = 0, there is no wave pressure on the top end
and y, = 0. Similarly, if the column is sitting on the bottom, y, = 0. For wetted end
surfaces, y = 1. Note that a bottom-fixed vertical cylinder piercing the free surface
is not exposed to vertical wave forces.

The moments about the x- and y-axes are obtained similarly as in [6.15] and
[6.16]; accounting for the horizontal offset, the direction of the waves and that the
moment axis is now at the free surface level, the roll and pitch moments are
obtained as:

Fy = npgRC, le —kz;sinh(ks,) + kzj sinh(ks;) + cosh(ks;) — cosh(kss) | .
k cosh(kd)

i @tFd—kxccos f—kycsin ) sinf + F3y.

1 {—kztsinh(kst) + kzpsinh(ks,) + cosh(ks;) — cosh(ksb)}

Fs = —npgR*{4Co
5= ~mpgR G cosh(kd)

ei(thr(kachosﬂ*knyi“'B) cosf — Fsx, [748]
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The last term in the above expressions is due to the moment contribution from the
vertical wave force on the column. Note that in the deep-water case, d — o,
sinh(ks) /cosh(kd) — cosh(ks) /cosh(kd) — ¥ .

The moment around the z-axis, the yaw moment, is obtained from the horizontal

forces:
Fe = —Fiy. + Fox, . [749]

All the above expressions are valid for one single column. If several columns are
present, the total force is obtained by summation over all the columns. If a column
diameter is changing over the length of the column, a pragmatic approach is to split
the column into, e.g., two parts and compute the force on each of the parts
separately. This is illustrated in Figure 7.7. The split may be done into two or
more parts. To obtain a realistic model, the body volume should be conserved. The
vertical wave force at the conical part of the column may be modeled by the wave
pressure at the area representing the difference between the cross-sectional area of
the cylinders. The modeling of this force may be improved by representing the
conical section by more cylinders.

If the distance between the columns is not large compared to the diameter of the
columns, the interaction effect may be important. In such cases, a full 3D analysis
should be performed to obtain accurate estimates on the wave forces.

7.4.3 Wave Forces on a Horizontal Pontoon

Horizontal pontoons in most cases either have a circular or a rectangular
cross-section. In the case of a rectangular cross-section the added mass
coefficient in horizontal and vertical directions differs. Consider the horizontal

Figure 7.7 Vertical column with conical section modeled by two cylindrical
sections.
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Figure 7.8 A horizontal pontoon. Notations used in deriving the wave forces.
o is the direction of the pontoon axis relative to the coordinate system used for the
body. (xl, yl,zp) and (xz, yz,zp) are the coordinates of the end points. S is the
direction of wave propagation. (s,n,z) are the local pontoon coordinates,
parallel and perpendicular to the pontoon axis. The (x,y) and (s, #) planes coincide.

pontoon illustrated in Figure 7.8. A slender body is assumed, implying that the
length of the pontoon is much longer than the characteristic cross-sectional
dimension. Further, long wavelength theory is used, implying that the wave-
length is much longer than the characteristic width of the pontoon. Following
the principles outlined in Faltinsen (1990), the vertical and horizontal forces
on a 2D section of length AL may be written as:

AF, = [pd, + 457 | aaL

[7.50]
AF, = |:pAp + Am a,AL.

Here, 4, is the cross-sectional area of the pontoon; Aﬁ,ZD) is the 2D added mass in

horizontal direction, normal to the pontoon axis; AgD) is the 2D added mass in

vertical direction; a, and a, are the acceleration in the water horizontally, normal to

the pontoon axis and in vertical direction respectively.
To obtain the total forces on the pontoon, the forces in [7.50] have to be

integrated over the length of the pontoon. To perform this integration, it is conveni-
ent to introduce the local (s,n) coordinates, as illustrated in Figure 7.8. The
relations between the two coordinate systems are:

s =Xxcosa+ y sina

. [7.51]
n = —x slna + y cosa.
The coordinates of the end points of the pontoon axis are thus:
§7 = X3 cosa + y; sina
§| = x| cosa + y; sina [7.52]

ny, = n; = —Xxi sina + y; cosa.
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Considering a pontoon of constant cross-sectional shape, it is only the normal
component of the horizontal acceleration, a,, and the vertical acceleration, a, in
[7.50], that vary along the pontoon length. The horizontal acceleration perpendicu-
lar to the pontoon axis may be written as:

a, = —ay, sina + a, cosa = ia,4[—cosp sina + sinf} cos a]e!(@i—kreosp—kvsinf)

— ia,y, Sil’l(ﬂ o a)ei(wt—kxcosﬁ—lg/sin/)’)
cosh (k(zp + d))
cosh(kd)

with a,4 = kg4

[7.53]

Integrating along the pontoon, the following result is obtained for the horizontal
force on the pontoon:

F,= <pAp +A,(12D)>Jandl _ <pAp —|—A512D)> Sil’l(ﬁ— a)ianAeithei(kxcosﬁ+kysinﬁ)dl
L L

i —ik | nsi —a —a
- (’0 Ap + A»(azD)) sin(f — a)ianAe"‘”Je ( sinf—a)+scos(f )> dl

L
52

. —ik | nysin(f—a —ik| s —a
(pAp+A£,2D)) sin(f — a)ia, e'e ( s )> Je <Cosw ))dl

S1

i| wt—knysin(f—a
= (pdy +432”) sin(ﬁ—a)ianAe(’ )

[7.54]

_71 {efist cos(f—a) e*l‘ksl COS(ﬁ*“)}
ik cos(f — a) .

In the limit cos(f — a) — 0, i.e., the waves are propagating perpendicular to the
pontoon axis, the limiting value of the integral is obtained as:

Jeik(scos(ﬁa))dl_) (S2 _Sl) = L. [755]

$1

If the pontoon ends are wetted, a reasonable approximation is to assume that the
pressure in the undisturbed wave (the Froude—Krylov pressure) is acting on the
surfaces, i.e., the force in axial direction becomes:
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ot ot
—iksy cos(f—a)

Fy = A,[p(s1) —p(s2)] = —App [8‘15(51) 8¢(s2)]'
[7.56]
= App - ayge’ @G|

—iksy cos(ﬁfa)]
A .

71€ — he
Here, y = 1 for a wetted surface and zero for a dry surface. Frequently, a pontoon is
attached to column of larger diameter. The end of the pontoon is then dry. On the
other hand, part of the column surface is also dry. It is thus convenient to model both
surfaces as wetted. This will almost cancel the global force contribution from the
intersection. If local forces are required, this approach will not work.

The vertical force on the pontoon is obtained in a similar way as the horizontal
force, i.e., using:

Fy = (pay+477) Javdl
51

_ (pAp +A‘(}ZD))avAei(wt—lmlsin(ﬁ—a)) 1 [e—iksz cos(f—a) _ ,—iksi cos(ﬁ—a)]

ik cos(ff — a)
sinh (k(z, + d) )

cosh(kd)

with  a,4 = kgl
[7.57]
The forces in the support structure’s coordinate system (x, y, z) are obtained as:
F, = —F, sina + F, cosa

Fy, = F, cosa + F; sina [7.58]
Fs=F,.

Horizontal Wave Force on Pontoon

An example of the computed horizontal force on a pontoon of length 30 m in a wave of
length 15 m is shown in Figure 7.9. The force perpendicular to the pontoon axis is shown.
The force is given as a function of the angle between wave propagation and the pontoon
axis. By presenting the result in the format Abs[F, [sin(f — a)] sin(f — a), the sign of the
force relative to the pontoon normal axis is retained. It is observed that the extreme
forces are obtained for (B — o) = £90° . Further, zero force is obtained for waves
propagating along the pontoon axis. For (f — a) = +60°additional zero values appear:
For these angles one wavelength will cover the full pontoon length, i.e.,
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(cont.)
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Figure 7.9 Absolute values of the wave force on a horizontal, submerged pontoon
of length 30 m in a wave of length 15 m, i.e., s; = 0, s, = 30, n; = 0. The abscissa
is the angle of wave propagation relative to pontoon axis. The force is presented as
F= Abs{Fn / [(pA,, +A,SZD))aAsin(ﬂ - a)]} sin(f —a). The solid line is
according to [7.54], while the stars are obtained using [7.55].

7.4.4 Moments Acting on a Horizontal Pontoon

Recall that the (x,y) and (s,n) planes coincide. Similar as for the pontoon forces,
the moments about the (s, 7, z) axes may be written as:

52

M, = (pAp —i—A&w)) (—s)ayds + Fz,

S1

K 52
M, = (pdy + 477 ) | (=25 ands + (pd, + 477 Jmavds. [7.59)

52

M, = (pAp +A§12D)) sa,ds — Fgny

S1
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It is observed that these expressions resemble those of the forces, with one import-
ant difference: the factor s in the integral terms for M, and M,. Working out these
integrals and relating them to the integrals involved in the force expressions, the
moments can be written as:

M, = —KF, + z,F,
s = _ZpFn + anv [760]
M, = KF, — mFi.

=

Here, K is given by:

Sze—ilcsz cos(f—a) _ Sle—iksl cos(f—a) 1

K= e—iks2 cos(fi—a) _ o—iksi cos(f—a) + ik COS(ﬂ _ 0[) ’

[7.61]

Note that K is complex and thus contains phase information. In the coordinate
system of the support structure, the moments become:

Fy= M, = M, cosa — M, sina
Fs= M, = M, cosa+ M, sina. [7.62]
F6 = Mz

7.4.5 Viscous Drag Effects

The viscous forces, as written in [7.36], contain the relative velocity between
water and structure. For a slender vertical structure, this reads U,,; = v, — X.
Here, vj, is the horizontal component of the fluid velocity and x is the horizontal
velocity of the structure. The viscous drag forces are frequently estimated using a
strip theory approach, assuming the length of the structure is much larger than the
characteristic cross-sectional dimension. The drag force on a strip of a vertical
structural member thus becomes, assuming the fluid velocity is larger than the
structural velocity:

1 1
AFp = 5pDCD|v —x|(v —%)Az = EpDcD[v2 — 2w +¥%Az  for (v —%)>0.
[7.63]

v represents an excitation term, while the two remaining terms may represent
damping, i.e., a force opposing the motion or an excitation, depending upon the
phasing between the velocity components and the relative magnitude between
them. In waves, the largest velocities are present close to the free surface, and the
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largest viscous excitation effects are thus present in this region. At greater depth,
the viscous damping effect may be more important. In the above expression, the
horizontal relative velocity is used to estimate the normal force. For a slender
structural member of general orientation, one should use the relative velocity
component normal to the axis of the member in estimating the force. This “cross-
flow principle” is normally assumed to hold if the flow direction is between 45 and
90 deg relative to the member axis (DNV, 2021c). In DNV (2021c¢) additional
recommendations on how to handle the viscous drag forces are also given. In
Section 6.5.1, the viscous wave forces in the splash zone are discussed. The same
effects are experienced on columns of floating structures, with the additional effect
of the motion velocity of the structure.

Due to the nonlinearity of the viscous forces, time domain simulations are
normally required in cases where the viscous effects play an important role in the
forcing.

7.4.6 Cancellation Effects

In the design of floating support structures, the geometric layout can efficiently be
utilized to minimize the wave excitation loads at certain frequencies. Consider the
simple half of a semisubmersible in Figure 7.10. The half semisubmersible consists
of two columns and one pontoon. It is assumed that the columns are sitting on top of
the columns. Assume the waves’ direction of propagation is perpendicular to the
paper plane. The undisturbed pressure in the water, the Froude—Krylov term in the
wave excitation pressure, is then constant along the length of the pontoon. The
vertical force acting on the semisubmersible is approximately given from the
Froude—Krylov pressures acting on the top and bottom of the pontoon multiplied
by corresponding areas:

F3 = pgAp — prAr. [7.64]

Here, A and A7 are the wetted area of the bottom and the top of the pontoon
respectively. In deep water the pressure is given from p = pg{ €. Thus, the
force becomes zero for a wave number k& given by:

_ ln(AB/AT) '

Zr —ZB

K [7.65]

The difference between the top and bottom areas is given from the cross-
sectional area of the columns. By choosing a suitable column cross-sectional
area, pontoon dimensions and submergence, a wanted wave period for
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cancellation may be obtained. It is observed that this expression also holds if
the platform consists of two parallel pontoons. In the case of two parallel
pontoons, there will also be a close-to-zero vertical excitation force if the
distance between the pontoons is half a wavelength. However, as the zero
vertical force corresponds to a wavelength about half the distance between the
pontoons, this wavelength will cause a maximum in the roll motion of the
structure.

Consider waves propagating in the paper plane (Figure 7.10). If the
wavelength is approximately twice the distance between the columns, the
horizontal acceleration in the wave acting on the two columns will have
opposite phase. Thus, a close-to-zero horizontal excitation force is acting on
the platform. It should be noted that wavelengths that correspond to close-to-
zero wave excitation forces on the complete structure in many cases corres-
pond to the wavelengths giving the largest internal forces in the structure.
This is easily understood by considering the case of opposite phase of the
forces on the two columns.

For the spar platform, the lower part of the hull is normally designed with
larger diameter than the diameter at the water line (see Figure 7.7). This
difference in diameter is required to ensure a sufficient buoyancy while at
the same time keeping the natural frequency in heave below the range of wave
frequencies. As for the pontoon, the vertical excitation force may be approxi-
mated by the Froude—Krylov force on the bottom of the spar minus the
vertical component of the Froude—Krylov force acting on the conical part,
simplified as illustrated in Figure 7.7 (right). Thus, a cancellation effect of the
vertical wave force is obtained for a certain wave frequency. In principle it is
possible to design both a semisubmersible and a spar to have a cancellation
frequency at the heave natural frequency. Theoretically, this could significantly

Figure 7.10 Half of a semisubmersible consisting of two columns and one
pontoon.
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reduce the resonant motions. However, due to other design requirements, this
option is not used in practical design.

7.4.7 Wave Forces on Large-Volume Structures: Boundary Element
Method

The basic principles for the 3D boundary element method are outlined in
Section 6.4. In Table 7.1, the added mass and damping for a horizontal pontoon
as computed by strip theory and a 3D boundary element method are compared. In
the below example the corresponding wave excitation forces are compared.

One may question why strip theory approaches should be used when full
3D tools are available. There are several reasons for this. Strip theory is much
faster, both in establishing the numerical model and performing the computa-
tions. This feature makes the method well suited for use in optimization tools.
Further, it is easy to identify the added mass and excitation force components
related to the various structural components. Further, strip theory is ideal for
implementing hydrodynamic forces into a program for global structural ana-
lysis of the foundation as the sectional forces are readily available. However,
the 3D boundary element technique is superior in computing the hydro-
dynamic loads for complex structures accounting for interaction phenomena
between the various structural components.

Wave Forces on a Horizontal Pontoon

The horizontal pontoon used in the example in Section 7.2.2.2 is considered.
The wave forces are computed both using strip theory, using the added mass
coefficients from the previous example, and using the 3D boundary element
method.

The draft and orientation of the pontoon is as before. Water depth of 100 m is
assumed. The waves are propagating in positive x-direction. The real and
imaginary part of the wave forces in the six degrees of freedom as a function of
frequency is obtained as displayed in Figure 7.11. The solid lines are the real
part of the forces as computed by strip theory, the dashed lines are the
corresponding imaginary part. The dots and crosses are the results from the 3D
boundary element method. The forces are scaled by a factor pgl B> for the linear
forces. {4 is the wave amplitude. The moments, computed around origin, are scaled
by pgl.B’.

A clear cancellation effect is observed for modes 1-3 around 0.25 Hz, corresponding
to a wavelength of about 26 m, which is the projected length of the pontoon in the
direction of wave propagation.

Downloaded from https://www.cambridge.org/core. IP address: 52.15.109.247, on 06 May 2025 at 04:52:49, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009341455.008


https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009341455.008
https://www.cambridge.org/core

244 Offshore Wind Energy

(cont.)
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Figure 7.11 Real and imaginary part of the wave excitation forces on the horizontal
pontoon shown in Figure 7.2.
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7.4.8 Time Domain Simulations with Frequency-Dependent Coefficients

As briefly mentioned in Section 7.1, the hydrodynamic added mass and damping
coefficients are frequency-dependent. The frequency dependency of the added
mass is frequently ignored if the structure is slender or deeply submerged (see
discussion of the Morison equation versus the MacCamy and Fuchs solution in
Chapter 6). The frequency dependence of the hydrodynamic coefficients is related
to body’s capability to generate waves when oscillating. Thus, there exists a relation
between the frequency-dependent part of the added mass and the wave radiation
damping.

One of the attractive properties of the linear formulation of the hydro-
dynamic coefficients and excitation forces is the option of solving the equa-
tions of motion in the frequency domain. However, even if it may be justified
to linearize the hydrodynamic problem, that may not be the case for other
parts of the problem such as the aerodynamic loads. The equations of motion
for the complete floating wind turbine must thus be solved in time domain.
This requires special attention to the frequency-dependent added mass and
damping. The problem was addressed by Cummins (1962) and Ogilvie (1964).
Falnes (2002) and Naess and Moan (2013) also discuss how the frequency-
dependent hydrodynamic coefficients may be transferred to time domain. In
time domain, the linear equations of motion may be written (the “Cummins
equation”) as:

(M + AL)ii() + JK(t — hi(e)dz + Cn(t) = F(0). 7.66]
0

K is known as the retardation function or the impulse response function. The
equation is obtained by a Fourier transform of the linear equations of motion in
frequency domain:

{0’ M + A(0)] + ioB(w) + Cln(w) = F(o). [7.67]

The added mass and damping coefficients are spit into a constant and a frequency-
dependent term, A(w) = A, + A'(w) and B(w) = B, + B/(®w). Here, the index
denotes the asymptotic value as the frequency tends to infinity. For a stationary
body, i.e., a body with zero mean forward speed, B, = 0, no waves are created as
the frequency of oscillation tends to infinity. The integral term in [7.66] may be
regarded as a memory effect, as it con