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SAMPLING ERRORS IN THE DETERMINATION
OF BACTERIAL OR VIRUS DENSITY BY THE

DILUTION METHOD

BY J. B. S. HALDANE, F.R.S.
Department of Biometry, University College, London

IN certain bacteriological investigations it is only practicable to obtain an
estimate of density by diluting the culture until a substantial fraction of all
inoculations are negative. This is still more necessary when dealing with
viruses where microscopic methods are at best unreliable and at worst im-
possible. Parker (1938) has applied the dilution method with great success to
the problem of vaccinia virus. The mathematical method was given by Halvorsen
& Ziegler (1933), but while their estimate is entirely correct they do not give the
standard error of the bacterial density estimated, and it seems worth doing so.

Suppose that we have made a number of inoculations with amounts of the
original suspension equal to'cl5 c2, c3, ..., cr, ..., cn times a standard amount.
In the case summarized in Table I (from Parker, 1938) the standard amount is
0-25 c.c. of a 10~9 dilution of Board of Health vaccine, and the values of cr are
2, 5, 10, 20, 50, 100, 200. Let the concentration cr give ar successes and br

failures. Thus c3 = 10, a3=14, 63 = 58.
We desire to obtain an estimate of the expected number of virus particles

in a unit (here 2-5 x 10~10 ml.) of vaccine. If the cr's are integers, x will be a small
fraction.

In the concentration cr the expected number of bacteria is xcr. Thus the
expected value of the failures is E (br) = e~mr («r + br) and of successes

ar = {\-e-*°r){ar + br).

If we only work with one concentration the likelihood of a failures and b
successes is

< • n _p-xc\a
a\b\

This is maximal when its logarithm

L = constant + a log (1 — «-"*) — hex
is maximal.

„ dL ace-** , n
Hence d=r^*-bc=0'

e« = ̂ f6, (1)
as is otherwise obvious.
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290 Sampling errors in the dilution method

We can next calculate the standard deviation a of x, or the amount of
information / concerning it, from the equation

„ -d2L ac2e?x

dx2 (e^- l ) 2

bc2(a + b)
(2)

We desire that a/x should be as small as possible, that is to say that Ix2

should be as large as possible. If ex = m (the expected number of bacteria) per
sample, and if a + b = s, then

7-2 _ m2s
1X ~em-Y

gm j 2
Hence —=- must be a minimum. Differentiating, we find em =

7YI
t — VYl

Hence m = 1-59363, e^m = 0-20318.
Thus the most accurate results will be obtained with a dilution which

contains on an average 1-6 particles, and gives 80% positive results (Fisher,
1921, 1938).

/gm_l a 1-24
The standard error of m is / . In this case — = —r-, whereas, to

V s m V s

take two examples, when 50% of samples are positive e™ = 2, m = 0-69315,

?™ = 1^*, and when 90 % are positive em = 10, m = 2-30259, CT™ = ~ . Thus the
accuracy does not vary very greatly, but the best results will be obtained when
the majority of samples are positive.

Returning to the case where a number of concentrations are used, we have

L = constant + 2ar log (1 -e~crx) -xLbTcr, \

dL arcT v f c - n f (3)

This equation was obtained by Halvorsen & Ziegler, who give tables which are
sometimes useful for solving such equations.

and

Let us apply these equations to Table I.
Equation (3) gives

2 , 30 , 140 400 2450 5800 13400
c 1 «200ar 1— x t/ — J.

Such equations can be solved within an hour or so with no tables beyond an
ordinary table of logarithms, by successive approximations. As a first approxi-
mation let us solve equation (1) for the bottom row but one, namely, ar = 58,
br = 11, cr= 100, which is likely, as appears from the above calculation, to give
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a more accurate result than any of the other dilutions. We have eloOx = jj,
whence e* = 1-01853, x = 2-3026 log10 1-01853 = 0-01836.

As a preliminary attempt to solve equation (5) we put, on the left-hand
side, x = 0-0185. Hence log10 e

x = 0-4343a; = 0-00803, and the denominators can
be readily calculated. The sum of the left-hand side is 4977, which is too large.
So a higher value of x must be tried. Putting x = 0-195 we get the value 4555,
which is too low. cc = 0-190 gives 4767-5, which exceeds 4745 by 13-5 only.
Since a difference of 0-01 in x causes a difference of 422 in the total, this implies
that x = 0-01903. However, in view of the standard error to be found later,
0-0190 is a sufficiently accurate value.

The amount of information about x is

ie2* 150 e5* 1400 elte 8000 e20*
~(e2*-l)2 + (e5*-l)2 + (elte-l)2 + (e2te-l)2

122,500e5te 580,000 e10(te 2,680,000 e20te

+ (e50o;_1)2 + (e100x_1)2 + (g20te_1)2 •

The values of such quantities as e2te —1 have already been determined
during the calculation of x. Hence we readily find

7 = 421,315; cr = 0-0015.

Thus x = 0-0190 ±0-0015.

This is the expected number in 2-5 x 10~10 c.c. of the original vaccine. In
other words 1 c.c. of the vaccine contains (76 ± 6) x 106 virus particles.

As an alternative to solving equation (5) we may solve equations (1) and (2)

separately for each concentration, and take x= * r, / = 2 / r . This gives
1,1 r

x = 0-0182 ±0-0015.
The result is not quite so accurate. But the calculation, which is shown in

Table I, is very rapid, and quite good enough for most practical purposes.
Parker took the point of 50% success at c = 40. This gives e~cx — \, or

x = 0-0173. This is a possible value, but distinctly on the low side.
The goodness of fit may be calculated by the %2 method. If ar' and br' be the

calculated values of ar and br, and d = ar — ar' = 6/ — br, then

arbr

d2

Unfortunately, Parker used a formula which in my notation is 2 —-,. His value
ar

is thus too low. My estimate of x gives ^2 = 3-53. The number of degrees of
freedom is 6, for one has been lost by estimating x. Thus P = 0-74. Parker's
theory, when x2 is correctly calculated, gives x2 — 3-59. A value of x intermediate
between Parker's and my own would give a minimum value of x2- However,
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this particular test is not the best possible for estimating x, though it is very
nearly the best for testing the consistency of the data, that is to say whether
they agree with the particular theory in question, as Parker's very clearly do.

Table I. Parker's data on "Board of Health" vaccine
cr
2
5
10
20
50
100
200

«r
1
6
14
20
49
58
67

K
75
69
58
51
23
11
2

xr
0006625
0-016676
0021622
0016543
0022823
0018362
0-017705

K
22,800
21,563
29,829
72,420
84,490
130,862
82,388

Irx
152-2
359-6
6450
11980
18940
2402-9
1457-7

6/ (calc.)
73-2
68-2
59-5
48-6
27-8
10-3
1-5

X2

1-23
011
0-23
0-39
1-38
005
0-14

444,352 8109-4 3-53

cr = dose of vaccine, the unit being 2-5 x 10~10 c.c.
aT — number of positive inoculations.
br = number of negative inoculations.
xr — deduced value of x, the expected number of virus particles in a unit dose.
/ , = amount of information concerning xr.
br' is calculated from the weighted mean value of x.

We can easily see how to make the corresponding calculation if just two or
more particles are needed to cause infection. Thus in the case of two particles,
and a single dilution

b

So the estimate of x is given by

<*x a + b
.(6)

1 + ex b

Or if eex = m, loge m = r~~l> which can readily be solved with a table of

natural logarithms.

L = constant + a log [1 - e~cx (1 + ex)] + b log ]e~cx (1 + ex)}.

H e n c e I=-

I xWe can readily find the weighted mean E Jy-r of the values of x so obtained

for different dilutions. Parker's data are so treated in Table II.

x = 0-0352 ±0-0024.

(Parker's calculated values appear to correspond to x = 0-066.) The trend of the
different xr values is obvious, and it is clear that this hypothesis will not fit the
facts.

The x2 is a ' s o large. Parker's value, correctly calculated, is 30-4, which is
much smaller. Where data do not agree with the hypothesis it is naturally to
be expected that the value of x giving the maximum likelihood will not give
the minimum x2-
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Table II. Parker's data on the hypothesis that two particles

are needed for an infection

<v
2
5

10
20
50

100
200

°r
1
6

14
20
49
58
67

K
75
69
58
51
23
11
2

xr

008381
0-09314
008090
005237
0-04700
003293
0-02698

IT

547
1,624
5,966

37,153
42,479
23,541
58,803

170,113

SUMMARY

ITxT

45-84
151-33
482-66

1947-70
1998-64
775-21

1586-50

w75-820
73-965
68-459
59-975
34186
9-230
0-486

X2

3-744
12-283
32-528
8-649
6-977
0-392
4-750

69-321

The statistical theory of virus determination by the dilution method is
considered. It is shown that an algebraical method gives a solution which is
rather more reliable than that given by the graphical method, and whose
standard error may be calculated.

REFERENCES

FISHER, R. A. (1921). On the mathematical foundations of theoretical statistics. Philos.
Trans. A, 222, 309-68.

(1938). Statistical Methods for Research Workers. Edinburgh: Oliver and Boyd.
HALVOESBN, H. O. & ZIEGLBE, N. R. (1933). Application of statistics to problems in

bacteriology. I. A means of determining bacterial population by the dilution method.
J. Bad. 25, 101-21.

PARKER, R. F. (1938). Statistical studies of the nature of the infectious unit of vaccine virus.
J. exp. Med. 67, 725-38.

(MS. received for publication 25. n. 39.—Ed.)

https://doi.org/10.1017/S002217240001192X Published online by Cambridge University Press

https://doi.org/10.1017/S002217240001192X

