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A DUAL TO TIGHT CLOSURE THEORY

NEIL EPSTEIN and KARL SCHWEDE

Abstract. We introduce an operation on modules over an F -finite ring of
characteristic p. We call this operation tight interior. While it exists more
generally, in some cases this operation is equivalent to the Matlis dual of tight
closure. Moreover, the interior of the ring itself is simply the big test ideal. We
directly prove, without appeal to tight closure, results analogous to persistence,
colon capturing, and working modulo minimal primes, and we begin to develop
a theory dual to phantom homology. Using our dual notion of persistence, we
obtain new and interesting transformation rules for tight interiors, and so in
particular for the test ideal. Using our theory of phantom homology, we prove a
vanishing theorem for maps of Ext. We also compare our theory with Blickle’s
notion of Cartier modules, and in the process we prove new existence results
for Blickle’s test submodule. Finally, we apply the theory we developed to the
study of test ideals in nonnormal rings, proving that the finitistic test ideal
coincides with the big test ideal in some cases.

§1. Introduction

Tight closure is an operation on modules over a commutative ring of
characteristic p > 0. Indeed, given any modules N ⊆M over a ring R, the
tight closure of N in M is a submodule of M , N∗ ⊇N . Tight closure has
had many interesting applications but has turned out to be a decidedly
nongeometric operation since it does not commute with localization (see
[BM]). In this article, we develop a dual theory to tight closure that does
commute with localization.

Indeed, suppose that M is any R-module. We introduce a new operation,
the tight interior of M . This is a submodule of M which we denote by M∗R,

Received October 29, 2011. Revised August 14, 2012. Accepted March 8, 2013.
First published online October 31, 2013.
2010 Mathematics Subject Classification. Primary 13A35; Secondary 13B22, 13B40,

14B05, 14F18.
Epstein’s work was partially supported by a grant from the German Research Foun-

dation. Schwede’s work was partially supported by National Science Foundation grants
DMS-1064485 and DMS-0969145, by a Sloan Fellowship, and by National Science Foun-
dation postdoctoral fellowship 0703505.

© 2014 by The Editorial Board of the Nagoya Mathematical Journal

https://doi.org/10.1215/00277630-2376749 Published online by Cambridge University Press

http://dx.doi.org/10.1215/00277630-2376749
http://www.ams.org/msc/
https://doi.org/10.1215/00277630-2376749


42 N. EPSTEIN AND K. SCHWEDE

or simply M∗ if the context is clear (see Section 2 for the definition). In
the case that R is local, complete, and F -finite and M is finitely generated,
then the tight interior operation simply corresponds to the Matlis dual of
(M∨)/(0∗M∨) (see Corollary 3.6). However, the theory seems well behaved
in greater generality (although we still largely work in the F -finite case).
For example, the construction of M∗ always commutes with localization.
Furthermore, we show that many of the key properties of tight closure—
persistence, colon capturing, working modulo minimal primes, and others—
have direct analogues for this operation (which we prove directly without
appeal to tight closure theory; see, e.g., Proposition 2.8 and Theorems 3.4
and 3.8). We state one variant of persistence in this setting below in order
to illustrate our meaning.

Theorem 3.4 (co-persistence). Let j : R → S be a ring homomorphism
such that both Rred and Sred are F -finite. Let M be an R-module. Then the
natural evaluation map ε : HomR(S,M)→M restricts to the (−)∗ level. In
other words, we have a map

(
HomR(S,M)

)
∗S →M∗R

induced by restriction of ε.

Interestingly, for a reduced F -finite ring R, if we view R as a module
over itself, then R∗ is simply the big test ideal of R. This was essentially
pointed out in [HT, Lemma 2.1], but Matlis-dual statements have a much
longer history (see, e.g., [HH2, Proposition 8.23(c)], [Sm2, Proposition 4.4],
[Sm1], [LS1], [LS2]). In fact, this body of work motivates our definition in
general. Indeed, many of the properties of tight interior mentioned above
(working modulo minimal primes, persistence, colon capturing, etc.) lead to
interesting and useful statements simply for big test ideals.

One of the most interesting notions to come out of tight closure theory
is that of phantom homology and phantom resolutions. In Section 4, we
develop a dual theory. One of the most celebrated results in tight closure
theory is the vanishing theorem for maps of Tor. Using our dual theory of
co-phantom resolutions and co-persistence, we directly obtain a vanishing
theorem for maps of Ext, stated below.

Theorem 4.9 (vanishing theorem for maps of Ext). Consider a sequence
of ring homomorphisms A ↪→ R → T such that T is F -finite and regular
(or simply strongly F -regular), R is a module-finite torsion-free extension
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A DUAL TO TIGHT CLOSURE THEORY 43

of A, A is a domain, and both A and R are F -finite. Let M be a finite
A-module of finite injective dimension. Then for all i≥ 1, the natural maps
ExtiA(T,M)→ ExtiA(R,M) are zero.

Another motivation for this work is to develop connections with recent
work of Blickle. In [Bl] (see also [BlB]), a theory of test submodules was
developed. Suppose that R is an F -finite ring and that M is a finitely gen-
erated R-module, and fix a graded ring D of maps φ : eM →M (for various
e > 0) with multiplication via composition (see [LS2], [S2]). In this case,
Blickle associated a submodule τ(M,D)⊆M which he called the test sub-
module of M with respect to D (although existence of this submodule is an
open question in general; see Section 5). However, for a general module M ,
if we pick the canonical choice of graded ring CM (namely, CM is made up of
all possible maps), then we obtain the following theorem, which also proves
existence of τ(M,D) in a new case.

Theorem 5.6. Suppose that R is an F -finite reduced ring and that M

is a finitely generated R-module whose support is equal to the support of R.
Then M∗ = τ(M,CM ). In particular, τ(M,CM ) exists.

Note that in the case that M = R, τ(R,CR) merely coincides with the
big test ideal τb(R) motivating Blickle’s original definition. In the case that
M =R, the fact that R∗ = τ(R,CR) was essentially proved in [LS2] (see [S1],
[S2]).

Motivated by our observations on this interior operation, especially with
regards to its behavior modulo minimal primes, we also study the behavior
of the test ideal for nonnormal rings. In particular, we obtain the following
theorem, which can be viewed as a variant of [Sm3, Proposition 4.4].

Theorem 7.10 (see Theorem 7.5). Suppose that R is an F -finite reduced
ring and that R⊆RN is its normalization with conductor c. If RN is strongly
F -regular, then

c= τfg(R) = τb(R).

Here c is the conductor ideal and τfg(R) is the finitistic (or classical) test
ideal as originally defined in [HH2, Definition 8.22].

In order to prove this, we show several transformation rules for tight
interior (and thus for big test ideals) under ring maps; these also rely on
co-persistence as mentioned above. We also explore the behavior of both the
big and finitistic test ideal under normalization in general (see Section 7).
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44 N. EPSTEIN AND K. SCHWEDE

However, the transformation rule for tight interior under finite maps should
be of particular interest. We state this result below.

Corollary 6.5. Suppose that R is an F -finite reduced ring of charac-
teristic p > 0 and that R ⊆ S is a finite extension with S reduced. Further
suppose that L is a finite R-module whose support agrees with R and that
M is a finite S-module whose support agrees with S. Then,

L∗ =
∑
e≥0

∑
φ

φ
(
e(M∗)

)
,

where φ ranges over all elements of HomR(
eM,L).

In particular, if L=R and M = S, then

τb(R) =
∑
e≥0

∑
φ

φ
(
eτb(S)

)
,

where φ ranges over all elements of HomR(
eS,R).

This result should be viewed as complementary to several of the main
results of [ST]. In particular, this implies that the main result of [ST] is
closely related to persistence in tight closure.

Remark 1.1. As mentioned above, many of the results of this paper can
be viewed as a formal dual of the results of tight closure (even though they
are applied to modules for which Matlis duality need not apply). Indeed, a
number of the theorems contained herein use roughly the same proofs as in
tight closure theory once we make the following identifications:

notion dual notion
kernel image
sum intersection
tensor (covariant) Hom

§2. Definitions and basic properties of tight interior

Let R be a Noetherian ring of prime characteristic p > 0, such that Rred

is an F -finite Noetherian ring of prime characteristic p > 0. Use the usual
conventions q = pe, qj = pej , q ′ = pe

′ , and so forth. For an R-module M and
integers e≥ 0, let eM denote the R-R bimodule, with element set eM = {ex |
x ∈M} formally the same as that of M , with the same additive structure,
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A DUAL TO TIGHT CLOSURE THEORY 45

and with R-R bimodule structure given by r · (ex) · s= e(rqsx) for r, s ∈R

and ex ∈ eM .
Let M be an R-module. For a power q0 of p and c ∈R◦ (recall that R◦ is

the elements of R not contained in any minimal prime), let

M∗[c, q0] :=
∑
q≥q0

im
(
HomR(

eR,M)→M
)
,

where the map in question sends a map g to g(ec). Then we define the tight
interior of M , M∗ via

M∗ :=
⋂
c∈R◦

⋂
e0≥0

M∗[c, p
e0 ].

We will consider how the tight interior changes as we vary the ring we are
working over. Therefore, if M is both an R- and S-module, then we use M∗R
and M∗S to denote the tight interior of M as an R-module and S-module,
respectively.

We start by first observing how this operation behaves with respect to
module maps.

Lemma 2.1. Let f :N →M be a map of R-modules. Then f(N∗)⊆M∗.

Proof. Suppose that z ∈ N∗. Thus, for every c ∈ R◦ and for every
e0 ≥ 0, there exist e1, . . . , en > e0 and φi :

eiR → N , ei ≥ e0 such that z =∑n
i=1 φi(

eic). But then f(z) =
∑n

i=1 f(φi(
eic)).

Of course, the above map is not generally surjective. We now note that
when computing interiors, we may “reduce to the reduced case,” as follows.

Proposition 2.2. Let M be an R-module, and let n be the nilradical
of R, so that Rred =R/n. Then

M∗R = (0 :M n)∗Rred
.

Proof. Let e0 be a fixed integer which is large enough that n[pe0 ] = 0. Then
for any e≥ e0, we have

HomR(
eR,M) = HomR(Rred ⊗Rred

eR,M)

∼=HomRred

(
eR,HomR(R/n,M)

)
(2.2.1)

∼=HomRred

(
eR, (0 :M n)

)
.
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All these isomorphisms are fully canonical and from the surjection R�Rred,
exactness of the e(−) functor and left-exactness of the Hom functor, we have
a canonical injection HomRred

(e(Rred), (0 :M n)) ↪→ HomRred
(eR, (0 :M n))

given by restriction. Combining this with (2.2.1) and tracing what happens
to elements, we see that M∗R ⊇ (0 :M n)∗Rred

.
Conversely, for any d ≥ 0, consider the map d(F e0) : dR → d+e0R which

sends dr 	→ d+e0(rp
e0 ). This induces a map Ψ : HomR(

d+e0R, (0 :M n)) →
HomR(

dR, (0 :M n)) with Ψ(φ)(dr) = φ(d+e0(rp
e0 )) and hence a map

Φ : HomR

(
d+e0R, (0 :M n)

)
→HomR

(
dRred, (0 :M n)

)
,

since n[p
e0 ] = 0. Obviously, HomR(

dRred, (0 :M n)) = HomRred
(dRred, (0 :M

n)), and by (2.2.1) we have HomR(
d+e0R, (0 :M n)) ∼= HomR(

d+e0R,M).
Combining these isomorphisms gives us

Φ′ : HomR(
d+e0R,M)→HomRred

(
dRred, (0 :M n)

)
.

Finally, for any c ∈R◦, we have d+e0(cp
e0 ) ∈ d+e0R◦. It follows from construc-

tion that (Φ′(φ))(dc) = φ(d+e0(cp
e0 )) ∈ (0 :M n)⊆M . Thus, for any d≥ 0,

M∗R[c
pe0 , pe0+d]⊆ (0 :M n)∗Rred

[c, pd].

Summing over these terms completes the proof.

An element c ∈ R◦ is called a q0-weak co-test element if M∗ =M∗[c, q0]
for all R-modules M . We call c a co-test element if M∗ = M∗[c,1] for all
R-modules M . It is clear by definition that M∗ ⊆M for all R-modules M .
To see that co-test elements exist, we show that in cases we care about,
they coincide both with so-called big test elements and, as a bonus, with the
nontrivial elements of R∗.

Proposition 2.3. Let R be an F -finite reduced ring. Then τb(R) =R∗.

Proof. This is a direct application of the equivalence (i) ⇐⇒ (ii) from
[HT, Lemma 2.1], with a=R and re = 1= x

(e)
1 for all e.

Remark 2.4. Let R be an F -finite reduced ring. By [LS2] (also see [HT,
Lemma 2.1]), we have W−1τb(R) = τb(W

−1R) for any multiplicative subset
W of R, and hence we have W−1(R∗R) = (W−1R)∗(W−1R).

By the same remark, if R is local, then τb(R)⊗R R̂ = τb(R̂), and hence
we have R̂∗R = R̂∗R̂.
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Theorem 2.5. Let R be an F -finite reduced ring. Then R◦ ∩R∗ is pre-
cisely the set of all co-test elements of R.

Hence, for any c ∈R◦, c is a co-test element ⇐⇒ c ∈R∗ ⇐⇒ c ∈ τb(R).

Proof. It is clear from the definitions that any co-test element c of R is
in R∗. To see this, simply note that R∗ =R∗[c,1] and consider the identity
map on R.

Conversely, let c ∈ R◦ ∩ R∗, and let M be an arbitrary R-module. Let
q ′ = pe

′ be a power of p, let g ∈ HomR(R
1/q ′ ,M), and let z = g(c1/q

′
). Let

d ∈ R◦, and let e0 ≥ 0 be an integer. Since c ∈ R∗, there are some e1 ≥ e0
and R-linear maps φ(e) :R1/q →R such that

c=

e1∑
e=e0

φ(e)(d1/q).

Then for each such e, (φ(e))1/q
′ is an R1/q ′ -linear map (hence also an R-linear

map) from R1/qq ′ to R1/q ′ . And we have

z = g(c1/q
′
) =

e1∑
e=e0

g
([
φ(e)(d1/q)

]1/q ′)

=

e1∑
e=e0

g
(
(φ(e))1/q

′
(d1/qq

′
)
)
=

e1∑
e=e0

(
g ◦ (φ(e))1/q

′)
(d1/qq

′
)

=

e1+e′∑
e=e0+e′

(
g ◦ (φ(e−e′))1/q

′)
(d1/q).

But each g ◦ (φ(e−e′))1/q
′ ∈ HomR(R

1/q,M). Hence, z ∈ M∗[d, q ′q0] ⊆
M∗[d, q0].

Since every element of M∗[c,1] is generated by elements like the z given
above, it follows that M∗[c,1]⊆M∗ (since d and q0 were chosen arbitrarily),
whence M∗ =M∗[c,1]. Since M was arbitrary, c is a co-test element.

The last statement of the theorem follows by combining the first statement
with Proposition 2.3.

Hence, by Remark 2.4, completely stable co-test elements exist in the
strong sense that if c is a co-test element, so is c/1 ∈W−1R for any multi-
plicative set W , and so is c/1 ∈ R̂p for any p ∈ SpecR.

Let c be a co-test element. It is clear from the definition that for all d ∈R◦,
dc is also a co-test element.
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Remark 2.6. Since big test elements coincide with co-test elements at
least in most of the cases of interest in this work, we often use the term big
test element instead of co-test element in order for the language contained
in this paper to appear more familiar to experts.

Proposition 2.7. Let R be a ring such that Rred is F -finite. Then for
any R-module M , (M∗)∗ =M∗.

Proof. It is clear from the definition that N∗ ⊆N for all N . So we need
only show that M∗ ⊆ (M∗)∗.

Suppose first that R is not reduced, and let n be the nilradical of R. Then
by Proposition 2.2, we have

(M∗R)∗R = (0 :M∗R n)∗Rred
= (0 :(0:Mn)∗Rred

n)∗Rred
=
(
(0 :M n)∗Rred

)
∗Rred

,

where the third equality holds because (0 :M n)∗Rred
is a submodule of

(0 :M n), and hence its annihilator contains n.
Therefore, we may assume from now on that R is a reduced F -finite ring.

By [HH1, Theorem 3.4] (see [HH2, Section 6]), there is an element c ∈ τb(R)∩
R◦, which by Theorem 2.5 is a co-test element. Let z ∈M∗. In particular,
then, z ∈M∗[c2,1]. That is, there is some e1 such that there are R-linear
maps ge : R

1/q →M for each 0 ≤ e ≤ e1 such that z =
∑e1

e=0 ge(c
2/q). Now

define he : R
1/q → M via r1/q 	→ ge((cr)

1/q). This is clearly R-linear, and
since c is a co-test element, imhe ⊆M∗. In particular, z =

∑e1
e=0 he(c

1/q) ∈
(M∗)∗[c,1] = (M∗)∗ again since c is a co-test element.

Proposition 2.8 (minimal primes). Let R be a ring such that Rred is
F -finite, let M be an R-module, and let p1, . . . ,pn be the minimal primes
of R. Then

M∗R =

n∑
i=1

(0 :M pi)∗(R/pi).

Proof. By Proposition 2.2, we may immediately assume that R is reduced.
Next, we show that (0 :M pi)∗(R/pi) ⊆M∗R for all i. Let p= pi be a minimal

prime, and pick z ∈ (0 :M p)∗(R/p). Let c ∈ R◦, and let e0 ≥ 0. Then, in
particular, c ∈ R \ p, which means that c̄ ∈ (R/p)◦. So there exists e1 ≥ e0
such that there are (R/p)-linear maps ge : e(R/p)→ (0 :M p) for e0 ≤ e≤ e1,
where z =

∑e1
e=e0

ge(
ec̄). Consider the compositions ke:

eR� e(R/p)
ge→ (0 :M p) ↪→M.
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Each ke is R-linear, and
∑e1

e=e0
ke(

ec) = z. Since c and e0 were arbitrary,
z ∈M∗R.

Conversely, let z ∈M∗R. Since R is reduced, we may let c be an element
of the conductor of R that is a big test element of R, such that the image c̄i
of c in R/pi is a big test element of R/pi for all i. To find such a c, fix any
c′ ∈ R◦ such that both R and each R/pi are regular after inverting c′. We
may then take c to be a sufficiently large power of c′. We will use the fact
(Theorem 2.5) that big test elements and co-test elements coincide. Since c2

is a co-test element of R, there is some e1 ≥ 0 such that there exist R-linear
maps ge : eR→M such that z =

∑e1
e=0 ge(

e(c2)). Let α :R ↪→
⊕n

i=1(R/pi) be
the canonical inclusion map. Let β :

⊕n
i=1(R/pi)→ R be the map induced

by multiplication by the conductor element c, considering
⊕n

i=1(R/pi) to
be a subring of the normalization of R. Then β ◦ α is the homothety map
given by multiplication with c. For each j, let γj : R/pj ↪→

⊕n
i=1(R/pi) be

the canonical inclusion. Let α(e), β(e), and γ
(e)
j be the corresponding maps

on peth roots for each e≤ e1. Then since c̄j is a co-test element of R/pj and
g ◦ β(e) ◦ γ(e)j ∈ HomR(

e(R/pj),M) ∼= HomR/pj (
e(R/pj), (0 :M pj)) for each

1≤ j ≤ n, we have zj,e := g(β(e)(γ
(e)
j (ec̄j))) ∈ (0 :M pj)∗(R/pj). Hence,

z =
∑
e

ge
(
e(c2)

)
=
∑
e

ge
(
β(e)

(
α(e)(ec)

))

=
∑
e

g
(
β(e)

( n∑
j=1

γ
(e)
j (ec̄j)

))
=
∑
j

∑
e

zj,e ∈
n∑

j=1

(0 :M pj)∗(R/pj).

Combined with Proposition 2.3, this leads to a new description of the
big test ideal of certain reduced rings, which has obvious connections to the
work of [HH3], [BSm], [HT], [ST], [V], and [T]. We will return to this issue
in Section 7.

Corollary 2.9. Let R be an F -finite reduced Noetherian ring of positive
prime characteristic, and let {p1, . . . ,pn} be the minimal primes of R. Then

τb(R)⊆
n∑

i=1

(0 : pi),

with equality if all of the quotient domains R/pi are strongly F -regular.

Proof. Observe that R∗R =
∑n

i=1(0 : pi)∗(R/pi) ⊆
∑n

i=1(0 : pi) with equal-
ity if each of these modules equals its tight interior, which follows (by Propo-
sition 2.14) if R is strongly F -regular.
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We now discuss a transformation rule for tight interior under a flat mor-
phism that sends a test element to a test element. We can think of this as a
reverse sort of persistence.

Proposition 2.10. Let φ :R→ S be a flat homomorphism of reduced F -
finite rings such that there is some c ∈R which is a big test element for R

and that φ(c) is a big test element for S. Then for any R-module M , we
have the following.
(i) There is a containment (S ⊗R M)∗S ⊆ S ⊗R (M∗R) as S-submodules of

S ⊗R M .
(ii) If additionally we assume that for any power q = pe of p the natural S-

module map S ⊗R R1/q → S1/q is an isomorphism, then S ⊗R (M∗R) =
(S ⊗R M)∗S .

Proof. First we prove (i). For any α ∈ (S ⊗R M)∗S , there exist S-linear
maps ge : S

1/q → S ⊗R M with α=
∑e1

e=0 ge(φ(c)
1/q). Let je : S ⊗R R1/q →

S1/q be the natural map given by s⊗ r1/q 	→ sφ(r)1/q. Then
∑

e(ge ◦ je)(1⊗
c1/q) =

∑
e ge(φ(c)

1/q) = α.
But ge ◦ je ∈ HomS(S ⊗R R1/q, S ⊗R M)∼= S ⊗R HomR(R

1/q,M), where
the isomorphism holds because R is F -finite and S is R-flat. Thus, there exist
n ∈N, si,e ∈ S, and hi,e ∈HomR(R

1/q,M) such that ge ◦je �
∑n

i=1 si,e⊗hi,e.
Since each hi,e(c

1/q) ∈M∗R, we have

α=
∑
e

(ge ◦ je)(c1/q) =
∑
i

∑
e

si,e ⊗ hi,e(c
1/q) ∈ S ⊗R M∗R,

as required.
For (ii), pick z ∈ M∗R. There exist he ∈ HomR(R

1/q,M) with z =∑
e he(c

1/q). Now

1⊗ he ∈ S ⊗R HomR(R
1/q,M)∼=HomS(S ⊗R R1/q, S ⊗R M)

∼=HomS(S
1/q, S ⊗R M),

where the last isomorphism holds by assumption. Hence, we have each
(1⊗ he)(φ(c)

1/q) ∈ (S ⊗R M)∗S , so that their sum 1⊗ z ∈ (S ⊗R M)∗S .

Note that the hypothesis in (ii) is automatically satisfied if R→ S is étale.
Indeed, variants of the above in the context of test ideals were explored exten-
sively in [BSm]. In particular, one might expect a number of improvements to
Proposition 2.10 following the ideas of [BSm] (also see [HT, Theorem 3.3]).

In particular, we get corresponding results regarding localization and com-
pletion, as follows.
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Corollary 2.11. Let R be an F -finite reduced ring, and let M be an
R-module. If R is local, then R̂⊗R (M∗R)∼= (R̂⊗R M)∗R̂. If W is any mul-
tiplicative set, then W−1(M∗R)∼= (W−1M)∗(W−1R).

Proof. If R is F -finite and reduced, then so is W−1R, and it is clear that
W−1R ⊗R R1/q ∼= (W−1R)1/q. If R is moreover local, then it follows from
considering the inverse limit of the R-modules R/(m[q])n (for fixed q and
varying n) that R̂1/q ∼= (̂R1/q)∼= R̂⊗R R1/q, where the second isomorphism
follows from the fact that R1/q is finitely generated as an R-module. Then
the result follows from Proposition 2.10(ii).

Definition 2.12. We call a ring R co-F -regular if for all R-modules M ,
M =M∗.

In particular, Corollary 2.11 shows that if R is co-F -regular, so is RW for
all multiplicative sets W ⊆R. The following is a strong converse.

Proposition 2.13. Let R be an F -finite reduced ring. Suppose either that
Rm is co-F -regular for all m ∈Max(R), or that there is some set f1, . . . , fn ∈
R such that (f1, . . . , fn) =R and Rfi is co-F -regular for all 1≤ i≤ n. Then
R is co-F -regular.

Proof. Let M be an R-module. Then we have either (M∗R)m = (Mm)∗Rm
=

Mm for all m ∈Max(R), or (Mfi)∗Rfi
= (M∗R)fi =Mfi for all 1≤ i≤ n. Since

equality of modules is a local property, both with respect to localization at
points and with respect to open covers, the conclusion follows.

In the situations dealt with here, however, co-F -regularity is not really a
new concept.

Proposition 2.14. Let R be a ring such that Rred is F -finite. Then R

is co-F -regular if and only if it is strongly F -regular.

Proof. Since both conditions imply that the ring is reduced (the former
because of Proposition 2.2), we may assume that R is an F -finite reduced
ring.

If R is co-F -regular, then in particular R=R∗ = τb(R), so that R is also
strongly F -regular.

Conversely, suppose that R is strongly F -regular. Let c be a big test
element of R, and let M be any R-module. For some q there is an R-linear
map g : R1/q → R sending c1/q 	→ 1. Let z ∈M , and let h : R→M be the
map r 	→ rz. Then (h◦g) ∈HomR(R

1/q,M) and (h◦g)(c1/q) = z, so z ∈M∗.
Hence, M =M∗, and since M was arbitrary, R is co-F -regular.
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§3. Co-persistence, co-contraction, co-colon capturing, and dual-
ity with tight closure

While tight interior is a distinct notion compared with tight closure, it has
many analogous formal properties. In this section we establish these results.
In somewhat more specialized settings, we also prove that tight interior is
dual to tight closure (Corollary 3.6).

Persistence is one of the most important tools in any closure operation.
Here we discuss a dual notion in the sense of Remark 1.1.

Lemma 3.1 (co-persistence, first case). Let j : R → S be a ring homo-
morphism between not necessarily reduced rings, let M be an R-module, and
consider HomR(S,M) as an S-module. Assume either
• that R has a co-test element c whose image in S is not in any minimal

prime of S, or
• that j(R◦)⊆ S◦.
Then in the canonical R-linear evaluation map ε : HomR(S,M)→M given
by ε(g) := g(1), we have ε(HomR(S,M)∗S)⊆M∗R. That is, ε restricts to a
map ε′ : HomR(S,M)∗S →M∗R.

Proof. Let g ∈ HomR(S,M)∗S . Let c either be a co-test element of R

whose j-image is in S◦, or if j(R◦)⊆ S◦, then we let c ∈R◦ be arbitrary. Let
d= j(c), and let e0 ≥ 0. Since j(c) ∈ S◦, there is some e1 ≥ e0 such that there
exist S-linear maps φe :

eS → HomR(S,M) such that g =
∑e1

e=e0
φe(

ej(c)).

Then consider the R-linear compositions eR
ej→ eS

φe→HomR(S,M)
ε→M . We

have

g(1) = ε(g) =

e1∑
e=e0

(ε ◦ φe ◦ ej)(ec),

showing that ε(g) ∈M∗R, as required.

The next result is dual to the fact that tight closure captures contractions
from module finite extensions.

Proposition 3.2 (co-contraction). Let j : R ↪→ S be a module-finite
torsion-free† inclusion, where R is an F -finite domain and Sred is F -finite.
Let M be an R-module. Then the restricted evaluation map ε′ :

HomR(S,M)∗S →M∗R of Lemma 3.1 is surjective.

†A map of rings j :R ↪→ S is called torsion-free if S is a torsion-free R-module.
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Proof. First we prove the proposition under the added hypothesis that S

is a domain. Let c ∈R◦ be a big test element shared by R and S, the exis-
tence of which follows immediately from the fact that there is a c ∈R◦ ∩S◦

such that Rc and Sc are both regular. Clearly, then, Lemma 3.1 applies, so
we get the map ε′. For surjectivity, let z ∈M∗R. There is a nonzero R-linear
map f : S → R. Let d = f(1). Then for some e1 ≥ 0, there exist R-linear
maps ge : R

1/q → M for 0 ≤ e ≤ e1 such that
∑e1

e=0 ge((dc)
1/q) = z. Then∑

e(ge ◦ f1/q)(c1/q) = z. Define he : S
1/q → HomR(S,M) by he(s

1/q)(t) :=

(ge ◦ f1/q)(t · s1/q). Then he is S-linear, and letting je := he(c
1/q), we have

ε(
∑

e je) =
∑

e je(1) = z, and moreover, each je ∈ HomR(S,M)∗S by con-
struction since c is a big test element for S. Thus, ε′ is surjective.

In the general case, we need first to establish that ε′ exists. Let 0 �= x ∈R.
Since S is torsion-free over R, j(x) is a regular element of S, so that in
particular it avoids the minimal primes of S, and Lemma 3.1 applies to
show the existence of ε′.

Now let P1, . . . , Pn be the minimal primes of S. Consider the maps ji :

R→ S/Pi given by composing j with the natural projection S � S/Pi. We
have

∏
i ker ji ⊆

⋂
i ker ji = ker j = 0, so that since R is a domain, ker ji =

0 for some i. Thus, by the domain case of the current proposition, the
evaluation-at-1 map εi : HomR(S/Pi,M)→M restricts to a surjective map
ε′i : HomR(S/Pi,M)∗(S/Pi) �M∗R.

However, we have HomR(S/Pi,M) ∼= HomS(S/Pi,HomR(S,M)) ∼=
(0 :HomR(S,M) Pi), so that by Proposition 2.8 and the above, ε′i factors as

HomR(S/Pi,M)∗(S/Pi) ↪→ HomR(S,M)∗S
ε′→M∗R. Since the composition is

surjective, it follows that ε′ must be surjective.

Lemma 3.3 (co-persistence, second case). Suppose that R is an F -finite
domain and that Q is a height 1 prime, and let M be any R-module. Then
the evaluation map restricts as in Lemma 3.1 when S =R/Q.

Proof. Let R′ be the normalization of R, let Q′ be a prime of R′ that
lies over Q, and let T := R′/Q′. Then there is a big test element c of R′

that is not in Q′; indeed, the big test ideal is not contained in any height
1 prime since R is normal, and thus the singular locus of SpecR is of codi-
mension at least 2. (Note that the big test ideal cuts out a scheme that
is empty wherever R is regular.) Then the map R′ � T satisfies the con-
ditions of Lemma 3.1. Moreover, the map S → T is an injective module-
finite inclusion of domains. So the evaluation maps α : HomR(R

′,M)→M
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and β : HomR(T,M)→HomR(R
′,M) restrict to maps on the (−)∗ level by

Lemma 3.1, and the evaluation map

γ : HomS

(
T,HomR(S,M)

)∼=HomR(S ⊗S T,M)

∼=HomR(T,M)→HomR(S,M)

restricts to a surjection on the (−)∗ level by Proposition 3.2. To see that the
evaluation map δ : HomR(S,M)→M restricts to a map on the (−)∗ level,
consider the following commutative diagram:

HomR(T,M)
γ

β

HomR(S,M)

δ

HomR(R
′,M)

α
M

Let g ∈ HomR(S,M)∗S . Then g = γ(h) for some h ∈ HomR(T,M)∗T . We
have δ(g) = δ(γ(h)) = α(β(h)) ∈M∗R, since both α and β restrict to maps
on the (−)∗ level.

Theorem 3.4 (co-persistence). Let j : R → S be a ring homomorphism
such that both Rred and Sred are F -finite. Let M be an R-module. Then
the natural evaluation map ε : HomR(S,M)→M restricts to the (−)∗ level.
(That is, co-persistence holds at this level of generality for tight interiors of
modules.)

Proof. First note that we can replace S by S/P for some minimal prime
P of S. Indeed, let φ ∈HomR(S,M)∗S , let P1, . . . , Pn be the minimal primes
of S, and let πi : S � S/Pi be the natural surjections. Note that

HomR(S/Pi,M)∼=HomR(S ⊗S S/Pi,M)

∼=HomS

(
S/Pi,HomR(S,M)

)∼= (0 :HomR(S,M) Pi),

and then apply Proposition 2.8, to obtain that φ =
∑n

i=1 φi ◦ πi for some
elements φi ∈ HomR(S/Pi,M)∗(S/Pi), so that if the statement holds for all
the S/Pi, then ε(φ) = φ(1) =

∑n
i=1 φi(1̄) ∈M∗R.

So from now on we may assume that S is an integral domain. Let Q :=

ker j, which must then be prime.

Claim. We may replace S by R̄ :=R/Q.
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Proof of claim. Let h ∈ HomR(S,M)∗S . Take an arbitrary c̄ ∈ R̄◦; then
c̄ ∈ S◦ as well. Take an arbitrary positive integer e0. Then there is some
e1 ≥ e0 such that there exist S-linear maps ge : S

1/q → HomR(S,M) such
that h=

∑e1
e=e0

ge(c̄
1/q). For each such e, denote the following composition

by ke:
(R̄)1/q ↪→ S1/q ge→HomR(S,M)→HomR(R̄,M),

where the rightmost map is restriction. It is clear that each ke is R̄-linear
and that

∑e1
e=e0

ke(c̄
1/q) = h|R̄, where h|R̄ denotes the image of h in

HomR(R̄,M). Since e0 and c̄ were arbitrary, it follows that h|R̄ ∈
HomR(R̄,M)∗R̄.

Now that we have proved the claim, we may assume that S = R̄=R/Q,
with j the natural surjection. Take a saturated chain

Q0 ⊂Q1 ⊂ · · · ⊂Q� =Q

of prime ideals in R, where Q0 is a minimal prime of R. We may replace
R by R/Q0 because of Proposition 2.8. Then the conclusion follows from
Lemma 3.3 and induction on �, with �= 1 being the base case of the induc-
tion.

We now state a duality theorem with tight closure (compare with [HH2,
Proposition 8.23] and the better part of [Sm2]).

Proposition 3.5 (duality with tight closure; see [Sm2, Section 3]). Let
R be an F -finite reduced ring, let E be an injective R-module, and let (−)′

be the contravariant functor given by (−)′ := HomR(−,E) on the category
of R-modules. Let M be an arbitrary R-module. Then

(M∗)
′ ∼=M ′/0∗M ′ .

Proof. Let c be a big test element for R.
Let j : M∗ ↪→ M be the canonical injection, and let j′ : M ′ � (M∗)′ be

the corresponding surjection. In other words, for a map f :M →E, j′(f) :=
f ◦ j = f |M∗ . We will show that ker j′ = 0∗M ′ .

Since E is injective, for finitely generated R-modules L, there is a canon-
ical isomorphism (see, e.g., [Bo, Chapter 2, Exercise 14, p. 45] or [BrS,
Lemma 10.2.16])

αL : L⊗R HomR(M,E)→HomR

(
HomR(L,M),E

)
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given by (αL(�⊗f))(g) := f(g(�)) for g ∈HomR(L,M). We apply this below
to the finite R-modules R1/q.

Let f ∈ M ′. Consider what it means to say that f ∈ 0∗M ′ . It is equiv-
alent to say that c1/q ⊗ f = 0 in R1/q ⊗R M ′ for all powers q of p. By
the isomorphisms αR1/q , it is equivalent to say that f(g(c1/q)) = 0 for all
R-linear maps g : R1/q → M . But since M∗ is the submodule of M gen-
erated by such images g(c1/q), another equivalent condition is to say that
0 = f(M∗) = im(f ◦ j) = im j′(f). In other words, f ∈ 0∗M ′ if and only if
f ∈ ker(j′). That is,

M ′/0∗M ′ =M ′/ker(j′)∼= im j′ = (M∗)
′,

as was to be shown.

Corollary 3.6. Let (R,m) be a complete reduced Noetherian local ring
of characteristic p, and let (−)∨ denote the Matlis duality functor. Let L be
either an Artinian or a finitely generated R-module (or any other Matlis-
dualizable module). Then

(L∗)
∨ ∼= L∨/0∗L∨ and (L∨)∗ ∼= (L/0∗L)

∨.

Proof. The first statement follows from letting M = L and letting E =

ER(R/m) in Proposition 3.5. As for the second, let M = L∨, and let E =

ER(R/m) in Proposition 3.5. Then L∼=M∨ by Matlis duality, and

(L/0∗L)
∨ = (M∨/0∗M∨)∨ ∼=

(
(M∗)

∨)∨ ∼=M∗ = (L∨)∗,

where the last isomorphism follows from Matlis duality.

Hence, we obtain immediately many statements about tight interiors, at
least in the complete case, by “dualizing” various theorems of tight closure
theory. Indeed, this is how we obtained the motivation for co-persistence
and co-contraction statements. For example, consider the following.

Remark 3.7. It would be natural to say that an F -finite ring R is co-
F -rational if it is Cohen–Macaulay and (ωR)∗ = ωR. This concept already
coincides with the definition of F -rationality in this context, as can be readily
verified, so we will say no more about it.

Colon capturing is an extremely useful property of tight closure, and so
we should expect that interesting dual statements can be made with respect
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to tight interior and test ideals. First we explain what a dual version of
colon capturing would be. In fact, the following is essentially dual to [H,
Theorem 3.1A], which says that if R, A are as given below and I , J are
ideals of A, then (IR :R JR)⊆ ((I :A J)R)∗.

Theorem 3.8 (co-colon capturing). Let A be a regular F -finite ring, and
let R be a module-finite and torsion-free ring extension of A. Let M be an
A-module, and let x ∈A. Then

HomA(R,xM)∗R = x ·HomA(R,M)∗R,

where the module HomA(R,xM) is considered as a submodule of HomA(R,

M) by the left-exactness of Hom.

Proof. It is easy to show that x · HomA(R,M)∗R ⊆ HomA(R,xM)∗R.
Indeed, this direction is true for any ring homomorphism A→R, regardless
of the properties of A, R, or the homomorphism.

Conversely, let g ∈ HomA(R,xM)∗R. There is a finite free A-submodule
G of R such that R/G is a torsion A-module. Take a nonzero element c of
A such that cR⊆G. Let d ∈R◦, and let q0 be a power of p.

Then cd ∈R◦, so by the definition of tight interior, there is some power
q1 ≥ q0 of p and R-linear maps μe : eR → HomA(R,xM) such that∑e1

e=e0
μe(

e(cd)) = g. Each μe then induces an A-linear map αe :
eR→ xM

(namely, αe(
er) = μe(

er)(1) for all er ∈ eR), so that

e1∑
e=e0

αe

(
e(cd)

)
=

e1∑
e=e0

μe

(
e(cd)

)
(1) = g(1),

and more generally, for any y ∈R, we have

e1∑
e=e0

αe

(
y · e(cd)

)
=

e1∑
e=e0

μe

(
y · e(cd)

)
(1) =

e1∑
e=e0

μe

(
e(cd)

)
(y) = g(y).

Let βe be the restriction of αe to the A-submodule eG of eR; note that
e(cd) ∈ eG. Then βe ∈ HomA(

eG,xM) = xHomA(
eG,M), where equality

holds because eG is a finite free A-module (since A is regular and F -finite).
That is, βe = xγe for some A-linear γe : eG→M . One then obtains A-linear
maps δe :

eR→M by setting δe(
er) = γe(

e(cr)) (which is well defined since
cR ⊆ G). So δe ∈ HomA(

eR,M) ∼= HomR(
eR,HomA(R,M)), and if we let
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the image of δe under this isomorphism be εe :
eR→HomA(R,M), then we

have, for any y ∈R,

(
x ·

e1∑
e=e0

εe(
ed)

)
(y) =

e1∑
e=e0

(xδe)(y · ed) =
e1∑

e=e0

(xγe)
(
y · e(cd)

)

=

e1∑
e=e0

βe
(
y · e(cd)

)
=

e1∑
e=e0

αe

(
y · e(cd)

)
= g(y).

Because y ∈R was arbitrary, it follows that g = x ·
∑

e εe(
ed) ∈ x(HomA(R,

M)∗R).

§4. Co-phantom resolutions

Let R be an F -finite ring of characteristic p > 0, and let N be an R-
module. One way to turn N into an eR-module is by the tensor product (i.e.,
the Peskine–Szpiro Frobenius functor (see [PS, Definition (I.2)])). However,
there is a dual approach. We define

F R
e (N) := HomR(

eR,N),

with the left-module structure coming from the right-module structure of
eR. If R is reduced, this is the same as first taking the natural R1/q-module
structure on HomR(R

1/q,N) and then viewing it as an R-module via the iso-
morphism R∼=R1/q, sending each a 	→ a1/q. In the geometric setting F R

e (N)

is simply h0((F e)!N), the zeroth cohomology of the e-iterated Frobenius
upper shriek (see [Ha, Chapter III, Section 6]).

Several properties of the functor F R
e (−) are developed in [He], where it is

denoted F̃ e(−).

Lemma 4.1 ([He, 2.7]). For any injective R-module N , F R
e (N) is also

injective.

Lemma 4.2 ([He, Lemma 4.1]; see also [BHe, Chapter 3], [Ha]). If (R,m,

k,E) is a local F -finite ring, then F R
e (E)∼=E.

Theorem 4.3 ([He, Satz 5.2]). Let R be a local F -finite ring, and let M
be a finitely generated R-module. Then M has finite injective dimension if
and only if ExtiR(

eR,M) = 0 for all i, e > 0.

We will also find the following property very useful.
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Proposition 4.4 (cobase change of Fe). Let R→ S be a map of F -finite
rings. Then F S

e (HomR(S,−))∼=HomR(S,F
R
e (−)).

Proof. This can be thought of as a special case of the fact that the forma-
tion of upper shriek respects compositions (and the fact that R→ S → eS

is the same as R→ eR→ eS; see [Ha, Chapter III, Proposition 6.6]).
To see it algebraically, we have

HomS

(
eS,HomR(S,−)

)∼=HomR(
eS,−)∼=HomR(

eR⊗R S,−)

∼=HomR

(
S,HomR(

eR,−)
)
.

Let C
� be a complex of R-modules indexed cohomologically. We say that

C
� has co-phantom cohomology at i if Zi(C

�

)∗ ⊆Bi(C
�

). We say that it has
stably co-phantom cohomology if this is also true for the induced complex
HomR(

eR,C
�

) for all e. (The R-module action on this complex is on the left,
and so it is equivalent to taking the R1/q-module interior of HomR(R

1/q,C
�

).)
For an R-module M , a complex E

� of injective modules is a co-phantom
resolution of M if Ei = 0 for i < 0, H0(E

�

) ∼= M , and E
� has stably co-

phantom cohomology at every i > 0. The length of the shortest possible
co-phantom resolution of M is called the co-phantom injective dimension
(cid) of M . If there is no such resolution, we say that cid(M) =∞.

Remark 4.5. For instance, if M is finitely generated and has finite injec-
tive dimension, any injective resolution is a co-phantom resolution as well,
which means that cid(M)≤ id(M). To see this, let E �be an injective resolu-
tion of M . By left-exactness of Hom, it is clear that F R

e (M) =H0(F R
e (E

�

)),
and we know that each F R

e (Ei) is injective, so it suffices to show that F R
e (E

�

)

is acyclic. But for any i > 0 and e > 0,

H i
(
F R
e (E

�

)
)
=H i

(
HomR(

eR,E
�

)
)
=ExtiR(

eR,M) = 0

by Theorem 4.3.

Lemma 4.6. Let R ↪→ S be a module-finite extension of F -finite rings.
Assume either
• that R has a co-test element c that is not in any minimal prime of S, or
• that R◦ ⊆ S◦.
Let

θ : (U
α→ V

β→W )

be a sequence of R-modules and homomorphisms such that
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(1) α is injective,
(2) β ◦ α= 0, and
(3) (kerβ)∗ ⊆ imα.

Then the sequence HomR(S, θ) of S-modules has the same three properties.

Proof. Items (1) and (2) above are obvious, since HomR(S,−) is a left-
exact additive functor.

As for item (3), let α′ : HomR(S,U)→HomR(S,V ) and β′ : HomR(S,V )→
HomR(S,W ) be the S-linear maps induced from α, β, respectively. Since S

is finitely presented as an R-module, we have a finite R-free presentation
ω : (Rn →Rm → S → 0). Then we get a double complex HomR(ω, θ) which
is represented as the following commutative diagram with exact rows:

0 HomR(S,U)
d

α′

Um

αm

g
Un

αn

0 HomR(S,V )
s

β′

V m h

βm

V n

βn

0 HomR(S,W )
f

Wm i
Wn

We want to show that imα′ ⊇ (kerβ′)∗S , so let φ ∈ (kerβ′)∗S . We have 0 =

f(0) = f(β′(φ)) = βm(s(φ)), so that s(φ) ∈ kerβm. Moreover, let δ : kerβ′ ↪→
HomR(S,V ) be the natural injection. Let c be a co-test element of R that is
not in any minimal prime of S, or if R◦ ⊆ S◦, let c ∈R◦ be arbitrary. Take
any power q0 of p. Since c ∈ S◦, there are some e1 ≥ e0 and S-linear maps
γe : S

1/q → kerβ′ such that
∑e1

e=e0
γe(c

1/q) = φ. Let je :R
1/q ↪→ S1/q be the

induced structure map for each e. Then each sδγeje :R
1/q → V m is R-linear,

and βmsδγeje = fβ′δγeje = 0, so that im(sδγeje) ⊆ kerβm. So we obtain
R-linear maps εe : R

1/q → kerβm such that sδγeje = (kerβm ↪→ V m) ◦ εe,
and so

∑e1
e=e0

εe(c
1/q) = s(φ). Thus, s(φ) ∈ (kerβm)∗R = ((kerβ)∗R)⊕m ⊆

(imα)⊕m = imαm. The following claim finishes the proof.

Claim 4.6.1. We hold that φ ∈ imα′.

Proof of claim. There is some x ∈ Um such that s(φ) = αm(x). Then

0 = h
(
s(φ)

)
= h

(
αm(x)

)
= αn

(
g(x)

)
,
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and since αn is injective, x ∈ kerg = imd. Thus, x= d(ψ) for some R-linear
ψ : S → U . So we have s(φ) = αm(x) = αm(d(ψ)) = s(α′(ψ)). Since s is injec-
tive, φ= α′(ψ) ∈ imα′.

As a result, we get the following.

Proposition 4.7. Let R→ S be as in Lemma 4.6. Let M be an R-module
that has a co-phantom injective resolution E

� over R. Then HomR(S,E
�

) is
a co-phantom injective resolution of HomR(S,M) over S.

Proof. Label the maps in the co-phantom injective resolution δi : Ei →
Ei+1. Then we get the following sequences for each i:

θi : (im δi−1 αi→Ei βi→ im δi).

Then each θi satisfies the conditions (hence also the conclusion) of the θ

in Lemma 4.6. The fact that it is stably co-phantom follows similarly now
using Lemma 4.1 and Proposition 4.4.

Corollary 4.8. Let R→ S be as above, and let M be a finite R-module
that has a finite R-injective resolution E

�. Then HomR(S,E
�

) is a finite S-
co-phantom injective resolution of HomR(S,M).

Proof. By Remark 4.5 (see Theorem 4.3), F R
e (E

�

) is an injective resolution
of F R

e (M), hence a stably co-phantom acyclic complex, so that E
� is a co-

phantom injective resolution of M over R. Then apply Propositions 4.7
and 4.4.

Theorem 4.9 (vanishing theorem for maps of Ext). Consider a sequence
of ring homomorphisms A ↪→ R → T such that T is F -finite and regular
(or simply strongly F -regular), R is a module-finite extension of A, A is a
domain, and both A and R are F -finite. Let M be a finite A-module of finite
injective dimension. Then for all i ≥ 1, the natural maps ExtiA(T,M) →
ExtiA(R,M) are zero.

Proof. Let (E
�

, ∂
�

) be a finite A-injective resolution of M . For each
i > 0, we have the induced maps ∂i

T : HomA(T,E
i)→ HomA(T,E

i+1) and
∂i
R : HomA(R,Ei)→ HomA(R,Ei+1). Let η ∈ ker∂i

T , and let gi : HomA(T,

Ei) → HomA(R,Ei) be the map given by restriction. Then since η ∈
(ker∂i

T )∗T since T is co-F -regular (Proposition 2.14), we claim that The-
orem 3.4 (co-persistence) shows that gi(η) ∈ (ker∂i

R)∗R. We now justify this
claim.
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We have a commutative diagram with exact rows

0 ker∂iR HomA(R,Ei) HomA(R,Ei+1)

0 HomR(T,ker∂iR) HomR

(
T,HomA(R,Ei)

)
HomR

(
T,HomA(R,Ei+1)

)

0 ker∂iT

ν

HomA(T,Ei)

∼

HomA(T,Ei+1)

∼

where the vertical isomorphisms are due to adjointness of Hom and tensor
and so ν is an isomorphism also. Notice furthermore that the middle vertical
composition is just gi. The claim then immediately follows by co-persistence.

But by Corollary 4.8, HomA(R,E
�

) is a stably co-phantom injective res-
olution of HomA(R,M), which implies that (ker∂i

R)∗R ⊆ im∂i−1
R . Thus,

gi(η) = ∂i
R(μ) for some μ ∈HomA(R,Ei−1). Thus, the class of gi(η) is zero

in ExtiA(R,M), completing the proof.

§5. F -pure Cartier modules

Suppose that R is an F -finite ring and that M is a finite R-module.
Recently, Blickle developed a theory of an “algebra of p−e-linear maps” acting
on M in [Bl, Definition 2.2] (see also [S2, Definition 3.4]). Indeed, consider
the object

CM =R⊕
( ∞⊕
e=1

HomR(
eM,M)

)
=
⊕
i≥0

C i
M .

This is called the full Cartier algebra on M . It is a noncommutative graded
ring (the first direct summand is degree 0) with multiplication defined by
the following rule: for φ ∈ C e

M and ψ ∈ C d
M , we define

φ · ψ := φ ◦ (eψ).

More generally, Blickle considered graded subrings of CM . In this article, we
limit ourselves to the canonical choice of CM .

Remark 5.1. Alternatively, it is just as natural to consider the graded
ring BM =

⊕∞
i=0HomR(

eM,M) which differs from CM only in the degree
0 piece and so may in this sense include endomorphisms of M not coming
from multiplication.
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With notation as above, we set C+
M =

⊕∞
i=1HomR(

eM,M) to be the pos-
itively graded part of CM . Given any submodule N ⊆M , we define

C+
M ·N :=

∑
e≥1

∑
φ∈C e

M

φ(eN).

Definition 5.2. Given F -finite R, a finite R-module M , and CM as
above, we say that a submodule N ⊆M is CM -compatible if φ(eN)⊆N for
all φ ∈ C e

M and all e ≥ 0. In other words, C+
M ·N ⊆ N . We say that N is

CM -fixed if C+
M ·N =N .

In [BlB] and [Bl], many remarkable properties of CM -fixed modules are
studied. First we recall a theorem which allows us to associate a fixed sub-
module to any compatible submodule.

Theorem 5.3 ([Bl, Proposition 2.13]; see also [G], [L], [HaS]). Given any
CR
M -compatible submodule N ⊆M , the descending chain

N ⊇ C+
M ·N ⊇ C+

M · (C+
M ·N)⊇ C+

M ·
(
C+
M · (C+

M ·N)
)
⊇ · · ·

stabilizes. We use N to denote the stable term. (Note that N is by definition
CM -fixed.)

With this theorem, Blickle made the following definition.

Definition 5.4. Given R and M as above, we define τ(M,CM ), if it
exists, to be the unique smallest submodule of M agreeing with M at the
generic points (i.e., minimal associated primes) of M .

It is unclear that τ(M,CM ) exists, and indeed, this is an open question
in general (unless R is finite type over a field; see [Bl, Theorem 4.13]). Our
goal is to relate τ(M,CM ) to M∗ under some mild hypotheses.

Lemma 5.5. Suppose that R is F -finite and has a co-test element. Then
the submodule M∗ ⊆M is CM -compatible.

Proof. Let b ≥ 0, choose ψ ∈ HomR(
bM,M), and then proceed to write

M∗ =
∑

e≥0

∑
φ∈HomR(eR,R) φ(

e(cR)) for some co-test element c ∈R◦. Then

ψ(bM∗) = ψ
(
b
(∑
e≥0

∑
φ∈HomR(eR,M)

φ
(
e(cR)

)))

=
∑
e≥0

∑
φ∈HomR(eR,M)

ψ
(
bφ
(
e(cR)

))
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⊆
∑
e≥b

∑
φ∈HomR(eR,M)

φ
(
e(cR)

)

⊆M∗.

It immediately follows that τ(M,CM )⊆M∗ if we know that M∗ generi-
cally agrees with M . Indeed, if R is reduced and M has the same support
as R, then it is easy to see that generically M∗ agrees with M which agrees
with τ(M,CM ).

Theorem 5.6. Let R be an F -finite reduced ring, and let M be a finite
R-module whose support is equal to the support of R. Then M∗ = τ(M,CM ).
In particular, τ(M,CM ) exists.

Proof. Fix c ∈R◦ a big test element so that

M∗ =M c :=
∑
e≥0

∑
φ∈HomR(eR,R)

φ
(
e(cR)

)
.

Suppose first that N is any φ-compatible submodule such that N agrees
generically with M (which automatically generically agrees with M since
we are using the full algebra CM ), and choose d ∈R◦ such that dM ⊆ dM ⊆
N ⊆N . It follows that

∑
e≥0

∑
φ∈C e

M

φ
(
e(c3dM)

)
⊆N.

Fix p1, . . . ,pt ⊆R to be the minimal primes of R, and notice that c · (
⊕

iR/

pi)⊆R since c is a test element (see Proposition 7.3). By our assumption on
the support of M , we know that Mpi is a nonzero (Rpi =Rpi/piRpi)-vector
space. We then claim that we obtain an inclusion map

G :=
t⊕

i=1

(R/pi)
⊕ni

β−→M,

which is an isomorphism at the Rpi .
To see this, for each i = 1, . . . , t, set ai =

∏
j 
=i pj , and first observe that

ai · Mpi = Mpi since the pi are minimal. Now, ai · Mpi = Mpi is a finite-
dimensional Rpi-vector space, and so we may choose elements mi,1, . . . ,

mi,ni ∈ ai ·M whose images in Mpi form a basis. Notice that if i �= j, then the
image of mi,s in Mpj is zero. Consider the map δ :

⊕t
i=1(R/pi)

⊕ni →M in
which each standard basis element is sent to mi,j . This is clearly generically
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an isomorphism (although it need not be surjective nongenerically). On the
other hand, we now consider injectivity. Any element of

⊕t
i=1(R/pi)

⊕ni is
nonzero after localizing at some pi, and so if δ sends an element to zero, then
since δpi is an isomorphism, the element had to have been zero to begin with.
This completes the proof that δ is injective.

Set the cokernel of β to be C. Choose x ∈ R◦ that annihilates C; then
x · Ext1(eC,M) = 0 for all e≥ 0 as well. Set He =HomR(

eG,M). Since we
have the exact sequence

· · · →HomR(
eM,M)→He =Hom(eG,M)→ Ext1(eC,M)→ · · ·

and x annihilates Ext1(eC,M), we immediately see that every element of
x · He = x · HomR(

e(
⊕t

i=1(R/pi)
⊕ni),M) extends to an element of C e

M =

HomR(
eM,M).

Now observe that∑
e≥1

∑
φ∈x·He

φ
(
e
(
c3d

(⊕
i

(R/pi)
⊕ni

)))

=
∑
e≥1

∑
φ∈He

φ
(
e
(
c3dx

(⊕
i

(R/pi)
⊕ni

)))

=
∑
e≥1

t∑
i=1

∑
φi∈HomR(eR/pi,M)

φi

(
e(c3dxR/pi)

)

=
∑
e≥1

∑
φ∈HomR(e(

⊕
iR/pi),M)

φ
(
e(c2dxR)

)

=
∑
e≥1

∑
φ∈HomR(e(c·

⊕
iR/pi),M)

φ
(
e(cdxR)

)

⊇
∑
e≥1

∑
φ∈HomR(eR,M)

φ
(
e(cdxR)

)

=M∗.

Putting this together, we obtain

M∗ ⊆
∑
e≥0

∑
φ∈x·He

φ
(
e
(
c3d

⊕
i

(R/pi)
⊕ni

))
⊆
∑
e≥0

∑
φ∈C e

M

φ
(
e(c2dM)

)
⊆N,

as desired.

Remark 5.7. The condition that M has the same support as R is needed
because in Blickle’s definition of τ(M,CM ), the minimal primes that matter
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are the minimal primes of the support of M . In tight closure theory, the
minimal primes that matter are the minimal primes of R. Thus, in order
to make these notions coincide, we need to line up these primes. One could
modify the definition τ(M,CM ) to be the smallest module coinciding with
M at the minimal primes of R and obtain more general versions of the above
result.

§6. Transformation rules for interiors

In this section we prove additional transformation rules for tight interiors
(and so in particular for big test ideals) under ring maps (Corollary 6.5).
This is a corollary of Theorem 3.4 (co-persistence) and the theory of Cartier
modules developed in Section 5. In the special case of tight interior of rings
(i.e., for test ideals), this result is complementary to, and subsumes special
cases of, the main results of [ST]. In particular, from this perspective it
seems that the transformation rules for test ideals described in [ST] should
be viewed as a sort of persistence. It would be interesting to develop a theory
which contains both of these results as corollaries.

Proposition 6.1. Suppose that R is a ring of characteristic p > 0 and
that R⊆ S is an extension. Suppose that M is an S-module and that N ⊆M

is CM -compatible. (In other words, for every S-linear map ψ : eM → M ,
ψ(eN)⊆N .) Fix an R-module L, and consider the R-submodule of L

E :=
∑
e≥0

∑
φ

φ(eN),

where the inner sum runs over φ ∈ HomR(
eM,L). Then E ⊆ L is CL-

compatible.

Proof. Fix any R-linear map β : dL→ L; then

β(dE) = β
(
d
(∑
e≥0

∑
φ

φ(eN)
))

=
∑
e≥0

∑
φ

β
(
dφ(eN)

)

=
∑
e≥0

∑
φ

β ◦ (dφ)(e+dN)

⊆E,

where again, φ runs over HomR(
eM,L).
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Corollary 6.2. Assume that R ⊆ S is a finite extension of F -finite
reduced rings. Additionally suppose that L is a finite R-module whose support
equals SpecR and that M is a finite S-module whose support equals SpecS;
then

L∗R ⊆
∑
e≥0

( ∑
φ : eM→L

φ
(
e(M∗S)

))
.

Proof. By Theorem 5.6, L∗R is the unique smallest submodule of L which
agrees with L at the generic points of R and which is CL-compatible. There-
fore, we merely need to see that the submodule E defined above in Propo-
sition 6.1 also agrees with L at the generic points of SpecR.

Observe that if η is a generic point of SpecR, then Sη is a finite direct
sum of fields, and thus (M∗)η =Mη. Thus, we may assume that R is a field,
that S is a finite direct sum of finite extension fields, and that L and M are
finite R- and S-modules, respectively. Then E :=

∑
e≥0

∑
φ : eM→L φ(

eM)

is clearly equal to L since eM and L are both finite-dimensional R-vector
spaces.

We first need the following lemma.

Lemma 6.3. For any R-module M , we have a containment e(M∗) ⊆
(eM)∗.

Proof. Choose z ∈ M∗. For any c ∈ R◦ and e0 > 0, there exist e1, . . . ,

en > e0 and φi ∈ HomR(
eiR,M) such that z =

∑n
i=1 φi(

eic). Thus, ez =∑n
i=1(

eφi)(
e+eic). Note that eφi ∈HomeR(

ei+eR, eM). But this immediately
implies that ez ∈ (eM)∗.

Combining this with co-persistence, we obtain the following persistence-
like statement which is interesting on its own.

Proposition 6.4. Suppose that R is a ring of characteristic p > 0 such
that Rred is F -finite and R→ S is a ring map with Sred also F -finite. Fix
M to be an S-module, and fix L to be an R-module. Then

(6.4.1) L∗R ⊇
∑
e≥0

∑
φ

φ
(
e(M∗S)

)
,

where φ ranges over all elements of HomR(
eM,L).

Proof. First note that HomR(
eM,L) ∼= HomS(

eM,HomR(S,L)). Con-
sider now φ ∈ HomR(

eM,L) with induced φ′ ∈ HomS(
eM,HomR(S,L)). It

follows that φ(e(M∗S)) = ε(φ′(e(M∗S))), where ε : HomR(S,L) → L is the
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“evaluation-at-1” map. By Lemma 6.3 above, we obtain that ε(φ′(e(M∗S)))⊆
ε(φ′((eM)∗S)). Now applying Lemma 2.1 to φ′ : eM → HomR(S,L), we
obtain

ε
(
φ′(e(M∗S)

))
⊆ ε

(
φ′((eM)∗S

))
⊆ ε

(
HomR(S,L)∗S

)
.

Finally, using co-persistence (Theorem 3.4), we obtain ε(HomR(S,L)∗S) ⊆
L∗R, as desired.

Combining Proposition 6.4 and Corollary 6.2, we obtain the following.

Corollary 6.5. Suppose that R is an F -finite reduced ring of charac-
teristic p > 0 and that R ⊆ S is a finite extension with S reduced. Further
suppose that L is a finite R-module whose support agrees with SpecR and
that M is a finite S-module whose support agrees with SpecS. Then

(6.5.1) L∗ =
∑
e≥0

∑
φ

φ
(
e(M∗)

)
,

where φ ranges over all elements of HomR(
eM,L).

In particular, if L=R and M = S, then

(6.5.2) τb(R) =
∑
e≥0

∑
φ

φ
(
eτb(S)

)
,

where φ ranges over all elements of HomR(
eS,R).

§7. Test ideals, conductors, normalization, and minimal primes

In this section we explore test ideals of nonnormal rings. Earlier we showed
how the tight interior of a ring or module behaved modulo minimal prime
ideals. We now expand upon those ideas relating the test ideal (i.e., R∗) with
the test ideal of the normalization of R in its total ring of fractions. As an
application, we are able to prove that the big and finitistic test ideals agree
in a nonnormal ring if the normalization of that ring is strongly F -regular.
To do this, we apply the results of Section 6.

Throughout this section, we fix a reduced Noetherian ring R (not always
of characteristic p > 0). We let p1, . . . ,pn be its set of minimal primes, and
we let c= c(R) be the conductor of R. For each 1≤ i≤ n, let ai := annR pi =⋂

j 
=i pj . Recall that τb(R)⊆ τfg(R) by definition.

Remark 7.1. If R has equal characteristic (i.e., if it contains a field), then
we can define tight closure of ideals (see [HH4]; see also [H, Appendix]). One
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can then define finitistic test ideals τfg =
⋂

I⊆R(I : I
∗) and the notion of weak

F -regularity as usual. In the first half of this section, we work in this equal
characteristic setting when dealing with finitistic test ideals. However, we
invite readers unfamiliar with this generality to restrict to the case where R

is of characteristic p > 0.

Proposition 7.2. Assume that R is of equal characteristic and that each
R/pi is weakly F -regular (resp., assume that R is of characteristic p > 0

and that each R/pi is strongly F -regular). Then
∑n

i=1 ai ⊆ τfg(R) (resp.,
⊆ τb(R)).

Proof. We cover the weakly F -regular case first. By symmetry, it is enough
to show that a1 ⊆ τfg(R). So let c ∈ a1, let I be an ideal of R, and let
x ∈ I∗ =

⋂n
i=1(I + pi). Then x ∈ I + p1, so cx ∈ I + a1p1 = I . Thus, c ∈⋂

I(I : I
∗) = τfg(R).

The strongly F -regular case is similar. Let c ∈ a1, let M be an arbitrary
R-module, and let x ∈ 0∗M . Since 0∗M =

⋂n
i=1 piM , we have x ∈ p1M , so that

cx ∈ a1p1M = 0. Thus, c ∈
⋂

M ann0∗M = τb(R).

Proposition 7.3. If R is of equal characteristic, then we have τfg(R)⊆ c.

Proof. Let c ∈ τfg(R). Take any x ∈RN (where RN is the integral closure
of R in its total ring of fractions). Then x= f/g for some f, g ∈R such that
g is a regular element, and f ∈ (g)− = (g)∗. (Here (g)− denotes the integral
closure of (g).) But c · (g)∗ ⊆ (g), whence cf = gh for some h ∈ R, so that
cx= h ∈R. Since x was arbitrary, c ∈ (R :R RN) = c.

Proposition 7.4. For any reduced Noetherian ring (of any characteris-
tic), c⊆

∑n
i=1 ai.

Proof. Fix c ∈ c. We have RN ∼=
∏n

i=1(R/pi)
N, under which the natural

inclusion j : R ↪→ RN sends r 	→ (r, r, . . . , r), where denotes the image of
the element in each normalized residue class ring.

Now, for each 1 ≤ i ≤ n − 1, let ui := (1,1, . . . ,1,0, . . . ,0) ∈ RN, with i

entries 1s and (n− i) entries 0s. For each i, since cui ∈ R, there exists an
element bi ∈R such that

(c, c, . . . , c,0, . . . ,0) = cui = j(bi) = (bi, . . . , bi).

Let ai := c− bi (i.e., c= ai + bi). The above equation means precisely that
ai ∈

⋂i
j=1 pj and that bi ∈

⋂n
j=i+1 pj .
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For each 2≤ i≤ n− 1, observe that

ai−1 − ai ∈ ai.

To see this, note that c = ai−1 + bi−1 = ai + bi implies that ai−1 − ai =

bi − bi−1. But ai−1 − ai ∈
⋂i−1

j=1 pj and bi − bi−1 ∈
⋂n

j=i+1 pj , so since these
are the same element, we have ai−1 − ai ∈ (

⋂i−1
j=1 pj) ∩ (

⋂n
j=i+1 pj) = ai, as

required.
Set a0 := c, and set an := 0. Then we also have a0 − a1 = b1 ∈ a1 and

an−1 − an = an−1 ∈ an, so that the latest displayed equation holds for i =

1, . . . , n. Altogether, then, we have

c=
n∑

i=1

(ai−1 − ai) ∈
n∑

i=1

ai,

as was to be shown.

Taken together, we draw the following conclusion which in characteristic
p > 0 can also be viewed as a special case of [Sm3, Proposition 4.4].

Theorem 7.5. Let R be a reduced equicharacteristic Noetherian ring, with
minimal primes p1, . . . ,pn, and suppose that each R/pi is weakly F -regular.
Then

τfg(R) = c=
n∑

i=1

annpi.

If, moreover, R is of characteristic p > 0 and each R/pi is strongly F -regular,
then τb(R) also coincides.

Remark 7.6. Vassilev in [V, Theorem 3.7] showed that, when R is a
Stanley–Reisner ring of positive characteristic and p1, . . . ,pn are its minimal
primes, τfg(R) =

∑n
i=1 annpi, after which Traves [T, Theorem 5.8] gave a

D-module proof of the same result.
Our theorem generalizes Vassilev’s result, since for such a ring R, each

R/pi is a polynomial ring over a field, hence strongly F -regular.

We note also the following, which may be already known to experts but
should be of independent interest.

Proposition 7.7. Assume that each R/pi is normal. Then
∑n

i=1 ai = c.
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Proof. By Proposition 7.4, we need only show that each of the ai is
contained in c, and by symmetry, we need only show it for a1. So let
c ∈ a1, and let x ∈ RN. Then x = f/g for some regular element g such
that f ∈ (g)− =

⋂n
i=1((g) + pi) by the assumption on the R/pi. In par-

ticular, f ∈ gR + p1, so that cf ∈ gR + cp1 = gR, whence cx ∈ R. Thus,
c ∈ (R :R RN) = c.

We will need the following characterization of the conductor ideal given
by item (iii) below.

Proposition 7.8 ([HS, Chapter 12]). Suppose that R is a reduced excel-
lent ring with normalization RN in its total ring of fractions; then the con-
ductor of R (in RN), denoted by c, is defined in any of the following equivalent
ways:

(i) c=AnnR(R
N/R);

(ii) c is the largest ideal of R that is simultaneously an ideal of RN;
(iii) c=

∑
φ φ(R

N) where φ ranges over HomR(R
N,R).

Proof. The equivalence of (i) to (ii) is well known. Hence we prove here
only that (i) is equivalent to (iii). First, suppose that x ∈ c. Then there is
an R-linear map m :RN →R given by multiplication by x, so m(1) = x.

Conversely, let g : RN → R be an R-linear map, and let x = g(1). Fix
y ∈ RN, and note that y = a/s for some a, s ∈ R with s a regular element.
We have sg(y) = g(sy) = g(a) = ag(1) = ax. Thus, xy = ax/s = g(y) ∈ R.
Thus, x ∈ c.

We now transition to the characteristic p > 0 setting. Consider the fol-
lowing lemma, which is inspired by Proposition 7.8(iii).

Lemma 7.9. Suppose that R is an F -finite reduced ring of characteris-
tic p > 0 and that R ⊆ RN is its normalization with conductor ideal c =

AnnR(R
N/R). Fix some e > 0 and an R-linear map φ : e(RN)→ R. Then

Image(φ)⊆ c.

Proof. It is sufficient to show that Image(φ) is an RN-ideal as well since c is
the largest such ideal, so choose x ∈RN; we need to show that x Image(φ)⊆
Image(φ). Notice that by tensoring over R with K, the total ring of fractions
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of R, we have the following commutative diagram:

e(RN)
φ

R

eK
φ

K

where φ : eK ∼= e(RN)⊗R K →K is induced by φ. Note also that φ is RN-
linear. Now,

xφ
(
e(RN)

)
= xφ

(
e(RN)

)
= φ

(
xe(RN)

)
⊆ φ

(
e(RN)

)
= Image(φ),

which completes the proof. Note that this also implies that any map φ :
e(RN)→R⊆RN is also RN-linear.

Now we apply our transformation rule for test ideals (Corollary 6.5) to
the inclusion R⊆RN. This slightly generalizes [Sm3, Proposition 4.4] to the
case of big test ideals and strongly F -regular rings.

Theorem 7.10. Suppose that R is an F -finite reduced ring of character-
istic p > 0 and that R⊆RN is its normalization with conductor c. If RN is
strongly F -regular, then

c= τfg(R) = τb(R).

Proof. First recall that τfg(R)⊆ c, by Proposition 7.3. Thus, we now have
the containments

τb(R)⊆ τfg(R)⊆ c.

On the other hand, by Corollary 6.5,

τb(R) =
∑
e≥0

∑
φ∈HomR(e(RN),R)

φ
(
eτb(R

N)
)
=
∑
e≥0

∑
φ∈HomR(e(RN),R)

φ(eRN).

By considering only e = 0, we have that c ⊆ τb(R) by Proposition 7.8(iii),
which completes the proof.

Remark 7.11. This theorem generalizes McCulloch’s result in [M, Lem-
ma 5.3.3] that τfg(R) = c(R) for a reduced binomial ring R of positive char-
acteristic, because the normalization of such a ring is strongly F -regular by
Smith [Sm4, proof of the last corollary].
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