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ON THE TOPOLOGICAL STRUCTURE OF

AFFINELY CONNECTED MANIFOLDS

TATSUO HIGA

Introduction

The purpose of the present paper is to investigate the relationship
between the topological structure and differential geometric objects for
affinely connected manifolds.

Let M be a compact, connected and oriented Riemannian manifold,
Pr{M) the vector space of all parallel r-forms on M and br(M) the r-th
Betti number of M. Since every parallel form is harmonic, it follows
from the Hodge—de Rham theory that the inequality dim Pr(M) <I br(M)
holds for all r = 1, •••, dimikf (cf. [3], [5]). We shall generalize these
inequalities to compact affinely connected manifolds.

Next, let M be a non-compact manifold. A connected submanifold N
of M is called a soul if dimiV< dimM and if the inclusion i: N->M is
a homotopy equivalence. J. Cheeger and D. Gromoll proved the following
remarkable theorem. If M is a complete Riemannian manifold with non-
negative sectional curvature then M has a compact soul (see [1] Theorem
1.11 and 2.1). We shall give another kind of sufficient conditions for M
to have a (compact) soul.

Finally, a connected manifold M is said to be reducible if M is
diffeomorphic to a product manifold Mx X M2 with dim M* ^ 1, i = 1, 2.
Otherwise, M is said to be irreducible. We shall find a differential
geometric condition for M to be reducible. We note that de Rham's
Decomposition Theorem ([2]) furnishes a prototype for this condition (for
irreducible manifolds, see [8]).

In order to obtain our results in a unified manner, we introduce
certain family of functions on a connected manifold M with an affine
connection Γ. A function / on M is called an affine function if, for every
geodesic c(t) with an affine parameter t, there are real constants a and b

Received July 8, 1983.

41

https://doi.org/10.1017/S0027763000021127 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000021127


42 TATSUO HIGA

such that f(c(t)) = at + b for all t. We can regard each affine function
as a "harmonic mapping". In fact, if Γ is symmetric, then every affine
function satisfies formally the defining equation of harmonic mappings
(see [4] p. 116).

It is shown that the set A(M, Γ) of all affine functions on I is a
finite-dimensional real vector space and satisfies 1 <^ dim A(M, Γ) <J dim M
+ 1. By making use of A(M, Γ), we shall define another finite-dimensional
real vector space V(M, Γ). Let P\M, Γ) be the vector space of all parallel
1-forms on M and k(M) the non-negative integer defined to be the largest
k such that Hk(M, Z2) Φ 0, where Hk(M, Z2) denotes the singular homology
group of M with coefficient Z2. For simplicity, we suppose that Γ is
complete and symmetric. Then we can state our main results as follows.

A. // M is compact, then dim P\M, Γ) <
B. // dim A(M, Γ) > 1, then M has a soul. Moreover, we have k(M)

<L dim M — dim A(M, Γ) + 1. The equality holds if and only if M has a
compact soul N with dim N = dim M — dim A(M, Γ) + 1.

C. If m = dim V(M, Γ) > 0, then there exists a totally geodesic sub-
manifold Mr of M such that M is diffeomorphίc to Rm X M'.

We remark that M is not always affinely isomorphic to the product
affinely connected manifold Rm X M\ However, in the Riemannian case,
we can prove more (see [7]).

In Section 1 and Section 2, we shall study some basic properties of
affine functions. In Section 3, we shall state our main theorems in a
rigorous form. The proof of the theorems will be given in Section 4.
The crucial point of the proof lies in a careful use of geodesies. In the
last section, we shall consider affine symmetric spaces and prove the
following result. Let M = GjH be an affine symmetric space with the
canonical connection Γ on GjH (see [10] Chap. III). If G is solvable and
M is simply connected, then dim A(M, Γ) > 1.

Throughout this paper, all manifolds and differential geometric objects
on them are assumed to be differentiable of class C°°. For brevity's sake,
we shall often use the adjective "smooth" instead of "differentiable".

§ 1. Affine functions

Let M be a connected smooth manifold with an affine connection Γ.
For a smooth curve c(t) in M, we denote by c(t) the tangent vector to
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AFFINELY CONNECTED MANIFOLDS 43

the curve at c(t) and by Dc(t)/dt the covariant derivative of c(t). A
smooth curve c(t) in M defined on an open interval I is called a geodesic
if Dc(t)/dt = 0 on I. If c is a geodesic (as a point set), any parameter t
with respect to which c = c(t) is a geodesic is called an affine parameter
of c. In this paper, all geodesies under consideration are assumed to be
parametrized by affine parameter. The connection Γ is said to be com-
plete if every geodesic can be extended to a geodesic c(t) defined for all
te R, where R denotes the field of real numbers.

DEFINITION 1.1. A smooth function /on Mis called an affine function
on M if, for every geodesic c(t), there are real constants a and b such
that f(c(t)) = at + b for any t whenever it is defined.

This definition does not depend on the choice of an affine parameter
t because any other affine parameter t' is given by an affine transformation
f — ct + d, where c Φ 0 and d are real constants.

PROPOSITION 1.1. Let f be an affine function on M. If the differential

{df)x of f at some point xeM vanishes, then f is a constant function on M.

Proof, Let N denote the subset of M consisting of all points y such
that (df)y = 0. Clearly, N is non-empty and closed in M. Let us take
any y e N and any geodesic c(t) with c(0) = y. Then we can put f(c(t))
= at + b (a, b e R). Hence we have

at

This means that / is constant on every geodesic starting from the point
y. Let U be a convex neighborhood of y (see [9] vol. 1, p. 149). Since
every point of U can be joined to y by a geodesic segment, / is constant
on U. Thus U C N and hence N is open in M. Since M is connected,
we can conclude that / is constant on M.

Let A(M, Γ) denote the set of all affine functions of M. Then it is
clear that A(M, Γ) is a linear subspace of the real vector space of all
smooth functions on M. Every real number can be identified with a
constant function on M, so we get the natural inclusion ί : R -> A(M, Γ).

PROPOSITION 1.2. A(M, Γ) is finite-dimensional and satisfies 1 ^
dim A(M, Γ) <̂  dim M + 1. Moreover, if M is compact, then dim A(M, Γ)

-1
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44 TATSUO HIGA

Proof. Let us fix a point x of M. Let F: A(M9 Γ) -* Γ*(ilί) denote

the linear mapping given by F(f) = (df)x (fe A(M9 Γ))9 where T*(M) is

the cotangent space to M at #. Then Proposition 1.1 implies that the

sequence 0 -> 1? Λ- A(M, JΓ) —> T*(M) is exact. This proves the first and

second assertions. The last assertion follows easily from Proposition 1.1

and the fact that every smooth function on a compact manifold has

a critical point.

PROPOSITION 1.3. // Γ is complete, then every bounded afβne function

f on M is a constant function on M.

Proof. Let xeM and let c(t) (teR) be any geodesic with c(0) = x.

Then we can put f(c(t)) = at + b (a, be R). Now the function t «-> \at\ on

R is bounded, so a = 0. Thus we have (df)x(c(0)) = 0 and hence (df)x = 0.

Therefore the assertion follows immediately from Proposition 1.1.

PROPOSITION 1.4. Let 1, fu , fn be elements of A(M, Γ). Then the

following two statements are equivalent:

1) 1,/i, >,fn are linearly independent in A(M,Γ);

2) dfu , dfn are linearly independent at each point of M.

Proof. Suppose 1). Let x be any point of M and assume that

XJβ l cCi(dfi)x = 0 for real constants al9 , αn. Then we have (d(2]?βl α,/,)),

= 0, so by Proposition 1.1 there is a constant b such that ][]?-i α*/* + 6

= 0. Hence we get at — 0 for all i, which implies 2). The converse is

obvious.

Now we set α(M, Γ) = dim A(M, Γ) - 1.

PROPOSITION 1.5. Lei i?w 6e ίΛe n-dίmensίonal afβne space with the

standard flat affine connection Γo. Then we have a(Rn, Γo) = n.

Proof. Let (xu , xn) be the canonical coordinate system on Rn.

Then the coordinate functions xu , xn belong to A(Rn, Γo). Moreover,

it follows from Propositions 1.2 and 1.4 that 1, xl9 , xn form a basis of

A(J?n, Γo). Hence we have a(Rn, Γo) = n.

Let M7 be another connected smooth manifold with an affine con-

nection Γ'.

DEFINITION 1.2 (cf. [11]). A smooth mapping h : M -> Mr is said to

be totally geodesic if, for every geodesic c(t) of M9 h(c(t)) is a geodesic

of M'.
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AFFINELY CONNECTED MANIFOLDS 45

For a smooth mapping h:M~>M/ and a smooth function / on M\

we denote by h*(f) the smooth function on M given by h*(f) = fo h.

Then we have immediately the following proposition.

PROPOSITION 1.6. If h:M-+M' is a totally geodesic mapping, then

h*(A(M',Γ'))aA(M9Γ) and h* : A{M>', Γ) ~> A(M, Γ) is a linear homo-

morphism. If moreover h is surjective, then h* : A(M\ Γ) -> A(M, Γ) is

injective.

PROPOSITION 1.7. Let Mi be a connected smooth manifold with an

affine connection Γt (ί = 1, 2). Let Γx X Γ2 denote the product affine con-

nection on Mx X M2. Then we have

a{Mx X M29 Γ1 X Γ2) = a(Mu Γ,) + a(M2, Γ2).

Proof For simplicity, we write A = A(MX X Λf2, Γ1 x Γ2) and At =

A(Mi9 Γi), i = 1, 2. Since the natural projection p% : Mx X M2-^Mi is

totally geodesic, pf : At -> A is an injective homomorphism (i = 1, 2). Let

us fix a point (x0,3Ό) °f Mx X M2 (x0 e Mu yQ e M2). Let hi :Mi-+M1x M2,

i = 1, 2, denote the smooth mappings given by hx(x) = (x, y0) (Λ: e Mj) and

h2(y) = (χ0, y) ( y e Λf2), respectively. Clearly, we have hf(A) a Au i = 1, 2.

For any fe A, we set

f = / - Pf(hf(f)) - pf(«(/)) + Λ*b, y«).

Then / lies in A and satisfies f(x0, y0) = 0. It is not hard to verify that

df vanishes at (xo,yo)- It follows from Proposition 1.1 that f vanishes

identically on Mx X Λf2. Hence,

/ = pf(Λf(/)) + pf(Af(/)) - /<*b, Jo)

This formula means that A = pf(Aj) + p2*(A2). Since pfίAO Π p2*(A2) con-

sists of all constant functions on Mx X M2, it follows that dim A = dimAi

+ dimA2 — 1. This proves Proposition 1.7.

§2. Parallel 1-forms and affine functions

Let M be a connected smooth manifold with an affine connection Γ.

Let Γ be the torsion tensor, R the curvature tensor and V the covariant

differentiation of Γ. Γ is said to be symmetric if T vanishes identically

on M. Let / be any smooth function on M. We set

H,(X, Y) = {Vxdf){Y) + M(T(X, Y))
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for all vector fields X and Y on M. Then it is easy to see that Hf is

a symmetric covariant 2-tensor on M.

LEMMA 2.1. For any smooth function f on M and any smooth curve

c(t) in M, we have

~ff(c(t)) = Hf(c(t), c(t)) + c

Proof. For simplicity, let us denote by F(t) the second derivative of

f(c(t)) and set Hf = Hf(c(t), c(t)). We can assume that the curve c(t) lies

in a coordinate chart (£7, (yu -,ym)) of M(m = dimM). Let Γ\jy i,j,k

= 1, , m, denote the components of Γ with respect to the coordinate

system and set c\t) = yt o c(ί), i = 1, , m. Then we have

dt A=I <fyft c

and

Hence jF(ί) — ίί/ is given by

jrJLίAY^ + v1 r* d c '
ίj

which proves the formula.

LEMMA 2.2. Let f be a smooth function on M. If df is parallel, then

df(T(X, Y)) = 0 and df(R(X, Y)Z) = 0 hold for all vector fields X, Y and

Z on M.

Proof. This can be obtained from the following simple calculations:

1) df(T(X, Y)) = df{VxY) - df(VγX) - df([X, Y])

= X(df(Y)) - 7(cί/(X)) - dfdX, Y]) = 0;

2) d/(fl(X, Y)Z) = d/(F xF rZ) - df(FYFxZ) - df(Fίx,nZ)

= XY(df(Z)) - YX(df(Z)) - [X, Y](df(Z)) = 0.

PROPOSITION 2.1. Let f be a smooth function on M. Then:

(1) / is an affine function on M if and only if Hf vanishes identically

on M;

(2) // df is a parallel 1-form, then f is an affine function;
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(3) If Γ is symmetric, then, for every f e A(M, Γ), df is a parallel

1-form.

Proof (1) Suppose that / is an affine function. Let x be any point

of M and let c(t) be any geodesic with c(0) = x. From Lemma 2.1, we

have

and hence Hf(u9 u) = 0 for any u e TX(M)9 where TX(M) denotes the

tangent space to M at x. Since Hf is symmetric, we finally have Hf(u, v)

= 0 for all u, v e TX{M). This implies that Hf vanishes on M. In a

similar way, we can prove the converse.

(2) Since df is parallel, it follows from Lemma 2.2 that Hf vanishes

on M. Hence / is an affine function.

(3) Since Γ is symmetric, we have (Vxdf)(Y) = Hf(X, Y) = 0 for all

vector fields X and Y on M, so df is parallel.

Remark. Let M be a connected Riemannian manifold and let / be a

smooth function on M. Then Hf is the Hessian of / and the Laplace-

Beltrami operator Δ is given by Δf — Trace of Hf. f is said to be harmonic

if Δf = 0. By Proposition 2.1(1), we can assert that every affine function

on M is harmonic.

Now we prove an inequality which gives a relation between A(M, Γ)

and the curvature of M. For any xeM, let ψx denote the linear subspace

of T*(M) consisting of all covectors ω such that ω(R(X, Y)Z) = 0 for all

X,Y,ZeTx(M).

PROPOSITION 2.2. If Γ is symmetric, then we have a(M, Γ) <; dim ψx

for any x e M.

Proof. Let Fx : A{M, Γ) -> T*(M) denote the linear mapping given by

Fx(f) = (df)x (feA(M,Γ)). Then, by Proposition 2.1(3) and Lemma 2.2,

the image FX(A(M, Γ)) is contained in ?βx. Hence the sequence

0 >R—>A(M,Γ)-1-U?βx

is exact. This proves Proposition 2.2.

PROPOSITION 2.3. For a given affine connection Γ on M, there exists

an affine connection Γ on M such that Γ is symmetric and A(M, Γ) —
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A(M, Γ). Moreover, if Γ is complete, then f can be taken so that it is
complete.

Proof. For all vector fields X and Y on M, we set V XY = V XY —
\ T(X, Y). Then it is easy to see that V defines a desired affine connection
on M (cf. [9] vol. 1, p. 146).

§ 3. The main theorems

Let M be a connected smooth manifold with an affine connection Γ,
A(M, Γ) the vector space of all affine functions on M and P\M, Γ) the
vector space of all parallel 1-form of M. As before, we set a(M, Γ) =
dim A(M, Γ) — 1. Let W denote the set of all vector fields X on M such
that, for every / e A(M, Γ), Xf is a constant function on M and that
VXX = 0. We set

W(M, Γ) = {Xe W; VYX = 0 for all Ye W}

and

W0(M, Γ) = {Xe W(M, Γ); Xf = 0 for all /e A(M, Γ)}.

Then it is easy to see that W(M, Γ) is a linear subspace of the real vector
space of all vector fields on M and that W0(M, Γ) is a linear subspace of
W(M, Γ). Hence we can define a real vector space V(M, Γ) by V(M, Γ) =
W(M, Γ)IW0(M, Γ).

PROPOSITION 3.1. If Γ is symmetric, then every parallel vector field X
on M belongs to W(M, Γ).

Proof. Let / be any element of A(M, Γ). By Proposition 2.1(3), df
is parallel. Hence Xf is a constant function on M. Since X is parallel,
we have VYX = 0 for all vector fields Y on M. Therefore, X belongs to
W(M, Γ).

PROPOSITION 3.2. V(M, Γ) is finite-dimensional and satisfies dim
V(M, Γ) £ a(M, Γ).

Proof. We can assume that n = a(M, Γ) > 0. Let 1, fu , fn be a
basis of A(M, Γ) and let F denote the linear mapping of W(M, Γ) into
Rn defined by F(X) = (X/1? , Xfn)(Xe W(M, Γ)). Then it is easy to verify
that the kernel of F coincides with W0(M, Γ). Hence we get dim V(M, Γ)
< n.
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PROPOSITION 3.3. Let M be a connected Rίemannίan manifold with

metric tensor g and Γ the Riemannian connection of M. Then we have

dim V(M, Γ) = a(M, Γ).

Proof. For any smooth function / on M, we denote by grad / the

gradient of /. Namely, grad / is a unique vector field on M such that

£(grad/, X) = df(X) for any vector field X on M. Let fe A(M, Γ). For

all vector fileds X and Y on M, we have

Y) = Xg(graάf, Y) - #(grad/, VXY)

= X(df(Y)) - df(VxY)

= H,(X, Y)

and hence grad / is a parallel vector field of M. For any X e W(M, Γ),

let [X] e V(M, Γ) denote the coset determined by X. Let n = a(M, Γ)

and let l,fl9 , jΓn be a basis of A(M, Γ). To prove Proposition 3.3, it

suffices to verify that [grad/J, •• ,[grad/J are linearly independent in

V(M, Γ). Assume now that Σ? β i α έ[grad/J = 0 for real constants au ,

an. If we set / = Σ?=iα*/*> then grad/ belongs to W0(M, Γ). Let x e M

and let ||u|| denote the norm of i e TX(M). Then we have

and hence (grad/)^ = 0. It follows from Proposition 1.1 that there is a

real constant b such that 2j?=iα</* + b = 0. Thus we get at — 0 for all

i = 1, , 7Z This completes the proof of Proposition 3.3.

Let H\M) be the first de Rham cohomology group of M and H*(M, Z2)

the singular homology group of M with coefficient group Z2 = Z/2Z, Z

being the module of all rational integers. We define a non-negative integer

k(M) by the following two conditions:

1) HAM, Z2) - 0 for all i > k(M);

2) Hk(M, Z2) ψ 0 for k - k(M).

We are now in a position to state our main theorems, which will be

proved in the next section.

THEOREM 3.4. Let M be a connected smooth manifold with a symmetric

afβne connection Γ. Then there exist natural linear homomorphisms

j : A(M, Γ) -> P\M, Γ) and k : P\M9 Γ) -> H\M) such that the sequence

0 • R _ ! > A(M, Γ) - ^ > Pι(M, Γ) - ^ > H\M)
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is exact. Hence,

0 ^ dimP\M, Γ) - a(M, Γ) ^ dim H\M).

In particular, if M is compact, then aim Pι(M, Γ) ^ b^M). Here bγ{M)

denotes the first Betti number of M.

THEOREM 3.5. Let M be a non-compact connected smooth manifold

with a complete afβne connection Γ. Assume that n = a(M, Γ) > 0. Then

there exists a totally geodesic surjectίve submersion π:M->Rn with the

following properties:

(1) every fibre Na = π~ι(ά) (α e Rn) is a connected totally geodesic sub-

manifold of M;

(2) for every a e Rn, the inclusion ίa :Na->M is a homotopy equivalence;

(3) if Nb is compact for some b e Rn, then so is Na for every aeRn;

(4) if M is non-orientable, then so is Na for every aeRn. Moreover,

if rJ':M-+Rn is another totally geodesic surjective submersion, then there

exists an affine transformation T of Rn such that πf — Toπ.

We remark that if Γ is symmetric then π is an affine mapping (see

[11]). Let (x, y) be the canonical coordinate system on R2 and set M =

R2 - {(- 1, 0), (1, 0)}. Then we have Hί(M,Z)^Z®Z. Let p:M->R

denote the smooth function given by

p(x, y) - log ((x - I)2 + y2) - log ((x + I)2 + y2).

Then p is a surjective submersion. The fibre p~\ϋ), 0 being the origin

of R, is a line, while any other fibre p~\a) (a e R, a Φ 0) is a circle.

Therefore, this shows that the existence of surjective submersion does

not always imply (2) or (3) of Theorem 3.5. It should be also remarked

that M has no soul.

THEOREM 3.6. Let M and Γ be as in Theorem 3.5. Then we have

k(M)^άimM-a(M,Γ).

The equality holds if and only if there exists a compact connected totally

geodesic submanifold N of M such that

1) dim N = dim M - a(M, Γ);

2) the inclusion i: N—> M is a homotopy equivalence.

THEOREM 3.7. Let M and Γ be as in Theorem 3.5 and let n = dim M.

If a(M, Γ) = n, then M is diffeomorphic to Rn. Assume further that Γ is
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symmetric. Then M is afβnely isomorphic to Rn if and only if a(M, Γ) = n.

THEOREM 3.8. Let M and Γ be as in Theorem 3.5. Assume that m

= dim V(M, Γ) > 0. Then there exists a connected totally geodesic sub-

manifold Mf of M such that M is diffeomorphic to the product manifold

Rm X M'. Moreover, Mf is compact if and only if k(M) = dim M — m.

We remark that there is a connected manifold M with a complete

and symmetric affine connection Γ satisfying the following inequalities:

0 < dim V(M, Γ) < a(M, Γ) < dim M.

Let M be a connected complete Riemannian manifold and Γ the

Riemannian connection of M. From Proposition 3.3, we have dimV(M, Γ)

= a(M,Γ). In this case, we can prove more: There exists a connected

Riemannian manifold Mf such that M is isometric to the Riemannian

product Rn X Mf of the standard Euclidean space Rn and M\ where we

put n — a(M, Γ). We shall prove this theorem in [7].

§ 4. Proof of the main theorems

We keep the notations in Section 3. First of all, we prove Theorem

3.4. Let Γ be a symmetric affine connection on M. Then, by Proposition

2.1(3), we can define a linear mapping j: A(M, I^-^P^M, Γ) by j(f) = df

(feA(M,Γ)). Since every parallel 1-form ω is closed, it determines a

cohomology class k(ω) e Hι(M). Thus we get the linear mapping k: P\M9 Γ)

—>H\M) and the sequence:

0 > R - % A(M, Γ) - U P\M, Γ) -^> H\M).

To prove the exactness of the sequence, it suffices to verify the relation

Ker/eclmy. Let ω be any element of Ker£. Then there is a smooth

function f on M such that ω = df. By Proposition 2.1(2), /lies in A(M, Γ)

and hence ω = j(f) e Im /. If M is compact, then every / e A(M, Γ) is

constant on M (Proposition 1.2). This means that the sequence

0 > P\M, Γ) - \ H\M)

is exact. Hence we have dim P\M, Γ) <̂  b^M). We have thereby proved

Theorem 3.4.

To prove Theorem 3.5, we need some lemmas.
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Let M be a non-compact connected manifold with a complete affine
connection Γ. Assume that n = a(M, Γ) > 0. Let us fix a basis 1, fu ,
/n of A(M,Γ) and define a smooth mapping π:Jkf->JRn by π(x) = (/i(x),
•••,/»(#)) (xeM). Then it is clear that, for every geodesic c(£) (teR),
there are two elements a and 6 of i?n such that π(c(t)) = at + b for all
leR. This shows that π is a totally geodesic mapping. Let us fix a
Riemannian metric g° on M and consider the vector fields grad fl9 , grad/n

on M. Let Aiό denote the function on M given by Atj = gQ (grad/*,
gxaάfj) (i,j = 1, , n). From Proposition 1.4, it is easy to see that
grad /i, , grad fn are linearly independent at each point of M. Hence
the n X n matrix (Atj(x)) is non-singular for every xeM. Let (Btj) be
the inverse matrix of {AiS). For any a = (at, , an) e J?w, we set

X(d)= Σ diBijgYSLdfj .

Then X(α) is a smooth vector field on M. As usual, we identify Rn with
the tangent space Ta(Rn), a e Rn, by the canonical absolute parallelism on
R\

LEMMA 4.1. For any a = (al9 , an)eRn and any xeM, we have
dft(X(a)x) = ai9 i = 1, , 7i ami ^^(Zίσ),) = a.

Proo/. Let (xu , xn) be the canonical coordinate system on Rn.
Then we have

Σ
jk

ajBjk(x)Akί(x)

for all i = 1, , n, which proves the formulas.
Let TM be the tangent bundle of M and exp: TM-+M the exponential

mapping of M. Let G:R X Rn X M->M denote the mapping given by
G(t, a, x) = exp tX(a)x (teR,aeRn,xe M).

LEMMA 4.2. G:R X Rn X M-> M is smooth and satisfies

π(G(t, α, x)) = at + π{x)

for all teR, aeRn and xeM.
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Proof. We define a mapping Go: R X Rn X M-> TM by G0(t, a, x) =

tX(a)x (teR,aeRn,xe M), so that G = exp o Go. Therefore, it suffices

to prove that Go is smooth. But this can be easily checked by taking

suitable local coordinate systems. Now we shall prove the second assertion.

Since the curve RB 11-> G(t, α, x) e M is a geodesic, there is an element

b == b(a, x) of Rn such that π(G(t, a, x)) = bt + π(x). Differentiating this

with respect to t at t = 0, we have b = TΓ̂ CXXα)̂ ) and hence α = 6 by

Lemma 4.1.

LEMMA 4.3. π:M->Rn is a surjective submersion.

Proof. It is clear from Proposition 1.4 that the rank of π is equal

to n at each point of M. Let x0 be a point of M and let a be any point

of Rr\ Then, from Lemma 4.2, we have

π(G(l, a - π(x0), x0) = α,

so 7Γ is surjective.

Proof of Theorem 3.5. Consider the totally geodesic surjective sub-

mersion 7r: M-> Rn and set 2Vα = π~\a) (α e i?w). For any xeNa and any

i; e Tx(Na), let c(ί) (ί e Rn) be the geodesic determined by (x, v). Then we

can put π(c(t)) = bt + a (be Rn). Now we have

b = A-π(c(t))\t=0 = π*(v) = 0
at

and hence π(c(t)) = α for all ί 6 R. Thus 2Vα is a totally geodesic sub-

manifold of M.

By Lemma 4.2, ττ(G(l, a — ττ(x), x) = a holds for all α € Rn and xe t f ,
so we can define a smooth mapping ra : M-+Na by rα(x) = G(l, α — τr(x), x)

{x e M). We have easily ra o iα(x) = x for any x 6 JVα, where ia: Na~>M

is the inclusion. It follows that Na is connected. Let Ha: R X M-> M

denote the smooth mapping given by Ha(t, x) = G(t, a — π(x), x) (t e R,

x e M). Then we have Ha(0, x) = x and J5Γα(l, x) = ia o rα(x) for all x e M.

Hence the mapping ia o rα : M -> M is homotopic to the identity mapping

of M. Therefore ίa : Na —> M is a homotopy equivalence. (More precisely,

Na is a strong deformation retract of M.)

Suppose now that Na is orientable for some a e Rn. Let eu , en

be the canonical orthonormal basis of Rn and set Xt = X(ei), i = 1, ,

7i. Then, from Lemma 4.1, it is easy to see that, for any xeNa and any
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basis vί, ., vp of Tx(Na) (p = dimiVJ, υl9 , υp9 (X^, , (Xn)* form a

basis of TX{M). Let ω be a non-vanishing continuous p-form on Na and

let m = dim Λf. For any xeNa, let £?° denote the m-covector of TX(M)

defined by

flite Λ Λ vp Λ (Xύ* Λ • Λ(Xn),) = ω , ^ Λ Λ ϋp)

for all vectors î , , f p of Tx(Na). Let i? be the pull-back of Ϊ!M by the

inclusion ia: Na-+ M, i.e., E = ί* ΓM. Then β° (x e iVα) defines a non-

vanishing continuous cross section of AmE*9 where E* is the dual bundle

of E and AmE* the exterior product bundle of 12*. For any y e M, we

set cy(t) = Ha(ty y) (teR), so that c/0) = y and c,(l) = ra(y) e Na. Let

p(cy) denote the parallel translation along the curve cy(t) (0 ^ t ^ 1). Thus

^(c^) is a linear isomorphism of Ty(M) onto JŜ  (x = ra(y)). Then p(cy)

can be canonically extended to a smooth vector bundle homomorphism

pm(c): ΛmTM-> AmE. Now we define the m-covector Ωy on Ty(M) by

βy(V) = Ωl (pm(c)(V)) (VeAmTy(M), x = rα(y)). Then it can be easily

seen that Ωy (y e M) defines a non-vanishing continuous m-form on M.

Hence M is orientable. We have thereby proved (4) of Theorem 3.5.

Let πr\M-+Rn be another totally geodesic surjective submersion.

Let (xίy - -, xn) be the canonical coordinate system on Rn and set f[ = xt ©

πf', i = 1, , n. Then fi, - ,fή are affine functions on M and linearly

independent in A(M, Γ). Hence there are a non-singular n X n matrix

(ciij) and real numbers bu , bn such that /ί = Σy=i α ΰ/j + ^̂  f° r a H

ί — 1, , n. This proves the last assertion of Theorem 3.5.

To prove (3) of Theorem 3.5, we need the following lemma.

LEMMA 4.4. Let N be a connected smooth manifold. Then we have

0 <J k(N) ^ dimiV. Moreover, N is compact if and only if k(N) = dimiV.

Proof of Lemma 4.4. It is well-known that the singular homology

group H*(N, Z2) has the following properties:

1) Hq(N, Z2) = 0 for all q > dimN;

2) E N is non-compact, then HP(N, Z2) = 0 for p = dim N;

3) If N is compact, then HP(N, Z2) ^ Z2 for p = dim N.

(For more details, see for example [6]). Now the lemma follows immediately

from these properties.

We return to the proof of Theorem 3.5(3). Suppose that Nb (beRn)

is compact. Let a be any point of Rn. Then Na is homotopy equivalent
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to Nb. From Lemma 4.4, we have

k(Na) = k(Nb) = dim Nb = dim Na .

Hence Na is compact. This completes the proof of Theorem 3.5.

Proof of Theorem 3.6. By Theorem 3.5, there exists a connected

totally geodesic submanifold N oΐ M such that a) the inclusion i: N^>M

is a homotopy equivalence and b) dim N = dim M — a(M, Γ). From a),

b) and Lemma 4.4, we have

k(M) = k(N) ^dimN= dim M - a(M, Γ).

Moreover, N is compact if and only if k(M) = dim M — a{M, Γ). We

have thereby proved Theorem 3.5.

Proof of Theorem 3.7. In view of Propositions 1.5 and 2.3, it will be

sufficient to prove that if Γ is symmetric and a(M, Γ) = dimM then M

is affinely isomorphic to Rn. Accordingly, we assume that Γ is symmetric

and a(M, Γ) = dimM. Let n = dimM and consider the surjective sub-

mersion π:M-+Rn (Lemma 4.3). In this case, π is an immersion, so we

can define a Riemannian metric g on M by g = π*ds2, where ds2 denotes

the standard Euclidean metric on Rn and π* the codifferential of π. As

before, let el9 , en be the canonical orthonormal basis of Rn and set

Xi = Xfa), ί = 1, , n. By Lemma 4.1, df^Xj) is constant on M (i,j =

1, « ,7i). On the other hand, by Proposition 2.1(3), dft is a parallel

1-form of M (i = 1, , τι). Hence, for any vector field X on M, we have

dftfxXj) = X{dft{X3)) = 0 for all ί, j = 1, - , n. It follows that Z l s , Xn

are parallel vector fields. Hence,

K , X3] = F X i Z, - F^X, = 0 (i,j = 1, , n) .

Let V denote the covariant differentiation of the Riemannian connection

of (M, g). Since g(Xu Xj) is constant on M for all ί,j = 1, , n we have

g(Vx.X3; Xk) = 0, i,j, fc = 1, , n, and hence F^.X, = 0, /, j = 1, , n (cf.

[9] vol. 1 p. 160). This means that Γ coincides with the Riemannian

connection of (M, g). As Γ is complete, (M, g) is a complete Riemannian

manifold. It therefore follows from a well-known theorem in [9] (vol. 1

p. 176, Theorem 4.6) that π is an isometry of M onto Rn. This completes

the proof of Theorem 3.7.

Proof of Theorem 3.8. We begin with the following lemma.
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LEMMA 4.5. Let X be any element of W(M, Γ). Then:

1) Every integral curve of X is a geodesic of M;

2) X is a complete vector field on M.

Proof 1) follows immediately from the condition VXX = 0.

2) Let x(t) (|£| < e , e > 0) be an integral curve of X. Since Γ is

complete, x(t) can be extended to a geodesic c(t) defined for all teR.

Let I denote the subset of R consisting of all points t such that c(t) =

Xcw Clearly, I is non-empty and closed in R. Let t0 be any point of I

and let y(t) (\t — tQ\ < ε', ε' > 0) be an integral curve of X with y(t0) = c(t0).

Then y(t) is a geodesic with the initial condition (c(t0), Xc(ίo)). Hence c(t)

must coincide with y(t) on a small open neighborhood of t0. This shows

that / is open in R and hence I = R. Therefore every integral curve of

X can be extended to an integral curve defined for all teR. Hence X

is complete.

Let us set m = dimV(.M, Γ) and n = a(M, Γ). Then we have m<^n

(Proposition 3.2).

LEMMA 4.6. We can choose Yu...,Yme W(M, Γ) and A, ,/m 6 A(M, Γ)

in such a way that

1) 1,/i, * ,/m are linearly independent in A(M,Γ);

2) dft{Y3) = δi5 for all i,j = 1, , m, where δtj denotes Kroneckefs

delta.

Proof. For any Ye W{M,Γ), let [Y] e V(M, Γ) denote the coset de-

termined by y. Then we can choose Yu , Yme W(M, Γ) so that [YJ,

• , [YJ form a basis of V(M, Γ). Let 1, gu , gn be a basis of A(M, Γ)

and set AtJ = dgi(Y3), i = 1, , τι, j = 1, , m. Then, by definition,

-Ai/s are constants. Assume that ΣjLi α ^ o — 0 f° r r e a-l constants α1?

• , αTO (ί = 1, , ή). Then we have easily Yjj=i as[Yj] = 0 and hence

<Zj = 0 for all j = 1, , m. This means that the rank of the nX m

matrix {Ai3) is equal to m. We can assume that the m X m matrix

(Ai^ij^n is non-singular. Let (Sij)i^i,y<w be the inverse matrix of (Ai3)

and set ft = Σ7 = 1 -Bi^, i = 1, , m. Then 1, fu , /m are linearly

independent. Moreover, we have

k=l k=l

for all ί, j = 1, , m. This proves Lemma 4.6.
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From now on, we fix Yu ., Ym e W(M, Γ) and fu , fm e A(M, Γ)

with the properties listed in Lemma 4.6. Let p: M-+Rm denote the smooth

mapping given by p(x) = (Λ(x), , fjx)) (x e M). For any a = (au , αm)

€/?m, let Ya denote the vector field given by Ya = Σ^i^tYt By Lemma

4.5, Ya is a complete vector field on M. We denote by F* the 1-parameter

family of diffeomorphisms generated by Ya. Let F: R X Rm x M-+M

denote the mapping defined by F(t, a, x) = Fa

t(x) (teR,ae Rm, x e M).

LEMMA 4.7. F: R X Rm X M-+M is smooth and satisfies

p(F(tf a, x)) = at + p(x)

for all teR, ae Rm and xeM.

Proof. By Lemma 4.5, the curve RBt*-> F(t, α, x) e Mis a geodesic,

so we can write F(t, α, x) = exp tY%. Therefore, we can prove Lemma 4.7

by the same reasoning as in Lemma 4.2.

Now we set M' = j r *(()), 0 being the origin of Rm. Then ilί7 is a

closed totally geodesic submanifold of M. Let h denote the smooth mapping

Rm x Mr -> M given by Λ(α, x) = F(l, α, x) = Fϊ(x) (a eRm,xe M'). From

Lemma 4.7, we have p(F(— l,p(x), x)) = 0 for any x e M, so we can define

the smooth mapping q : M -> M' by q(x) = F(—l,p(x), x) (x e M). For any

aeRm and any x e M\ we have p(h(a, x)) = α and hence

(p X q)o h(a, x) = (p(/*(α, x)), g(Λ(α, x)))

= (σ, x).

On the other hand, we have for any y e M

ho(pχ q)(y) = h(p(y), q(y))

= FζoFl1(y)

— y

where we put a = p( y). These results show that h is a diffeomorphism

of Rm X Mr onto M. The last assertion follows easily from Lemma 4.4.

This completes the proof of Theorem 3.8.

§5. Affine symmetric spaces

A symmetric space is a triple (G, H, s) consisting of a connected Lie

group G, a closed subgroup H of G and an involutive automorphism s of G
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such that H lies between the closed subgroup Gs of all fixed points of s

and the identity component of Gs. Let us consider the coset space GfH

and let s0 denote the diffeomorphism gH-> s(g)H of GjH onto itself. Then

GjH has a unique affine connection Γ invariant under s0 and under the

natural left action of G (see [10] § 15). Γ is called the canonical affine

connection on GjH. Then GjH turns out to be an affine symmetric space

with respect to the canonical affine connection. Conversely, every affine

symmetric space is expressed in this form. Let g and ζ be the Lie algebras

of G and H, respectively. Let m denote the (— l)-eigenspace of the

differential of s. Then we have the canonical decomposition

g = ί) + m (direct sum).

THEOREM 5.1. Let (G, H, s) be a symmetric space, g = § + m the ca-

nonical decomposition of the Lie algebra of G and Γ the canonical affine

connection on M = G/H. Then:

1) a(M, Γ) <̂  dim m — dim [m, [m, m]]

2) The equality holds if M is simply connected.

Proof. We denote by gt(tn) the Lie algebra of all linear endomorphisms

of m and by m* the dual vector space of m. Let p: ζ -> gί(m) denote

the linear isotropy representation given by p(X)(Y) = [X, Y] (Xe ζ, Ye m).

If we set tf = [m, m], then §' is an ideal of ζ. We remark here that the

Lie subalgebra p(fy) of gί(m) can be identified with the Lie algebra of the

linear holonomy group Lo at the origin 0 = He G/H (see [9] vol. 2 p. 232).

Moreover, if M = G/H is simply connected, Lo is connected. Let p* : ϊj —>

gl(m*) denote the representation defined by

(p*(X)ω)(Y) = - ω(p(X)(Y)) (Xe \ Yem,ωe m*) .

We set

a = {ωe m*; p*(X)ω - 0 for all Xeψ}.

Let P\M, Γ) be the vector space of all parallel 1-form of M. From the

above remarks, it can be easily seen that dim P\M, Γ) <; dim α and that

if M is simply connected then dim P^M, Γ) = dimα. Let α denote the

linear subspace of m consisting of all vectors Y such that ω(Y) = 0 for

all ωeά. Then we have dim α = dim m — dim α. For simplicity, we write

b = p(fy)(m). Let Xefy and Fern. For any ωeά, we have

ω(p(X)(Y)) = - (p*(X)ω)(Y) = 0,
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which implies that b is a linear subspace of α. Hence,

dim a ^ dim m — dim 6 .

On the other hand, let 6 denote the linear subspace of m* consisting of

all ωem* such that ω(Z) = 0 for any Z e b . Then, as in the above case,

we have 6 c α. Hence,

dim α J> dim m — dim b .

We have thereby proved the formula: dim α = dim m — dim b. Now

Theorem 5.1 follows easily from Theorem 3.4.

COROLLARY 5.2. Let (G, H, s) be a symmetric space and Γ the canonical

affine connection on M = G/H.

1) If G is semisimple, then a(M, Γ) = 0.

2) If G is solvable and if M is simply connected, then a(M, Γ) > 0.

Proof Let g = ί) + m be the canonical decomposition. If we set

g' = [m, m] + m, then g7 is an ideal of g. We have easily

fe/

> δΊ = [πi, m] + [m, [m, m]] (direct sum).

Suppose first that g is semisimple. Then g7 is also semisimple. Thus we

get [g7, gr] = gr and hence [m, [m, m]] = m. Suppose now that g is solvable.

Then g' is also solvable. Thus [g7, g;] Q g' and hence [m, [m, m]] Q m.

Therefore the assertions 1) and 2) follow from Theorem 5.1.
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