Filling factor and temperature variations in planetary nebulae

Manuel Peimbert and Antonio Peimbert

Instituto de Astronomía, Universidad Nacional Autónoma de México, Apartado postal 70-264, México D. F. 4510, México email: peimbert@astroscu.unam.mx; antonio@astroscu.unam.mx;

Abstract. We have found a strong correlation between small filling factors and large t^2 values in planetary nebulae. We have also found that in general the filling factor for Type I PNe is smaller than for Type II PNe. These results imply that the abundance correction due to temperature inhomogeneities in general is larger for Type I PNe than for Type II PNe. This difference permits to reproduce the expected abundance difference between PNe of Type I and II predicted by Galactic chemical evolution models.

Keywords. ISM: abundances, planetary nebulae: general; Galaxy: abundances

1. Discussion

To test the abundance determinations of PNe we will compare the Galactic chemical evolution model by Carigi & Peimbert (2011) with the abundances derived from collisionally excited lines for PNe of Type I and Type II. To make this comparison we have to address several problems. We need to estimate: a) the correction of the O/H value due to the temperature structure of the nebulae, b) the fraction of H that is converted into He during the central star evolution, c) the fraction of O trapped by dust grains in the nebulae and d) the average ages of the two types of PNe.

We present a preliminary discussion of the relationships for a set of PNe between: a) the abundance discrepancy factor, ADF, versus the radius of the nebulae, b) the filling factor, defined by $\epsilon = N_e (\text{rms})^2 / N_e (\text{FL})^2$, versus the ADF values, and c) ϵ versus radius.

We are in the process of increasing the number of data points with accurate ϵ , t^2 (Peimbert 1967), and abundance values. The sources of error, that in some cases are not independent, include the following: the angular radius θ (e. g. Mallik & Peimbert 1988), the distance to the object, the average root mean square density $\langle N_e(\text{rms}) \rangle$, the average forbidden line density $\langle N_e(\text{FL}) \rangle$, the reddening correction $C(\text{H}\beta)$, the ADF that includes the errors in the line intensities, and the average t^2 value.

In Table 1 we compare the Galactic chemical evolution model by Carigi & Peimbert (2011) with: a) the HII region abundances of the solar vicinity derived form RLs by Esteban and collaborators corrected by the amount of O embedded in dust grains according to Peimbert & Peimbert (2010), b) the metal richest F and G stars of the solar vicinity studied by Bensby & Feltzing (2006), c) the protosolar abundances presented by Asplund *et al.* (2009), and d) the abundances for PNe of Types I and II presented in the literature and in this poster.

2. Conclusions

1) We find a strong correlation between the ADF value and the filling factor, or t^2 and ϵ . The smaller values of ϵ imply larger density variations, and in the presence of larger density variations we expect larger temperature variations.

Age (Gyr)	$G.C.E.^{a}$	Type I PNe (CELs)	Type I PNe (RLs)	Type II PNe (CELs)	Type II PNe (RLs)	Other
0	8.88					8.87^b
1	8.84	8.57^c	9.14^d			8.84^e
4.5	8.68					8.73^{f}
6	8.58			8.58^c	8.87^d	

Table 1. $12 + \log O/H$ values.

^a Galactic chemical evolution model, solar vicinity, Carigi & Peimbert (2011).

^b Solar vicinity H II regions, Carigi & Peimbert (2011).

^c Solar vicinity PNe, Stanghellini & Haywood (2010) and Henry et al. (2010).

^d This work.

^e Young F and G stars of the solar vicinity, Bensby & Feltzing (2006).

^f Protosolar value, Asplund *et al.* (2009).

2) From Galactic chemical evolution models it is found that $\langle z \rangle$ is about 100 pc for Type I PNe (about one Gyr old) and about 280 pc for Type II PNe (3–9 Gyr old), see Allen *et al.* (1998) and García-Segura *et al.* (2002). Furthermore it is also found that the O/H value of the ISM when Type I PNe were formed was about 0.25 dex higher than when Type II PNe were formed.

3) We find that the ADF for Type I PNe is about 0.25 dex higher than for Type II PNe. In other words that from recombination lines it is found that the O/H value for Type I PNe is about 0.25 dex higher than for Type II PNe.

4) Stanghellini & Haywood (2010) and Henry *et al.* (2010) find that for the solar neighborhood the $12 + \log O/H$ values for Type I and Type II PNe derived from CELs are practically the same and amount to about 8.58. Rodríguez & Delgado-Inglada (2011) find that for 8 well observed PNe of Type II of the solar vicinity the $12 + \log O/H$ average value for CELs amounts to 8.68 and for RLs amounts to 8.98.

5) We find that the O/H values for Type I and Type II PNe derived from RLs are about 0.3 dex higher than those predicted by Galactic chemical evolution models. This discrepancy should be studied further.

References

Allen, C., Carigi, L., & Peimbert, M. 1998, ApJ, 494, 247

- Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. 2009, ARA&A, 47, 481
- Bensby, T. & Feltzing, S. 2006, MNRAS, 367, 1181
- Carigi, L. & Peimbert, M. 2011, RevMexAA, 47, 139
- García-Segura, G., Franco, J., López, J. A., Langer, N., & Rózyczka, M. 2002, RevMexAASC, 12, 117
- Henry, R. B. C., Kwitter, K. B., Jaskot, A. E., Balick, B., Morrison, M. A., & Milingo, J. B. 2010, $ApJ,\,724,\,748$

Mallik, D. C. V. & Peimbert, M. 1988, RevMexAA, 16, 111

Peimbert, A. & Peimbert, M. 2010, ApJ, 724, 791

Peimbert, M. 1967, ApJ, 150, 825

Rodríguez, M. & Delgado-Inglada, G. 2011, $ApJ,\,733,\,\mathrm{L50}$

Stanghellini, L. & Haywood, M. 2010, ApJ, 714, 1096