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Abstract. In this work we investigate the pricing of swing options in a model
where the underlying asset follows a jump diffusion process. We focus on the
derivation of the partial integro-differential equation (PIDE) which will be applied
to swing contracts and construct a novel pay-off function from a tree-based pay-off
matrix that can be used as initial condition in the PIDE formulation. For valuing
swing type derivatives we develop a theta implicit-explicit finite difference scheme
to discretize the PIDE using a Gaussian quadrature method for the integral part.
Based on known results for the classical theta-method the existence and uniqueness
of solution to the new implicit-explicit finite difference method is proven. Various
numerical examples illustrate the usability of the proposed method and allow us
to analyse the sensitivity of swing options with respect to model parameters. In
particular the effects of number of exercise rights, jump intensities and dividend
yields will be investigated in depth.
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1 Introduction

In recent years the deregulation process has been developed strongly in the power
market in many western countries. Although the establishment of power exchanges
was not inevitable, but with its existence, markets gained more transparency and com-
petitiveness. The European Energy Exchange (EEX), Amsterdam Power Exchange
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(APX), Nord Pool with Eltermin and Eloption and New York Mercantile Exchange
(NYMEX) are the results of the emergence of markets for exchange and trading power.

In most deregulated markets the spot prices do not vary with the season only, one
also observes occasional distinctive price spikes which are caused when the maximum
supply is close to or lower than the current demand. Such supply congestion occurs
when a generator or part of the distribution network fails unexpectedly or sudden
change in demand could lead to spikes. Also, transfer of natural gas through pipelines
and electricity through transmission lines create additional volume constraints.

The rise of trading electricity delivery contracts aims to satisfy the power require-
ment on one hand and on the other hand to minimize the new price risks. One of the
first types of contracts to be traded on exchange were futures contracts which give the
holder the obligation to buy a fixed amount of the commodity for a predefined price
at a predetermined time. With many advantages, such as low transaction costs, guar-
anteed physical delivery and financial performance by the exchange, futures contracts
are quite popular in power markets. However, since the owner of a futures contract
had to use the ordered amount up or any surplus energy was wasted, this standard
contract is not sufficient for market participants who find it difficult to predefine their
future need of the commodity, especially when the relevant product cannot be stored
or storage is very expensive. Among this immense variety of contracts swing options
are the most suitable in hedging extreme price fluctuations of certain commodities.
In allowing flexibility-of-delivery with respect to both timing and the amount of energy
used, swing contracts can be found in coal markets, gas markets and are especially
favored in energy markets, since energy is only storable in a limited manner and its
storage process is quite costly e.g., in a pumped-storage power station.

From a mathematical point of view, the pricing of these power derivatives contains
several challenges. One is the choice of an appropriate stochastic process which de-
scribes the price movement appropriately as electricity spot prices are mean-reverting,
exhibit strong seasonalities and jump behaviour. Typically, the spot price, after some
sudden jumps, immediately reverts to the long term price level. Another critical as-
pect is the application of the no-arbitrage approach from financial mathematics pre-
suming markets are liquid meaning that the underlying asset can be bought and sold
at a reasonable price at any time. Due to the non-storability and non-trading character
of electricity and gas the no-arbitrage approach in financial market can not be applied
on power markets without hurdles as buying the underlying today and selling the
product in the future is not feasible. However, since the classical arbitrage pricing
incorporates many advantages, many authors have been dealing with the question:
How can we use arbitrage pricing in incomplete markets?

Instead of modeling the electricity market directly and deriving the forward price,
one approach is to model the forward price directly as forward contracts are tradable
and hence the no-arbitrage valuation can be applied. Unfortunately, forward contracts
are traded only in certain time periods and hence, the liquidity is rather low. For
example, the scope of delivery in EEX forward markets starts by a month, a quarter,
a year and ends at three years. Thus these forward models do not reflect the price
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behaviour during a day or within an hour which is important for swing options. The
other approach is the implicit assumption of liquidly tradable futures contracts for all
time points which creates a futures market over the electricity spot market. Therewith
the futures prices just in front of delivery present the electricity spot prices and in this
way the no-arbitrage pricing methodology is applicable. In line with Wilhelm [22] we
choose to use the second approach in the sequel.

In the last ten years research on models with jumps has become very active. In
addition to the partial differential term one needs to take account of the integral term
when pricing options on an underlying that follows a jump diffusion process. The
non-locality of the integro-differential operator is a difficulty when valuating the par-
tial integro-differential equation (PIDE) numerically. To describe the jumps properly
one could observe two different approaches, namely solutions were shown for the
classical model by Merton [19] and a more recent model by Kou [17]. The former is an
attractive model in which the process the asset follows is the sum of a jump process
with lognormally distributed jumps and the usual Wiener process. The latter char-
acterizes a pure jump process suggesting a double exponential distribution for the
logarithmic jump size. For more details we refer the interested reader to [17, 19]. In
particular, by considering a jump-diffusion model for a single-asset market Almendal
and Oosterlee [1] valuated European contingent claim. To tackle the PIDE they used
finite differences methods (FDM) and finite elements methods (FEM) to discretize in
space and the second order backward differentiation formula (BDF2) in time. Instead
of Gaussian quadrature, a fast Fourier transformation (FFT) has been applied for the
integral part since the latter is known to be more efficient. Mayo [18] demonstrated a
cost reduction of evaluating such integrals by using an operator splitting method to
the PIDE and evaluate the integral terms by FFT.

Up to the authors knowledge, only Kjaer [15], Kluge [16] and Kern [14] considered
jumps in their swing option valuation but compared to Wilhelm they simplified the
model in not allowing the holder to sell energy if they do not belong to the group of
producers. According to Kluge [16], Monte-Carlo methods only work for the most
basic versions of swing contracts where at each time only one unit of an option can be
exercised. Kluge [16] stated that more general swing contracts with a variable volume
per exercise and an overall constrained can be priced with a tree based method. Hence,
he decided to extend the ideas of Jaillet, Ronn and Tompaidis [13], using a grid rather
than a tree allowing spot prices to jump from any value to any other. Kjaer [15] derived
a PIDE and based on FDMs and quadrature methods he deduced a numerical scheme
to approximate the option value. Among several approaches, FDMs could acquire
similar advantages of FEMs and are even easier to implement and thus its popularity
has been increased. Wegner [21] presented swing options values as the solution of a
partial differential equation (PDE) by extending the classical Black-Scholes equation
with stochastic features in the electricity price process, such as seasonality and mean
reversion and used FDMs to approximate the solution numerically. Wegner described
concisely the pay-off by using lattice methods and even considered penalty features.

In this work we limit ourselves to the classical log-normal, one-factor stochastic

https://doi.org/10.1017/S2070073300001144 Published online by Cambridge University Press

https://doi.org/10.1017/S2070073300001144


262 M. H. Nguyen and M. Ehrhardt / Adv. Appl. Math. Mech., 6 (2012), pp. 259-293

process for the underlying commodity price to display the price movements. In par-
ticular, we do not consider seasonality and mean reversion features as those have
been derived and incorporated in the price process by Wegner [21] and Jaillet, Ronn
and Tompaidis [13]. We want to focus here on the valuation of power derivatives in-
cluding jumps. A theoretical foundation for pricing swing options has been derived
by Wilhelm [22]. Assuming the existence of a liquid futures market the futures price
can be considered as the underlying of swing options. Based on this framework we
use the no-arbitrage approach, derive the stochastic differential equation (SDE) for the
spot price and develop a PIDE by modifying the Black-Scholes PDE. By extending the
ideas of Kjaer [15], who deduced a PIDE for swing options with jumps, we permit any
holder to buy as well as to sell the underlying. A numerical scheme based on FDMs
and quadrature routines is derived which offers high flexibility regarding spot price
models and pay-off functions. To justify the complex features of swing options, we
will generate a pay-off function from a tree-based pay-off matrix, hereby extending
the ideas of Wegner [22]. After describing the numerical scheme for swing options
and presenting numerical examples, we will investigate and interpret the dependence
of swing option values on typical process parameters like number of exercise rights,
jump intensities and dividend yields.

The paper is organized as follows. In Section 2 we describe swing options includ-
ing a discussion of boundary conditions, special cases and the pay-off function. We
will propose and examine in detail a simple log-normal, one-factor model exhibiting
price spikes for the spot price of the underlying commodity and deals with the deriva-
tion of the PIDE for swing options. Section 3 focuses on valuation of swing options
based on FDMs with Gaussian quadrature methods for the integral part. A proof of
the stability and convergence of the numerical scheme is provided. Finally, in Section 4
swing option’s pricing results in dependence of model parameters are presented.

2 Swing options

Swing contracts are a vast species of options and traded generally as over-the-counter
(OTC) contracts, meaning traders are private parties. The option’s purchaser often
combines swing options with a set of forward contracts. Latter oblige the holder to
buy or sell a certain amount bi of the underlying for a set of predefined strike prices Ki
at a discrete set of dates {t1, · · · , tn} over a certain period ti ∈ [t0, T], ∀i ∈ {1, · · · , n}.

With the swing contract the holder has the rights to sell or buy the underlying on
top of the volume bi specified in forward contracts multiple times during a predeter-
mined contract period {t1, · · · , tn} ⊆ [t0, T] at a set of strike prices Kj, j ∈ {1, · · · , N}.
However, at a time tj, j ∈ {1, · · · , N}, the holder is restricted to exercise only one
right, whereas tj typically denotes a day or a week. To make it short, the swing option
holder has n opportunities to exercise his N rights. It does not make sense to have
more rights than opportunities since you can not exercise more than one right at one
opportunity. Thus, we postulate the condition N ≤ n.
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If the exercise time is continuous, that means the holder may buy or sell at any time
until maturity tj ∈ [t0, T], swing derivatives can be viewed as a portfolio of American
options. However, due to the restriction of delivery process there is always a mini-
mum distance of two exercise dates which is called the refraction time. If the exercise
time is discrete, that means the holder has the right to purchase or sell at a predefined
discrete set of dates {t1, · · · , tn}, swing derivatives can be seen as a portfolio of ei-
ther Bermudan options or European options. Note that it makes sense to set the last
exercise opportunity tN equal to T.

In most cases not only the total number of rights is restricted by N, but also a
volume restriction is given. There are lower and upper bounds for each right, such as

∆j ∈ (l j
1, l j

2) ∪ (l j
3, l j

4) with l j
1 ≤ l j

2 ≤ 0 ≤ l j
3 ≤ l j

4, ∀j ∈ {1, · · · , N}. (2.1)

If ∆j is negative, the holder is allowed to consume ∆j less while the predetermined
amount bj must be purchased. So what the investor can do is to sell exactly this
amount ∆j from bj to a third party and hence the consumption in tj with bj +∆j reflects
a swing put option or a downswing, see [7]. If ∆j is positive, in addition to bj, the holder
has the right to buy ∆j and create therewith a call or a upswing, respectively. Hence, a
swing option is characterized by one number ∆j. The total number of downswings d
and upswings u could be restricted with d ≤ D and u ≤ U.

Besides, an overall consumption constraint is common, e.g.,

C =
N

∑
j=1

bj + ∆j ≤ Max. (2.2)

The so-called penalty function ρ is related to this limitation (2.2) allowing the holder
to exceed these limits, but in connection with a monetary fine. Let x denote the total
consumption in [t0, T] and E[St0 |ST] the expectation of the commodity’s spot price at
the end of the contract. Then the penalty function in x is defined by

ρ(x) =


C, if x < Min,
0, if Min ≤ x ≤ Max,
(x−Max)E[St0 |ST], if x > Max,

(2.3)

with given parameters Min, Max ∈ R. Therefore swing options are also called take-
or-pay options. To simplify the matter we assume that the strike prices Kj ≡ K, ∀j ∈
{1, · · · , N} are identical. As we are only concerned with the time to expiry of the
contract, we can assume, without loss of generality, that the present time t0 is zero and
the interval [0, 1] denotes a period of one year.

In this paper we concentrate on valuating swing options of Bermudan type. The
boundary conditions for a Bermudan option are the same as for an American option if
t ∈ [t1, · · · , tn] for ti denotes one exercise opportunity ∀i ∈ {1, · · · , n}. Otherwise the
boundary conditions for a Bermudan option are the same as for a European option.
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2.1 Special cases

Although swing options are many fold we can still deduce some conclusions based on
the characteristics of exercise rights and opportunities. There are some articles on this
specification, see e.g., [7, 13, 21], but most of them only deal with one type of exercise
times, namely a set of discrete dates. According to [13,21], the value of a swing option
with one right is equal to the value of a Bermudan option, but this does not hold in
general as the option value depends not only on the number of rights but also on the
type of exercise time, whether it is a fixed date, a set of dates or a period of time. For
instance, Wilhem [22] stated that swing options with one right is equal to the value of
an American option since she considered the exercise time as any element of a period
of time interval. Presuming there is no penalty for swing options we could state in the
sequel some important cases.

2.1.1 Continuous exercise time

The exercise time tj is continuous if tj ∈ [0, T], ∀j ∈ {1, · · · , N}, where N ∈N denotes
the number of exercise rights.

• If N = 1, the option holder has one right and may exercise any time until maturity,
i.e., the value of a swing option is equal to the value of an American option.

• If N > 1, then the value of a swing option is never larger than the value of a portfolio
of American options.

2.1.2 Discrete exercise time

The exercise time tj is discrete if tj ∈ {t1, · · · , tn} ⊆ [0, T], ∀j ∈ {1, · · · , N}, where N ∈
N denote the number of exercise rights and n ∈N number of exercise opportunities.

• If N = 1 and n = 1, then at a prespecified time t1 the option holder has the right to
exercise once. Thus, the value of a swing option is equal to the value of a European
option.

• If N = 1 and n > 1, then at a predefined set of time the option holder has the
right to exercise once. Thus, the value of a swing option is equal to the value of a
Bermudan option.

• If N = n > 1, then the number of rights is equal to the number of dates. Thus, the
value of a swing option is equal to the value of a portfolio of European options.

• If 1 < N < n and as long as N < n, we have more exercise opportunities for one
right. But as soon as N = n, we arrive at the case mentioned above. Thus, the value
of a swing option is never larger than the value of a portfolio of Bermudan options
and European options.

2.1.3 Conclusions for upper and lower bounds

With these results we derive bounds for swing options which are extremely helpful
for a better understanding and verifying the calculated swing option prices.
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Continuous exercise time

• Upper bound: The value of swing options is equal to the value of a bundle of American
options only when the holder of such options never exercises more than one option at
the same time. In other words, the value of a portfolio of American options is greater
than the value of a swing option as soon as the holder of the first portfolio exercises
at least two American options together. Thus the upper bound is given by the sum
of American options.

Discrete exercise time

• Upper bound: Compared to a swing option’s holder, who only has one exercise right
at a predefined time, a Bermudan option’s holder has the advantage to exercise all
at once. Therefore the upper bound is the sum of Bermudan options.

• Lower bound: As a Bermudan’s option value is never smaller than a European one,
the lower bound is hence given by the sum of European options.

For the sake of completeness we have presented upper and lower bounds for both
discrete and continuous exercise times, but in the sequel we will focus on the discrete
case and on swing options of Bermudan types.

2.2 A partial integro-differential equation for swing option pricing

In this section we construct a non-linear PIDE which describes swing options very
well. The standard assumptions for Black-Scholes PDE are: no arbitrage, no dividend
and transaction costs, constant interest rate r and volatility σ and the asset price S
satisfies the following stochastic differential equation

dS
S

= µdt + σdX. (2.4)

In order to adapt the original Black-Scholes framework to swing options we need to
modify a few assumptions and therefore extend the Black-Scholes PDE

∂V
∂t

+ rS
∂V
∂S

+
σ2S2

2
∂2V
∂S2 = rV, (2.5)

to a PIDE. It is a well-known fact that Bermudan options are discretized American
options and hence for swing options we have to dismiss the no dividend assumption.
Here we only consider deterministic dividends whose value is fixed at the beginning
of the option’s contract. This assumption is not too restrictive since dividend pay-
ments in many companies stay similar within many years. The dividend payment of
an asset at a certain time dt is denoted as δSdt. As the dividend yield is defined as
the ratio of the dividend payment to the asset price, the dividend δSdt therefore rep-
resents a constant and continuous dividend yield. Hence, whenever the underlying
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asset pays out dividends, the asset price must fall by the same amount as otherwise
arbitrage opportunities would exist. The asset price S is therefore modified to

dS = (µ− δ)Sdt + σSdX, (2.6)

and the corresponding PDE then reads

∂V
∂t

+
σ2S2

2
∂2V
∂S2 + (r− δ)S

∂V
∂S

= rV. (2.7)

The stock price does not have only continuous changes, but also jumps. One can
observe this behaviour in energy prices and in most cases swing options are energy
derivatives. That is why a constant volatility σ is not realistic at all. For the pur-
pose of evaluating options with jumps there exist two popular jump-diffusion mod-
els. The classical Merton’s model uses a log-normal distribution for the log jump size
whereas the more recent Kou’s model assumes the price of the underlying asset be-
haves like a geometrical Brownian motion (GBM) with a drift and jumps whose size is
log-double-exponentially distributed. Both are attractive models since analytical for-
mulae for pricing vanilla options with jumps exist, and with the latter model some
path-dependent options such as lookbacks, barriers and perpetual Americans with
jumps are tractable analytically. For more details of Merton’s and Kou’s model we
refer to [17, 19]. Recently Almendral and Oosterlee [1] considered both models for a
single-asset market. After deriving a PIDE for a European option with jumps they
compared the numerical solutions to the analytical solutions. Similar studies were
done by Mayo [18] and Toivanen [20], where in addition to European options Ameri-
can options are also considered. For the consideration of jumps we choose the Merton
model as this model yields the same results and is less complicated to handle. For
modelling spikes Merton suggested the Poisson process which is presumed to be inde-
pendent of the Brownian part. According to [3] the modified one-factor SDE becomes

dS = (µ− δ)Sdt + σSdX + (q− 1)SdQ, (2.8)

where dQ indicates a Poisson process of intensity λ with

P[dQ = 0] = 1− λdt, P[dQ = 1] = λdt, (2.9)

and q ∈ [0, ∞] is a random variable which is log-normally distributed with the density

Γγ,µj(q) =
1√
2πγ

exp
(
− 1

2

( log(q)− µj

γ

)2)
, (2.10)

with the obvious properties of being non-negative and∫ ∞

0
Γγ(q)dq = 1, ∀q ∈ [0, ∞].

Note that q− 1 is called the impulse function, which produces a jump from S to Sq and
E(q− 1) = k̄ denotes the expected relative jump size, cf. [4]. If 0 ≤ q < 1, the negative

https://doi.org/10.1017/S2070073300001144 Published online by Cambridge University Press

https://doi.org/10.1017/S2070073300001144


M. H. Nguyen and M. Ehrhardt / Adv. Appl. Math. Mech., 6 (2012), pp. 259-293 267

impulse function causes the spot price to decrease. If q = 1, the spot price remains the
same. If q > 1, the positive impulse function causes the spot price to increase.

Based on the Feynman-Kac formula, which states the equivalence between expec-
tation values and PIDEs, we can derive a PIDE that governs swing options whose
underlying’s spot price S follows the process (2.8), namely

∂V
∂t

+
σ2S2

2
∂2V
∂S2 + (r− δ− λk̄)S

∂V
∂S
− rV + λ

∫ ∞

0

(
V(qS, t)−V(S, t)

)
Γγ(q)dq = 0.

Generalization to the case of multiple assets can be found in [16] or [14]. For further
understanding how to deduce a PIDE we refer to Kluge [16], where the Feynman-Kac
formula has been used to derive a PIDE for swing options from a two-factor model
SDE. However, there have not been any attempt to analyse this PIDE numerically.
That is why we limit ourselves to modelling a swing option on one given underlying
asset as we want to focus on the numerical valuation of this PIDE.

Intuitively, one can explain (2.8) this way: the spot price follows randomly a GBM
stochastic process [2]. Whenever having a sudden jump the price will return to the
GBM trend. A positive jump means a significant higher price than usual and a nega-
tive jump means a lower price than average. Consequently, the curve describing the
spot price S with respect to time t will be continuous differentiable most of the time
apart from finite negative or positive jumps. In order to perform the discretization
some transformations of variables are necessary. By the substitution of t = T − τ, the
time to maturity, we manage to reverse the time direction and therewith to turn the re-
sulting equation into a forward-in-time equation. The expiry T now matches to τ = 0
and the issue time t = 0 matches to τ = T. The domain of the values S of the underly-
ing is bounded from below by zero: 0 ≤ S ≤ ∞. When transformed by x = ln(S) the
spot price corresponds to whole real line: −∞ < x < ∞. By these standard transfor-
mations, we intend to get all the coefficients constant which is necessary for our next
steps. In summary, we obtain

Ṽ(x, τ) = V(ex, T − τ) = V(S, t),

∂Ṽ
∂τ

= −∂V
∂t

,
∂V
∂S

=
1
S

∂Ṽ
∂x

,
∂2V
∂S2 =

1
S2

∂2Ṽ
∂x2 ,

q ∈ [0, ∞], S ≥ 0⇒ Sq ∈ [0, ∞], ln(q), x ∈ R.

The PIDE therefore reads

∂Ṽ
∂τ

=
σ2

2
∂2Ṽ
∂x2 + (r− δ− λk̄)

∂Ṽ
∂x
− rṼ + λ

( ∫ ∞

−∞
Ṽ(z + x, τ)Γγ(z)dz− Ṽ

)
, (2.11)

with the corresponding pay-off function Ṽ(x, 0) which is Lipschitz continuous.
Following [4], Eq. (2.11) can be seen as a particular case of the linear parabolic

integro-differential equation in R× (0, T)

Ṽτ = aṼx + bṼxx + cṼ + λ
( ∫ ∞

−∞
Ṽ(z + x, τ)Γγ(z)dz− Ṽ

)
, (2.12)
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where a = (r− δ− λk̄), b = σ2/2 and c = −r are all constants.
As q is log-normally distributed, E(q) = exp(µj + γ2/2) and therefore the ex-

pected relative change in the underlying price is given by k̄ = exp(µj + γ2/2) − 1,
z = ln(q) ∈ R is normally distributed with the density function

Γγ,µj(z) =
1√
2πγ

exp
(
− 1

2

( z− µj

γ

)2)
. (2.13)

2.3 Initial and boundary conditions

Having derived the PIDE for the value of the swing options, we should next impose
initial conditions and boundary conditions.

To derive the initial conditions means to deduce the pay-off function for swing op-
tions, which is more difficult than dealing with single-right options, such as European
or American options. The pay-off function models the outcome at the end of the con-
tract which is the last exercise opportunity in our case. As swing options depend on
many factors, we will first list the relevant parameters.

• Number of allowed upswings U and Number of allowed downswings D.

• Number of exercised upswings u and Number of exercised downswings d.
• Last exercise opportunity tn, n denotes the number of exercise opportunities.

• A set of strike prices Kj (to simplify the problem we set Kj ≡ K, ∀j).
• Amount of consumption per exercise right ∆j with the presumption ∆j being constant

for all exercise opportunities, i.e., ∆j ≡ ∆. If the consumption is negative, we denote
∆� ≤ 0, otherwise, ∆� ≥ 0.

• The penalty function ρ, where ρu,d = ρ(∆�u + ∆�d) denotes the cost for exceeding
the overall consumption Max with the property ρ0,0 = ρn,n, ∀n ∈N.

There are many references concerning pay-off functions of swing options, e.g., [7, 16,
21, 22], but most of them describe the pay-off function stochastically [16, 22].

To the authors’ knowledge, Wegner [21] was the first to use lattice methods to de-
duce the pay-off function for swing options. The main advantage of this approach
is the less complicated embedding of the different constellations of upswings, down-
swings and exercise opportunities in the pay-off function. The disadvantage of this
methods is that the exercise time must be discrete and thus swing options of Ameri-
can type cannot be considered in the pay-off function. However, there are still ways
to handle this problem. To approximate swing options of American type with swing
options of Bermudan type the set of dates {t1, · · · , tn} can be made as large as possi-
ble. Also, one can impose a constraint on the swing option’s value of American type,
namely the swing option’s value should never be less than its pay-off as otherwise
arbitrage opportunities would exist.

Dörr [7] made a further investigation on constructing pay-off functions of swing
options for different exercise strategies. He noticed that ”the benefit from immediate
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exercise is not only the pay-off, but the pay-off plus the value of the remaining swing
option”. In other words, the pay-off of swing options is not only the pay-off from the
last opportunity but the pay-off plus all previous pay-offs. Dörr [7] also realized that,
because of penalty terms of the earlier exercised opportunities, the pay-off functions
of [21] might have negative values which can be seen in [21, Eq. (4.14)]. For example,
if K�ν − Sj < 0, then the initial value in this case is exactly the penalty for exceeding
the given consumption volume. Therefore, Dörr’s [7] initial condition is Wegner’s [21]
initial condition but without penalty terms of the previous pay-off. Only the pay-off
on the last exercise opportunity will be treated in his initial conditions. Based on the
Least-Squares-Monte-Carlo approach, he sets up a cash flow matrix and incorporated
all possible pay-offs of earlier exercise opportunities in this matrix.

In line with [21], we have chosen to evaluate swing options by formulating the
problem as a PIDE and thus, we cannot use the approach of Dörr [7]. Hence, in the fol-
lowing we will rewrite Wegner’s initial conditions [21] so that non-negativity is guar-
anteed. Arriving at the last exercise opportunity the option holder could whether have
already used all upswing rights or all downswing rights or none of them. The penalty
function comes into the picture only if one exceeds the overall constraint. Therefore,
we need to consider a penalty at the last exercise opportunity.

When calculating the pay-off of swing options we are not only interested in the
pay-off at the last opportunity but also in the pay-off at all others opportunities. Since
we do not consider the main characteristics of swing options in our PIDE, the multiple
early exercise features necessarily have to show up in the initial condition. Otherwise
the pay-off of swing options is equal to the pay-off of a European option, which is
a quite unrealistic assumption, especially when one considers a penalty for the early
exercising like Wegner [21]. Our extended description of the pay-off functions is:

Vu,d : Having exercised u upswings and d downswing the holder has the choice to keep the
remaining rights and gets the pay-off of the already exercised rights minus possible
penalty, to buy some or to sell some to get more profit minus possible penalty. If
u = U and all upswings are used, then the possibility of buying is zero. The same
holds for downswings. Note that in contrast with Wegner [21] and Dörr [7] we
consider the pay-off of already exercised rights and ensure the non-negativity of the
pay-off function.

Assuming there are two strike prices whereas Kc denotes the strike price for the up-
swings and Kp denotes the strike price for the downswings, by using the change of
variables x = ln(S) and the time reversal t = T − τ the description reads

Ṽu,d(x, 0) = max
{

max{u∆�(ex − Kc), d∆�(Kp − ex)} − pu,d,

max{(u + 1)∆�(ex − Kc), d∆�(Kp − ex)} − pu+1,d,

max{u∆�(ex − Kc), (d + 1)∆�(Kp − ex)} − pu,d+1, 0
}

,

ṼU,d(x, 0) = max
{

max{U∆�(ex − Kc), d∆�(Kp − ex)} − pU,d,

max{U∆�(ex − Kc), (d + 1)∆�(Kp − ex)} − pU,d+1, 0
}

,
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Ṽu,D(x, 0) = max
{

max{u∆�(ex − Kc), D∆�(Kp − ex)} − pu,D,

max{(u + 1)∆�(ex − Kc), D∆�(Kp − ex)} − pu+1,D, 0
}

,

ṼU,D(x, 0) = max
{

max
{

U∆�(ex − Kc), D∆�(Kp − ex), 0
}
− pU,D, 0

}
.

Based on these equations above we have to compute a pay-off matrix of size V =
[U + 1, D + 1] in the worst case. Depending on the relationship of U, D and N, the
size of our pay-off matrix will be different.

In the following a description of this relationship will be presented in detail for
three cases for all U, D and N ∈ N with N ≥ 2. For N = 0, we have V = [0, 0] and
for N = 1, we have V = [1, 1]. Given the number of upswings U, downswings D and
exercise opportunities N we can detect the size of the pay-off matrix as follows

• First Case: U + D = N

(a) For U = 0 and D ̸= 0⇒ V = [1, D].

(b) For U ̸= 0 and D = 0⇒ V = [U, 1].

(c) For U = n, D = m⇒ V = [U + 1, D + 1], ∀n, m ∈N+.

Note that the field V(D + 1, U + 1) does not possess a value!

• Second Case: U + D < N

(a) For U = n, D = m⇒ V = [U + 1, D + 1], ∀n, m ∈N+.

It is worth noting that it does not matter how large the opportunities and rights are,
the pay-off is always the same, which is unrealistic. Hence we want to introduce an
artificial value log(N + n), which will be multiplied to the last field V(D + 1, U + 1).
Doing so we can achieve the following strong monotony of V:

V(u, d, N + 1) > V(u, d, N), ∀(u, d) ∈ [U, D], N ∈N, (2.14a)
V(u, d, n + 1) > V(u, d, n), ∀(u, d) ∈ [U, D], n ∈N. (2.14b)

• Third Case: U + D > N

(a) For U = n, D = m, ∀n, m ∈N

• If U ≤ D and U < N ⇒ V = [U + 1, N].

• If D ≤ U and D < N ⇒ V = [N, D + 1].
• If N ≤ D and N ≤ U ⇒ V = [N + 1, N + 1].

Suppose an option holder has three rights in total. Based on Wegner’s description [21]
the corresponding pay-off lattice (Fig. 1) leads to the following pay-off matrices

P1 :=


V3,0 0 0 0
V2,0 V2,1 0 0
V1,0 V1,1 V1,2 0

0 V0,1 V0,1 V0,3

 , P2 :=

V2,0 V2,1 0
V1,0 V1,1 V1,2

0 V0,1 V0,1

 .
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lowed are each nominated with 2.

Figure 1: The arrows at the lattice points show possible decisions of the swing option’s holder. Arriving at
the last opportunity the owner could have used up all rights or none. The diagonal line represents the limit
U + D ≤ N.

It is important to note that the pay-off of the triple (U, D, N) = (1, 1, 1) is equal to the
triple (1, 1, 2) which is one of a few exceptions based on the assumption about the spot
price’s movement. The possibility that the spot price of the underlying jumps from 0
to 2K within two arbitrary exercise opportunities is almost zero.

Having calculated the pay-off functions and saved them in one pay-off matrix,
there exist two ways to compute one pay-off function. Either we impose the probabil-
ity of every node, then the probability of the holder exercising an upswing is defined
as u and downswing as d, respectively. The probability of holding the rights is then
1− u− d. Hence, the probability of arriving at the last opportunity without exercising
any right is (1 − u − d)N−1, where N denotes the number of exercise rights. How-
ever, the probability of buying, selling and staying put would not remain the same if
the number of allowed up or down swings are used up but exercise opportunities are
still available. Besides, we have to determine the probability which is not reasonable.
Therefore, we choose not to follow this idea, but to compute the average of all relevant
fields in the pay-off matrix.

Algorithm 2.1. For each node (i, j) a pay-off function is calculated which will be saved as a
vector since we have to compute the pay-off for all spot prices. The quotient of numb, the sum
of all pay-off functions, yields the desired initial condition.

for i from 0 to U

for j from 0 to D

if i = U and j = D then V(i, j) = ṼU,D

else if (i < U and j < D) then V(i, j) = Ṽu,d

else if (i < U and j = D) then V(i, j) = Ṽu,D

else if (i = U and j < D) then V(i, j) = ṼU,d

end
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end

V = sum(V(0 : U, 0 : D))/(numb)

Example 2.1. Suppose a swing option holder has 12 rights to exercise at 50 opportu-
nities at a strike price of 15e per MWh.

In Fig. 2 we present several pay-off functions for this swing option with different
numbers of upswings and downswings allowed.

The effect of different exercise rights is illustrated in Fig. 2, where the holder with
the highest pay-off is also the holder possessing the most number of upswings and
downswings, namely (U, D) = (12, 12). Even the number of exercise opportunities
and exercise rights remain constant at 50 and 12, the values of the pay-off functions
decreased by decreasing number of upswings and downswings allowed.

The specification of proper boundary conditions for swing options is necessary for
the numerical scheme. The boundary conditions with respect to x prescribe the values
for Ṽ in the boundaries of the domain of Ṽ. Since S ∈ [0, ∞) and thus x = ln(S) ∈ R,
the boundary conditions must describe the asymptotic behaviour for x→ ±∞.

Comparing to initial conditions there are only a few literatures about boundary
conditions for swing options. Kluge [16] wrote a small part about boundary condi-
tions, namely about the value of swing options with no exercise rights being zero for
all spot prices and to any time. Dörr [7], on the other hand, treated boundary con-
ditions only in the context of upper and lower bounds. In line with [21], we have
found out that there is no evidence about the behaviour of swing options as a linear
function when the asset price becomes very small or very large. Due to the possibility
of containing both call and put features it is quite clear that swing options could be
polynomials of second degree. This remarks our first obstacle since monotony of the
relevant derivatives in the spot price is an important property to simplify the inves-
tigation about boundary conditions for derivative valuation [6]. One way to tackle
this issue is to follow [21] and use one-sided derivatives for the spatial discretization
at the boundaries instead of imposing boundary conditions. The disadvantage of this
approach is the reduced order of convergence.

0 10 20 30 40 50

50 

100

150

200

250

S Spot Price

V
(S

,T
)

(U,D) = (12,12)
(U,D) = (9,9)
(U,D) = (6,6)
(U,D) = (3,3)

Figure 2: Pay-off functions of a swing option on Example 2.1. No penalty is considered.
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Wilhelm [22] investigated boundary conditions for swing options in more detail.
On the basis of the excess to pay-off functions, which model the distance between the
option value and their pay-off, and knowing the fact that the localization error for
the excess to pay-off function decays exponentially with N → ∞, Wilhelm [22] first
imposes homogeneous Dirichlet boundary conditions for European and American op-
tions and in analogy to this she chooses the same approach to determine the boundary
for swing options. Wilhelm [22] computed the pay-off function iteratively and so its
exact values are not known in advance. Thus she replaces the pay-off function by an
artificial deterministic function with the same asymptotic behaviour. We already have
a deterministic pay-off function. Hence we define the excess to the pay-off function as

V̂u,d(τ, x) := Ṽu,d(τ, x)− Ṽu,d(0, x), ∀(τ, x) ∈ [0, T]×R, ∀(u, d) ∈ [0, U]× [0, D].

If the swing options had a characteristic of European options with a constant interest
rate r, then the excess to pay-off function reads

V̂u,d(τ, x) := Ṽu,d(τ, x)− e−rṼu,d(0, x), ∀(τ, x) ∈ [0, T]×R, ∀(u, d) ∈ [0, U]× [0, D].

Thus, due to the exponential decay of the excess to pay-off function we could impose
the homogeneous Dirichlet boundary conditions on V̂ and therewith determine the
boundary conditions for swing options:

V̂u,d(τ, x) ≥ 0, ∀(τ, x) ∈ [0, T]× [−Mh, Nh], ∀(u, d) ∈ [0, U]× [0, D]. (2.15)

Special Cases
The boundary conditions for European options are well-known. For a call we have

lim
S→0

C(S, t) = 0, lim
S→∞

C(S, t) = Se−δ(T−t) − Ke−r(T−t). (2.16)

And for a put we have the boundary conditions

lim
S→0

P(S, t) = Ke−r(T−t), lim
S→∞

P(S, t) = 0, (2.17)

where K denotes the strike price and T the expiry date. So if the number of rights
N is equal to the number of exercise opportunities n then we can deduce boundary
conditions for swing options, where U and D denote the number of up and down
swings allowed. We can summarize them in two equations, namely

lim
x→−∞

ṼU,D(x, τ) = DKe−rτ, lim
x→∞

ṼU,D(x, τ) = U(ex−δτ − Ke−rτ). (2.18)

And again, for different strike prices Kp ̸= Kc the boundary conditions read

lim
x→−∞

ṼU,D(x, τ) = DKpe−rτ, lim
x→∞

ṼU,D(x, τ) = U(ex−δτ − Kce−rτ). (2.19)

With these results we can calculate swing options of European type which is indeed a
helpful result to verify numerical solutions, since we have derived that a portfolio of
n European options show a lower boundary for a swing option with the same rights
and opportunities. To check the upper boundary we need the boundary conditions
for swing options possessing higher exercise opportunities than exercise rights.
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3 Numerical analysis

Even without the integral part in our derived PDE, the convection-diffusion part of
the PIDE, does not have an exact or closed solution due to its early exercise feature. In
the last few years, there have been several suggestions how to solve these problems.
Toivanen [20] studied the pricing of European and American options under Kou’s
model and his main contribution was the treatment of the integral term. Due to the
log-double-exponential form of the kernel in Kou’s model, he successfully derived
recursion formulae for evaluating the integrals. Mayo [18] also priced European and
American options using both Kou’s and Merton’s methods. She presented a rapid
method for evaluating the integrals in the Merton model using the fact that at any
time the correlation integral is a translated solution of the heat equation. By applying
the FFT on the correlation integral she reduced the computational cost enormously.

Kjaer [15] and Kluge [16] derived a PIDE for pricing swing options with jumps,
but they simplified the matter in not allowing the holder to sell energy if they do not
belong to the group of producers. Kjaer [15] carried out a numerical analysis for the
PIDE. By using the operator splitting method the diffusion part was discretized by the
Crank-Nicolson method and the integral part by an explicit scheme.

For the integral problem let us refer to Duffy [8] who showed how to get the finite
integral in order to use the Gaussian quadrature. The special property of the integral
in Merton-type models is that the kernel of the integral decays rapidly. Although
there is a numerical approximation for infinite integrals, but based on this advantage
it is much more convenient and requires less effort to choose the integral boundary A
and B such that the difference between the original term and the term with the new
boundary is not bigger than a given constant∣∣∣λ( ∫ ∞

−∞
−

∫ B

A
(Ṽ(z + x, τ)− Ṽ(x, τ))Γγ,µj(z)dz

)∣∣∣ !
< ϵ̃. (3.1)

Let us have a closer look at the integrand which consists of two functions. One is the
unknown solution and the other is the probability density function Γγ(z) which tends
to zero for z → ±∞. Hence, we are only interested in the finite domain in which the
density function is bigger than a prescribed tolerance

Γγ,µj(z) =
1√
2πγ

exp
(
− 1

2

( z− µj

γ

)2)
≥ ϵ,

which is given by

−
√
−2γ2 log

(√
2πγϵ

)
+ µj ≤ z ≤

√
−2γ2 log

(√
2πγϵ

)
+ µj. (3.2)

Since we postulate a real solution with z ∈ R, the term under the square root must be
non-negative, i.e.,

ϵ ≤ 1√
2πγ

. (3.3)
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That is why we must take care when choosing the tolerance value ϵ and γ when im-
plementing an algorithm as γ tends to zero if ϵ tends to ∞ and vice versa.

Now we show that with the restriction on z in (3.2) and therewith the newly found
finite limits, namely

A = −
√
−2γ2 log

(√
2πγϵ

)
+ µj,

B =
√
−2γ2 log

(√
2πγϵ

)
+ µj = −A + 2µj,

we approximate our original integral. If ϵ tends to zero A tends to −∞ and B to ∞,
respectively. Every approximation goes hand and hand with its error which occurs
through the truncation of the integration interval. Presume our solution is Lipschitz
continuous with respect to x, Ṽ(·, τ) ∈ Lip(R) with a Lipschitz constant L, our ap-
proximation error can be estimated by

λ
(∣∣∣ ∫ ∞

−∞
−

∫ B

−B
(Ṽ(z + x, τ)− Ṽ(x, τ))Γγ,µj(z)dz

∣∣∣)
=2Lλ

( ∫ ∞

B
|z|Γγ,µj(z)dz

)
< 2λ(ϵLγ2 + c) = ϵ̃,

whereas c, ϵ and γ denote any arbitrary constants satisfying the above conditions.

3.1 The θ-method

The θ-method can be used for both PDE and integral term. Since this system of
equations leads to a full system matrix Duffy [8] proposed using the Crank-Nicolson
method for the PDE term and treating the integral part explicitly in order to get a tridi-
agonal matrix system. A similar approach was suggested by Cont and Voltchkova [5],
where the PDE part is treated implicitly and the integral part explicitly (IMPEX method).
While discretizing the scheme, Cont and Voltchkova also differentiated the jump in-
tensity in the finite intensity case, which does not need special treatment, and in the
infinite intensity case. The procedure is similar to the truncation of the integral but
dealing with small jumps. Cont and Voltchkova [5] replaced the jumps of size smaller
ϵ by a GBM and approximate the Poisson process by an appropriate process possess-
ing jumps of finite intensity. Besides this, a great deal has been done for the conver-
gence properties of this scheme. Usually consistency and stability ensure convergence
but we require uniformly bounded derivatives which is simply not the case for swing
options. In a thorough manner Cont and Voltchkova showed the monotonicity, con-
sistency and unconditional stability of the proposed scheme by using the so called
viscosity method.

Our method is based on the approach of [5], but instead of treating the integral part
explicitly we choose to let θ1 and θ2 be any value between zero and 1. In particular,
for θ2 = 1/2 we obtain the Crank-Nicolson scheme for the integral, which is very
interesting to investigate as this case delivers a full system matrix which, as far as we
say, has never been analysed. Hence, we will focus on solving this issue and will only
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consider the finite density case. For more details how to deal with infinite density
see [5]. Now we rewrite our PIDE with its new boundary for the integral to adjust the
θ-method

∂Ṽ
∂τ

=
σ2

2︸︷︷︸
=c

∂2Ṽ
∂x2 + (r− δ− λk̄)︸ ︷︷ ︸

=a

∂Ṽ
∂x
− (r + λ)︸ ︷︷ ︸

=b

Ṽ + λ
( ∫ B

A
Ṽ(z + x, τ)Γγ,µj(z)dz

)
︸ ︷︷ ︸

=IṼ

. (3.4)

To discretize (3.4) we write the convection diffusion part L of the PIDE explicitly

L = a
∂

∂x
− b + c

∂2

∂x2 . (3.5)

Now the PIDE (3.4) can be expressed in the compact form

∂Ṽ
∂τ

= LṼ + IṼ. (3.6)

Let us define a uniform grid by introducing the grid points (xj, τi) = (jh, ik) with
j ∈ Z, i ∈N, whereas h is the spatial step size and k is the temporal step size

xj+1 = xj + h, ∀j ∈ Z, (3.7a)

τi+1 = τi + k, ∀i ∈ {0, · · · , I}, I ∈N, τ0 = 0, τI = T. (3.7b)

When applying the grid (3.7) and the θ-method on (3.5), we obtain at x = xj

Ṽ(x, τi+1)− Ṽ(x, τi)

k
+O(k) =(1− θ1)LṼ(x, τi) + θ1LṼ(x, τi+1)

+ (1− θ2)IṼ(x, τi) + θ2IṼ(x, τi+1) +O(h2). (3.8)

In other words

Ṽ(xj, τi+1)− Ṽ(xj, τi)

k
+O(k)

= + θ1

(
c

Ṽ(xj+1, τi+1)− 2Ṽ(xj, τi+1) + Ṽ(xj−1, τi+1)

h2 + a
Ṽ(xj+1, τi+1)− Ṽ(xj−1, τi+1)

2h

− bṼ(xj, τi+1)
)
(1− θ1)

(
c

Ṽ(xj+1, τi)− 2Ṽ(xj, τi) + Ṽ(xj−1, τi)

h2

+ a
Ṽ(xj+1, τi)− Ṽ(xj−1, τi)

2h
− bṼ(xj, τi)

)
+O(h2).

Next we will rewrite the PDE part in matrix form and ignore the integral part for
simplicity of the presentation.
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3.2 Numerical treatment of the PDE part

A further specification of approximation for the integral part will be discussed in Sec-
tion 3.3. A pointwise approximation for Ṽ(xj, τi) = Ṽ(jh, ik) is denoted by vi

j where
Ṽ(x, τ) is the exact solution for the model problem of (3.4). After sorting all terms
according to the time level we approximate this by ignoring terms of O(k) and O(h2)

− vi+1
j+1

(
kθ1

2c + ah
2h2

)
+ vi+1

j

(
kθ1

bh2 + 2c
h2 + 1

)
− vi+1

j−1

(
kθ1

2c− ah
2h2

)
=vi

j+1

(
k(1− θ1)

2c + ah
2h2

)
− vi

j

(
k(1− θ1)

bh2 + 2c
h2 − 1

)
+ vi

j−1

(
k(1− θ1)

2c− ah
2h2

)
. (3.9)

In order to complete the numerical scheme we need to truncate the infinite mesh at
x−J = −Mh and xJ = Nh, with N, M ∈ N sufficiently large such that the induced
errors remain neglectable. At the end, we plot the option price in comparison with the
spot price which should be presented by exp(x). Hence, it is not wise to distribute x
equally since 0 would be the middle of the interval [−Mh, · · · , Nh] but exp(0) is quite
near the beginning of the interval [0, ∞), i.e., M must be significantly smaller than N.

Having applied central differences on the PDE with respect to x, these equations
are valid for all j except at the boundaries for which a one-sided approximation is
needed. Thus, the one-sided differences for (3.6) look like

∂Ṽ
∂xJ
≈

vi
J−1 − vi

J

h
,

∂Ṽ
∂x−J

≈
vi
−J+1 − vi

−J

h
. (3.10)

After a similar calculation the result for the boundaries reads

vi+1
−J

(
− kθ1

c− bh2 − ah
h2 + 1

)
+ vi+1
−J+1

(
− kθ1

ah− 2c
h2

)
+ vi+1
−J+2

(
− kθ1

c
h2

)
=vi
−J

(
k(1− θ1)

c− bh2 − ah
h2 + 1

)
+ vi
−J+1

(
k(1− θ1)

ah− 2c
h2

)
+ vi
−J+2

(
k(1− θ1)

c
h2

)
, (3.11a)

vi+1
J

(
− kθ1

c− bh2 − ah
h2 + 1

)
+ vi+1

J−1

(
− kθ1

ah− 2c
h2

)
+ vi+1

J−2

(
− kθ1

c
h2

)
=vi

J

(
k(1− θ1)

c− bh2 − ah
h2 + 1

)
+ vi

J−1

(
k(1− θ1)

ah− 2c
h2

)
+ vi

J−2

(
k(1− θ1)

c
h2

)
. (3.11b)

To write (3.9), (3.11a) and (3.11b) as a linear system, we introduce

A1 :=



c− bh2 − ah ah− 2c c 0 · · · 0
2c− ah

2
−bh2 − 2c

2c + ah
2

0 · · · 0

0
2c− ah

2
−bh2 − 2c

2c + ah
2

0

...
. . . . . . . . . . . .

...
0

0 · · · 0
2c− ah

2
−bh2 − 2c

2c + ah
2

0 · · · 0 c ah− 2c c− bh2 − ah


.
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Now we can write our matrix equation

(I− αθ1 A1)vi+1 =
(
I + α(1− θ1)A1

)
vi, (3.12)

with the parabolic mesh ratio α = k/h2, I is the identity matrix and vi is a vector
holding the option values at time τi = ik for all xj = jh with

vi =
(

vi
−J , vi

−J+1, · · · , vi
J−1, vi

J

)⊤
, ∀i ∈ {0, · · · , I}, I ∈N.

If we use the fact that the boundary conditions of swing options of European type
determine both vi

J and vi
−J with

vi
−J = DKe−rτi and vi

J = U(exJ−δτi − Ke−rτi), ∀i ∈ {1, · · · , I}, I ∈N,

the corresponding matrix reduces to

A2 :=



−bh2 − 2c
2c + ah

2
0 · · · 0

2c− ah
2

−bh2 − 2c
2c + ah

2

0
. . . . . . . . .

...
... 0

2c + ah
2

0 · · · 0
2c− ah

2
−bh2 − 2c


.

Hence, the matrix equation has a slightly different form

(I− αθ1 A3)vi+1 =
(
I + α(1− θ1)A2

)
vi + αbi, (3.13)

where

bi =



(2c− ah
2

)
DK

[
(1− θ1)e−rτi + θ1e−rτi+1

]
0
...
0(2c + ah

2

)
U
[
(1− θ1)

(
exJ−δτi − Ke−rτi

)
+ θ1

(
exJ−δτi+1 − Ke−rτi+1

)]


,

and
vi =

(
vi
−J+1, · · · , vi

J−1

)⊤
, ∀i ∈ {0, · · · , I}.

The existence and uniqueness of the solution to (3.12), (3.13) is only guaranteed if
the regularity of the matrix

B1 := I− αθ1 A1 and B2 := I− αθ1A2,

is warranted. Obviously the regularity holds for B2 if it holds for B1.
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Definition 3.1. A square matrix A = (Aij) is called strictly diagonally dominant if

|Aii| >
n

∑
j=1,j ̸=i

∣∣Aij
∣∣ , ∀i = 1, · · · , n.

We will show that B1 is strictly diagonally dominant that implies the regularity of
B1. The diagonal elements of B1 are −bh2 − 2c and c− bh2 − ah. First, we will derive
conditions for |1− αθ1(−bh2− 2c)| being larger than the sum of the magnitudes of the
non-diagonal elements in the row,

|1− αθ1(−bh2 − 2c)| =
∣∣∣1 + αθ1(bh2 + 2c) + αθ1

ah
2
− αθ1

ah
2

∣∣∣
=
∣∣∣αθ1

2c + ah
2

+ αθ1
2c− ah

2
+ 1 + αθ1bh2

∣∣∣. (3.14)

As 2c is positive and constant, we can make h sufficiently small and therewith ah suffi-
ciently small, so that 2c + ah and 2c− ah always remain positive. With this condition,
we can write (3.14) in the form

|αθ1|
∣∣∣2c + ah

2

∣∣∣+ |αθ1|
∣∣∣2c− ah

2

∣∣∣+ 1 + αθ1bh2, (3.15)

which is obviously larger than

|αθ1|
(∣∣∣2c + ah

2

∣∣∣+ ∣∣∣2c− ah
2

∣∣∣),

and thus, the first inequality is proven and therewith the regularity of B2.
To prove the regularity of B1, we show this condition for the boundaries:

|1− αθ1(c− ah− bh2)| > |αθ1(2c + ah) + αθ1c| > |αθ1(2c− ah) + αθ1c|. (3.16)

Eq. (3.16) holds if and only if

|1− αθ1(c− ah− bh2)| > |αθ1(2c + ah) + αθ1c|, (3.17)

and a > 0 are true. If 4c− bh2 is non-positive, we have to impose the condition b >
4c/h2. But for h sufficiently small, b must be very big which is not plausible. However,
if we swap the condition with b < 4c/h2, more accurately, we postulate that there is a
constant r̃ < 1/(αθ1) with 4c = bh2 + r̃, this inequality would hold in general

1 > 4αθ1c− bh2αθ1 = αθ1(4c− bh2), (3.18)

and ensures the condition for (3.16). To summarize, we have shown that the matrices
B1, B2 are strictly diagonally dominant under the following 3 conditions:

1. For any k, but h must be sufficiently small to keep 2c + ah and 2c− ah positive.

2. For 4c = bh2 + r̃ with r̃ < 1/(αθ1).

3. a must be strictly positive.

Thus the matrices B1 and B2 are invertible.
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3.3 Numerical treatment of the integral part

As stated in [6], a classical way of approaching the integral part with numerical inte-
gration methods, such as Simpson’s rule or Gaussian quadrature, are, regarding com-
putational cost, more expensive than using FFT methods as our integral has a form of
a correlation product. The FFT algorithm assumes that the input functions are peri-
odic and it is a matter of fact that neither the option value nor the probability function
is periodic. Avoiding this problem by extending the domain on the left and right sides
and assuming a linearity in S of the option function V, d’Halluin [6] succeed his goal
and solved the PIDE in a new region. However, this assumption is only true for port-
folios which consist only of call or put options. Numerical solutions for interruptible
swing options illustrated in [21, Fig. 4.3] and in [22, Fig. 6.7] support our statement.
As soon as we have a combination of call and put options, which is exactly our case,
speaking of linearity makes no sense and thus we do not use FFT methods.

The integral of f over an interval [a, b] can be approximated by Simpson’s rule as

∫ b

a
f (x)dx ≈ h

[ m
2

∑
k=1

4
3

f (x2k−1) +
2
3

f (x2k) +
1
3
( f (x0)− f (xm))

]
, (3.19)

where h = (b − a)/m is the distance between adjacent grid points xk and m ∈ N.
Let us recall that when applying Simpson’s rule there must be an even number of
intervals, i.e., m = 2n, n ∈N. We consider the integral term in the PIDE (3.4)

I =
∫ ∞

−∞
Ṽ(x + z, τ)Γγ,µj(z)dz. (3.20)

We could utilize the fact that the probability function Γγ,µj(z) is similar to the weight
function w(x) = exp(−x2) of Gauß-Hermite and substitute z to get exactly the same
form. Gauß-Hermite is the only method which deals with infinite boundaries. With
the change of variables z̃ = (z− µj)/(

√
2γ) the integral (3.20) reads

I =
1√
π

∫ ∞

−∞
Ṽ(x + z̃, τ) exp(−z̃2)dz̃.

If Ṽ is Lipschitz continuous with respect to τ the infinite interval can be truncated and
we apply the Gauß-Legendre quadrature. Let us recall the integral part of (3.4)

(1− θ2)
∫ B

A
Ṽ(xj + z, τi)Γγ,µj(z)dz + θ2

∫ B

A
Ṽ(xj + z, τi+1)Γγ,µj(z)dz.

We denote

Ii
j ≈

∫ B

A
Ṽ(xj + z, τi)Γγ,µj(z)dz, Ii =

(
Ii
−J+1Ii

−J+1Ii
−J+2 · · · Ii

J−2Ii
J−1Ii

J−1

)⊤
.

That means for each j ∈ {−J + 1, · · · , J − 1} we have to calculate the integral∫ b

a
Ṽ(xj + z, 0)Γγ,µj(z)dz,
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with given initial condition Ṽ(xj, 0). Suppose we construct a grid on [A, B], defining a
mesh h̃ = (B− A)/M, M = 2Ñ, where Ñ is an integer. Thus, h̃ = B/Ñ as A = −B.
The grid points are zl+1 = zl + h̃, for all l ∈ {−Ñ, · · · , 0, · · · , Ñ} with the boundaries
z−Ñ = −Ñh̃ = A and zÑ = Ñh̃ = B. Note that h̃ does not have necessarily to be equal
to h but has to be evenly spaced. Without loss of generality we assume that Ñ is even.
Then by applying Simpson’s rule we obtain the approximation∫ B

A
Ṽ(xj + z, τi)Γγ,µj(z)dz

≈
Ñ

∑
l=1

4h̃
3

Ṽ(xj + z−Ñ+(2l−1), τi)Γγ,µj(z−Ñ+(2l−1))

+
2h̃
3

Ṽ(xj + z−Ñ+2l , τi)Γγ,µj(z−Ñ+2l)

+
h̃
3
(
Ṽ(xj + z−Ñ , τi)Γγ,µj(z−Ñ)− Ṽ(xj + zÑ , τi)Γγ,µj(zÑ)

)
≈h̃

[ Ñ

∑
l=1

4
3

vi
j−Ñ+(2l−1)Γγ,µj(z−Ñ+(2l−1)) +

2
3

vi
j−Ñ+2lΓγ,µj(z−Ñ+2l)

]
+

h̃
3
(
vi

j−ÑΓγ,µj(z−Ñ)− vi
j+ÑΓγ,µj(zÑ)

)
=Ii(xj) =: Ii

j.

Originally we are interested in calculating {vi
j}j∈{J,··· ,−J}. However, evaluating the

integral requires more values, as values from the interval [A, B] will be added to x. We
can extend the interval, but this will rise the computational cost enormously. Thus, we
will impose the following conditions for all j ∈ {−J, · · · , J} and l ∈ {−Ñ, · · · , Ñ}:

Ṽ(xj + zl) =


Ṽ(xJ), if xj + zl ≥ xJ ,
Ṽ(x−J), if xj + zl ≤ x−J ,
Ṽ(xj + zl), otherwise.

(3.21)

The pointwise approximation of Ṽ(xj + zl , τi) = Ṽ(jh + lh̃, ki) will be denoted by vi
j+l .

Our matrix system reads

(I− αθ1A1)vi+1 − kλθ2Ii+1 =
(
I + α(1− θ1)A1

)
vi + kλ(1− θ2)Ii, (3.22a)(

I− αθ1 A2
)︸ ︷︷ ︸

A

vi+1 − kλθ2Ii+1 =
(
I + α(1− θ1)A2

)︸ ︷︷ ︸
B

vi + αbi + kλ(1− θ2)Ii

︸ ︷︷ ︸
qi

. (3.22b)

Next we state the algorithm to solve (3.22b).

Algorithm 3.1. For each time step i the corresponding option value and integral vi and Ii

is calculated. Having vi and Ii, vi+1 is computed, every vi+1 is used to recompute the corre-
sponding option value and integral ṽi and Ĩi. If the difference between the old and the new
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integral lies within a tolerance limit tol, we can step forward and increase the time i. Other-
wise the old integral value will take the new value Ĩi and the whole procedure will be repeated.

i = 2;
while i ≤ M

qi−1 ← (vi−1, Ii−1, Ii, bi−1, B), ṽi ← (A, qi−1) Ĩi ← (ṽi, z)
if | Ii − Ĩi | ≤ tol then

vi = ṽi, i = i + 1
else

Ii = Ĩi

end if
end while

option value = vM.

Let us note that by adjusting the parameter set we will obtain either European,
Bermudan, American or swing option values.

3.4 Stability and convergence of the implicit-explicit scheme

If θ2 is not equal zero, there is no way to solve (3.22b) straightforwardly, because
Ṽ(x, τi) is needed to calculate Ṽ(x, τi). In order to tackle this problem and allow θ2
to be any value between zero and one, we switch the integral’s treatment for every
time step i. In particular, we are going to treat the integral term explicitly. After hav-
ing the value of Ṽ(x, τi) we use this result into a new calculation, in which θ2 ̸= 0.
By comparing the new to the old solution we will decide which treatment is to use in
the next step. If the difference lies within a given tolerance limit, we increase the time
step and repeat the same procedure. If the difference is larger than allowed we do not
increase the time step and repeat the calculation. By treating the PDE part implicitly
(θ1 = 1), the above matrix system becomes(

I− αAξ

)
vi+1 − kλθ2Ii+1 = vi + kλ(1− θ2)Ii, ξ = 1, 2, (3.23a)(

I− αA3
)
vi+1 − kλθ2Ii+1 = vi + αbi + kλ(1− θ2)Ii. (3.23b)

Under some conditions we can prove the stability and convergence of this implicit
explicit (IMPEX) scheme

Theorem 3.1 (Stability of scheme (3.23a)). The discretization method (3.23a) is uncondi-
tionally stable for any choice of θ2 ∈ [0, 1], provided that the jump intensity λ is finite and
h̃ ≤ 3/4 and h sufficiently small in order to keep 2c+ ah and 2c− ah positive, a = r− δ− λk̄
and c = σ2/2.

Proof. Let vi be the vector containing the exact solution components vi
j, ∀j ∈ {−J +

1, · · · , J − 1}. We then simulate the effect of rounding errors by introducing a small
error into the initial data

v̂0
j = v0

j + E0
j ,
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where E0
j represents a small initial error. Thus with

v̂i
j = vi

j + Ei
j,

is Ei
j the error at time step i and we obtain an equation for the propagation of the

perturbation

Ei+1
j+1

(
−k

2c + ah
2h2

)
+ Ei+1

j

(
−k
−bh2 − 2c

h2 + 1
)
+ Ei+1

j−1

(
−k

2c− ah
2h2

)
=Ei

j + kλ(1− θ2)Ii+1
j + kλθ2Ii

j,

or

Ei+1
j

(
k

bh2 + 2c
h2 + 1

)
=Ei+1

j+1

(
k

2c + ah
2h2

)
+ Ei+1

j−1

(
k

2c− ah
2h2

)
+ Ei

j + kλ(1− θ2)Ii+1
j + kλθ2Ii

j. (3.24)

We use the maximum norm

∥E∥∞,i := max
j
| Ej |i,

and find

|Ii
j| =

∣∣∣ Ñ

∑
l=1

4h̃
3

Ei
j−Ñ+(2l−1)Γγ(z−Ñ+(2l−1)) +

2h̃
3

Ei
j−Ñ+2lΓγ(z−Ñ+2l)

+
h̃
3
(
Ei

j−ÑΓγ(z−Ñ)− Ei
j+ÑΓγ(zÑ)

)∣∣∣
≤4h̃

3
∥E∥i

∞

∣∣∣ Ñ

∑
l=1

(
Γγ(z−Ñ+(2l−1)) +

(
Γγ(z−Ñ+2l)

)
+ Γγ(z−Ñ)− Γγ(zÑ)

)∣∣∣
=

4h̃
3
∥E∥i

∞

∣∣∣ Ñ−1

∑
l=−Ñ

Γγ(zl)
∣∣∣ ≤ ∥E∥∞,i , (3.25)

as Γγ is a density function and 4h̃/3 ≤ 1. With this result and the above-imposed
conditions, the magnitude of (3.24) reads∣∣∣Ei+1

j

(
k

bh2 + 2c
h2 + 1

)∣∣∣
=
∣∣∣Ei+1

j+1k
(2c + ah

2h2

)
+ Ei+1

j−1k
(2c− ah

2h2

)
+ Ei

j + kλ(1− θ2)Ii+1
j + kλθ2Ii

j

∣∣∣,
and summarizing gives[

k
bh2 + 2c

h2 + 1
]
|Ei+1

j |

≤k
(2c

h2

)
∥E∥∞,i+1 + ∥E∥∞,i + kλ(1− θ2) ∥E∥∞,i+1 + kλθ2 ∥E∥∞,i ,
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i.e.,[
k

bh2 + 2c
h2 + 1

]
|Ei+1

j | ≤ k
(2c

h2 + λ(1− θ2)
)
∥E∥∞,i+1 + (1 + kλθ2) ∥E∥∞,i . (3.26)

Let m be an arbitrary but fixed index element with the property

max
j∈{−J+1,··· ,J−1}

|Ei+1
j | = |E

i+1
m |. (3.27)

Since (3.27) holds for all j ∈ {−J + 1, · · · , J − 1}, it is particularly valid for j ≡ m.
Replacing j by m we obtain[

k
bh2 + 2c

h2 + 1
]
∥E∥∞,i+1 ≤ k

(2c
h2 + λ(1− θ2)

)
∥E∥∞,i+1 + (1 + kλθ2) ∥E∥∞,i ,

and rearranging gives[
k(r + λ) + 1

]
∥E∥∞,i+1 ≤ k

(
λ(1− θ2)

)
∥E∥∞,i+1 + (1 + kλθ2) ∥E∥∞,i ,

or [
1 + k(r + λθ2)

]
∥E∥∞,i+1 ≤ (1 + kλθ2) ∥E∥∞,i ,

and therefore,

∥E∥∞,i+1 ≤
(1 + kλθ2)[

1 + k(r + λθ2)
] ∥E∥∞,i ≤ ∥E∥∞,i . (3.28)

The solutions of (3.23a) are uniformly bounded (with respect to j) as i tends to ∞ for
all starting values {v0

j }, i.e., (3.23a) is stable. �

Note that since xi
J and xi

−J are arbitrary in (3.23a), (3.23b) is also unconditionally
stable. The convergence of the scheme (3.23a) can be shown analogously.

4 Numerical results

First of all, a simple one factor spot price model is utilized for the valuation of swing
call, swing put and interruptible swing options with and without jumps. Furthermore,
the impact of parameter values on swing options prices are examined. Finally, a com-
parison of our calculated swing options values of Bermudan type to swing options
values in [22] is performed.

4.1 Swing options without jumps

To gain some insight into the numerical valuation of swing contracts we start with the
simplest examples, namely swing call and swing put options under the Black-Scholes
model, i.e., swing options without jumps. For a start we will analyse the dependence
between swing options and the number of exercise rights. The parameter set is taken
from Wilhelm [22].
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In her thesis [22] Wilhelm presented numerical results for swing put options in a
Black-Scholes market as well as swing call and swing interruptible options in a elec-
tricity market. In the latter market a mean reverting, seasonal spot price model has
been considered whereas a simple spot price model with constant interest rate and
volatility has been incorporated in the Black-Scholes market.

0 50 100 150 200
0

50

100

150

200

250

300

S Spot Price

V(
S,

0)

N = 1
N = 2
N = 3
N = 4
N = 5

Parameter Value
expiry date T 1
volatility σ 0.3
interest rate r 0.05
strike price K 100
exercise rights N 1-5
refraction period 0.1

Figure 3: Interruptible swing options with the parameter set of Wilhelm [22], whereas in this case different
strike prices are considered, namely Kp = 180 and Kc = 120.

The numerical approximation of swing option prices for up to five exercise rights
are presented in the Fig. 3. At a first glance our numerical results for S = 0 to S = 100
look similar to the numerical results of [22, Fig. 6.1] for swing put options in a Black-
Scholes market. However, the maximum values of our swing put options of Bermu-
dan type are smaller than the maximum values of swing put options of American
type. The highest pay-off value for a swing put option of Bermudan type lies at 330e
compared to 500e, which remarks the highest pay-off value for a swing put option of
American type. This can be explained as follows. Although the parameter set is the
same, but since the refraction period is 0.1 and the expiry date 1, the resulting exercise
opportunities for swing options of Bermudan type is maximum 10, whereas the exer-
cise opportunities for swing options of American type is at least 10. Besides, it does
make sense that swing options of American type are equal to or more expensive than
swing options of Bermudan type as American options are equal to or more expensive
than Bermudan options.

Looking at [22, Fig. 6.4] illustrating swing call options prices, we cannot detect any
similarities to our numerical results for S ≥ Kc. The fact that Wilhelm calculated swing
call options in an electricity market, not in a Black-Scholes market, explains why her
swing options are more expensive than ours. In other words, swing options in an

Table 1: Data used in the interruptible swing options example.

Parameter Value
expiry date T 1
volatility σ 0.3
interest rate r 0.05
strike price K 10
dividend yields δ 0
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Table 2: Swing parameters.

Parameter Value Parameter Value
expiry date T 1 exercise opportunities n 50
volatility σ 0.35 down-volume δ↓ 1
interest rate r 0.1 up-volume δ↑ 1
strike price K 15 θ1 0.5
exercise rights N 12 Number of time steps M 160

electricity market are more expensive than swing options in a Black-Scholes market.
The same holds for interruptible swing options.

For another parameter set presented in Table 1 we investigated interruptible swing
option prices depending on the number of rights while altering the number of up- and
downswings. However, the swing option price per right decreases with increasing
number of rights and tends to an equilibrium. This reflects the fact that multiple swing
rights cannot be exercised at the same time. The optimal exercise date for the first
right, which returns the most profit, cannot be used for the other swings. Fig. 4(a)
illustrates this fact.

Let us recall Example 2.1 introduced in Section 2. In the following we will present
several numerical solutions for the swing option in this example, depending on the
spot prices and time parameters. Assuming the current spot price is 20e, the corre-
sponding penalty function is given by

ρ(x) =


15, if x < −2,
0, if − 2 ≤ x ≤ 2,
20(x− 2), if x > 2,

(4.1)

where x denotes the total amount of consumption. The notation is chosen to be con-
form with the definition of the swing options in Section 2.

Fig. 4 shows the structure of the price of swing options by using the penalty func-
tion ρ from Section 4.1, the parameters from Table 2 without jumps, computed with
the Crank-Nicolson scheme.
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Figure 4: Comparing a swing option per right at one point price S with increased exercise rights. Parameter
set: strike price K = 1, dividend δ = 0, volatility σ = 0.2, interest rate r = 0.25, expiration date T = 1 and
number of upswings and downswings U = 1, D = 1.
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The effect of the penalty function is illustrated through the upper bounds of the
option values, 130e in the left figure compared to 110e in the right figure which
leads to the obvious conclusion that a penalty, aside from exceptional cases, decreases
the values.

Going on with Example 2.1 we examine the effect of a dividend yield on swing
option values for different values of allowed up- and downswings. The swing option
prices at time t = 0 for up to 20% dividend yield are presented in Fig. 6. Similar
to plain Vanilla options, the value of swing call options clearly decrease by higher
percentage of the dividend yield, whereas the value of swing put options increase
by a higher percentage of dividend yield. Although the number of exercise rights and
opportunities in three cases is the same, the effect of different number of upswings and
downswings allowed is obvious. The upper boundary in values of the interruptible
swing options lie at approximately 50e on the left and 230e on the right, whereas the
swing put options reach its maximum at 80e and the swing call options at 300e. At
this point the reader could ask why the upper boundary in values of the interruptible
swing options is not at 80e and 300e. One possible explanation is that when K− Sti >
0, ti denotes one exercise opportunity, the owner of the swing put option would rather
exercise his rights compared to a interruptible swing option holder because the latter
still has the opportunity in the future tj to gain higher profit when Stj − K ≥ K − Sti

happens. In other words, the 12 rights have to be distributed among 12 upswings
and 12 downswings whereas in case of call or put swing option the 12 rights can be
concentrated within the 12 upswings or downswings.

Now, the fair prices of swing call options at time t = 0 for different expiry dates
will be investigated. Generally, the more time remains before an option expires, the
higher the option price. This is not surprising when we recall that option writers
demand higher prices when they expect their risk to be greater. This impression is
confirmed in Fig. 7(a), where option prices increase if the time to expiration increases.
In each graph we change the expiry parameter by 100% up, starting with T = 0.1.
However, looking at Fig. 7(b), option prices seem to increase linearly with the initial
spot price. One observes that the dependence of the options value on the expiry date
gets weaker as the expiry is further away.

4.2 Swing options with jumps

In this subsection we consider a swing option under a jump diffusion process with
a duration of 3 months and 30 exercise rights. As stated in Section 2 we choose the
classical Merton’s model to describe the distribution of the random variable in the
SDE (2.8). First we start to evaluate the swing option for which market parameters
are listed in Table 3. Numerical solution of this swing option is plotted in the Figures
below as red curves.

Based on the parameter set in Table 3 we plot swing option values by altering
each parameter by 50% up and down. In doing so, we vary swing options in swing
call options, swing put options and interruptible swing options and give numerical
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Figure 5: Value of swing options with 12 upswing rights and 12 downswing rights. On the left no penalty
has been applied whereas the penalty function (4.1) has been incorporated in the right plot.
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Figure 6: The influence of a dividend yield on swing options with parameters of Table 2.
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Figure 7: Impact of expiry dates on swing call options.
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Table 3: Data used in the swing option example with jumps.

Parameter Value Parameter Value
expiry date T 0.25 dividend yields δ 0
volatility σ 0.35 exercise opportunities n 30
interest rate r 0.1 jump intensity λ 3
strike price K 15 density function of Merton’s model γ = 2, µj = −3

solutions for both density functions. Comparing the Fig. 8 of the first case, where the
mean of the density function is µj = 0.3, to the Fig. 9 of the second case we make three
interesting observations.

First, curves of the first case all have a big ”tummy” whereas curves of the second
case have tails. More precise, the swing option values of the first case make bigger
changes in the middle area of the spot price than at the boundaries, whereas these
changes in the swing option prices of the second case shift to the right boundary
and are smaller. Recall that the only difference between the two density functions
is the mean µj. Hence, this difference delivers the plausible reason for the shift in the
changes of swing option values because the maximum of the density function lies at
µj. Second, the biggest change is caused by a change in the standard deviation γ of the
corresponding density function. In others words, the volatility of the random variable
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Figure 8: Value of interruptible swing options with 10 upswing rights and 10 downswing rights and µj = 0.3,
model parameters as in Table 3.
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Figure 9: Value of interruptible swing options with 10 upswing rights and 10 downswing rights and µj = −0.3,
model parameters as in Table 3.
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Figure 10: Influence of jumps on
swing put options with ten rights,
whereas λ1 = 0, λ2 = 0.5, λ3 = 1
and λ4 = 4. It is interesting to see
that, around the strike price K, the
higher the jump intensity the higher
the swing option values. However,
when the spot price S tends to 0 swing
option values decrease. The model
parameters are taken from Table 3.
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Figure 11: Influence of jumps on
swing call options with ten rights,
whereas λ1 = 0, λ2 = 0.5, λ3 = 1
and λ4 = 1. For swing call options we
observe the same effects as for swing
put options. The only difference is
that when the spot price S tends to in-
finity, after reaching their maximum,
swing option values decrease. The
model parameters are taken from Ta-
ble 3.

in our SDE has a bigger impact on the swing option values than the jump intensity.
Finally, a remarkable observation can be made about the relation between the jump

intensity and the swing option values. Similar to the relation between the volatility
and the swing option values one might think the higher the jump intensity the higher
the option price. In general this is not true, interestingly. For moderate jump values
swing options are more expensive, but if the jump parameter λ is too high, swing
option values decrease near the boundaries. Numerical values in Table 3 underline
this effect. In particular, for λ = 4 some swing options values in the sixth column are
larger than the swing option values for λ = 2.

A possible explanation is the following: if the jump intensity is too high, the pos-
sibility that the spot price jumps into the wrong direction is higher than usual. For a
swing call option holder the spot price might decrease significantly and for a swing
put option holder the spot price might increase.

Table 4 shows the values of swing call options based on the model parameters
of Table 3. The numbers in the first column are the spot prices, the second column
gives the numerical values of the swing call option without jump, the numbers in the
third, fourth, fifth and sixth column are the numerical values if the same swing option
with different jump intensity. The numbers in columns 6 to 8 are percentage values
which show the growth rate of a swing call option under different jump intensities.
As expected, by doubling the jump intensity λ from 0.5 to 1 or from 1 to 2 the growth
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Table 4: The impact of jumps on swing call option prices. Parameter set is taken from Table 3, µj = 0.3.

S Option Value Growth in Percent
λ = 0 λ = 0.5 λ = 1 λ = 2 λ = 4 0-0.5 0-1 0-2

7.943 0.0006 1.007 1.926 3.591 6.388
10.000 0.053 2.016 3.740 6.616 10.762
11.749 0.608 3.316 5.787 9.899 15.343 444.9 850.9 1526.6
13.803 3.577 6.362 9.258 14.579 21.630 77.8 158.8 307.5
15.848 10.274 12.378 14.933 20.451 28.745 20.4 45.3 99.0
17.782 19.258 20.812 22.826 27.661 36.196 8.0 18.5 43.6
19.952 30.756 32.242 33.978 37.947 45.493 4.8 10.4 23.3
21.877 41.367 43.203 45.052 48.671 54.731 4.4 8.9 17.6
23.988 53.108 55.635 57.881 61.586 66.001 4.7 8.9 15.9
25.704 62.670 65.942 68.654 72.680 76.012 5.2 9.5 15.9
27.542 72.920 77.154 80.480 84.997 87.379 5.8 10.3 16.5
29.512 83.904 89.347 93.447 98.632 100.196 6.4 11.3 17.5
31.622 95.674 102.596 107.637 113.621 114.361 7.2 12.5 18.7
33.884 108.286 116.996 123.186 130.168 130.058 8.0 13.7 20.2
35.481 117.191 127.267 134.333 142.070 141.375 8.5 14.6 21.2
37.153 126.516 138.109 146.150 154.709 153.311 9.1 15.5 22.2
39.810 141.333 155.492 165.215 175.236 172.698 10.0 16.8 23.9
41.686 151.797 167.834 178.804 189.927 186.585 10.5 17.7 25.1
43.651 162.755 180.800 193.118 205.443 201.168 11.0 18.6 26.2
45.708 174.234 194.397 208.162 221.835 216.687 11.5 19.4 27.3

Table 5: Summarizing our results about the impact of some model parameters on swing options, this table
shows the effect on the value of swing call and put options of an increase of each of the six parameters.
Although jump parameters λ, γ and µj have a great effect on swing option prices, a generalization about
their relationship to swing option prices is not possible.

Parameter Swing Call Swing Put
Spot Price ⇑ ⇓
Strike Price ⇓ ⇑
Time to expiry ⇑ ⇑
Dividend yield ⇑ ⇓
Number of exercise rights ⇑ ⇑
Volume restriction ⇓ ⇓

of the option values in percent makes a similar effect, 4.8% to 10.4% or from 10.4% to
23.3%, depending on the exercise opportunities and moneyness of the options.
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