
Combinatorics, Probability and Computing (2019) 28, 287–302. c© Cambridge University Press 2019
doi:10.1017/S0963548318000391

A Linear Threshold for Uniqueness of Solutions to
Random Jigsaw Puzzles

A N D E R S M A R T I N S S O N

Institute of Theoretical Computer Science, ETH Zürich, 8092 Zürich, Switzerland
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We consider a problem introduced by Mossel and Ross (‘Shotgun assembly of labeled graphs’,
arXiv:1504.07682). Suppose a random n× n jigsaw puzzle is constructed by independently and
uniformly choosing the shape of each ‘jig’ from q possibilities. We are given the shuffled pieces.
Then, depending on q, what is the probability that we can reassemble the puzzle uniquely? We say
that two solutions of a puzzle are similar if they only differ by a global rotation of the puzzle,
permutation of duplicate pieces, and rotation of rotationally symmetric pieces. In this paper,
we show that, with high probability, such a puzzle has at least two non-similar solutions when
2 � q � 2e−1/2n, all solutions are similar when q � (2 + ε)n, and the solution is unique when
q = ω(n).

2010 Mathematics subject classification: Primary 60C05
Secondary 05C10

1. Introduction

A jigsaw puzzle is a collection of square pieces where each of the four edges of a piece has a
shape, referred to as a jig, so that it fits together with a subset of the edges of the other pieces.
An edge-matching puzzle is a collection of square pieces where each side of every piece is given
a colour. The goal of the respective puzzles is to assemble the pieces into a certain form; in this
paper this will always be an n× n square, such that all pairs of adjacent pieces fit together. In
the case of a jigsaw puzzle, this means that the jigs of edges that are aligned next to each other
should have complementary shapes, and for an edge-matching puzzle, such pairs of edges should
have the same colour. Here we assume that the pieces are allowed to be rotated, but not flipped
upside down.

In order to make this a bit more formal, we assume that there are q possible types of jigs,
enumerated from 1 to q. A jig type can either be symmetric, so that it fits together with itself, or
be part of a pair of complementary types that fit together with each other. We can describe this
relation by fixing a map ι from {1,2, . . . ,q} to itself such that ι ◦ ι = id and a jig of type j fits
with jigs of type ι( j). Note that we can consider an edge-matching puzzle as a special case of a
jigsaw puzzle by taking ι equal to the identity map.
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In a recent paper by Mossel and Ross [6], a simple model for random edge-matching puzzles,
later generalized to random jigsaw puzzles in [2], was proposed. We imagine that we start with an
n×n grid of identical unit squares. For each of the four sides of each piece, we choose its colour,
or type of jig respectively, out of q possibilities, under the restriction that pairs of connected sides
must get the same colour/complementary jig types. Note that this means that, unlike most real
jigsaw puzzles, also edges along the boundary are assigned colours/jigs. We will refer to such an
assignment of colours to a puzzle as a colouring, and an assignment of jig types as a carving. The
underlying probability space is the set Ω of the q2n(n+1) possible colourings/carvings of the initial
configuration of pieces. Mossel and Ross asked, suppose we choose ω ∈ Ω uniformly at random,
then what is the probability that the puzzle can be uniquely recovered from the collection of
shuffled pieces? Further, how can this recovery be done efficiently? They called this problem
shotgun assembly of a random jigsaw puzzle due to its similarity to genetic shotgun sequencing,
which is a technique for sequencing a long DNA strand by sampling short random subsequences.

The notion of ‘unique recovery’ needs some elaboration. We consider a solution of the puzzle
to be a positioning and orientation of the pieces into a fixed n×n grid such that all adjacent pieces
fit together. The solution consisting of all original positions and orientations will be referred to
as the planted assembly. We here assume that, besides the choice of jigs/colours, all pieces are
identical and rotationally symmetric. Hence, given the collection of shuffled jigsaw pieces, any
solution to the puzzle is equally likely to be the planted assembly. As the pieces can be rotated,
the best we could ever hope for is to be able to recover the planted assembly up to a global
rotation of the puzzle. Besides that, the puzzle may contain duplicate pieces, that is, two pieces
with identical colours/jigs, or rotationally symmetric pieces, that is, opposite sides have the same
colours/jig types. Note that such pieces automatically give rise to additional, albeit not very
different, solutions to the puzzle.

We say that two solutions of a puzzle are similar if they only differ by a global rotation,
permutation of duplicate pieces, and rotation of rotationally symmetric pieces, or, equivalently,
if the solutions have the same colouring/carving up to global rotation. In the terminology of [2],
a puzzle has unique vertex assembly (UVA) if the only solutions are the four global rotations of
the planted assembly, and a puzzle has unique edge assembly (UEA) if all solutions are similar.

It was shown by Mossel and Ross [6] that, with high probability, a random edge-matching
puzzle as above has at least two non-similar solutions when 2 � q = o(n2/3), and has a unique
solution up to global rotation when q = ω(n2). Recently, two papers considering this problem,
by Bordenave, Feige and Mossel [2] and Nenadov, Pfister and Steger [7], were published on
arXiv.org, both on 11 May 2016, and both proving essentially the same result: for q � n1+ε , a
random edge-matching puzzle has a unique solution up to global rotation with high probability
for any fixed ε > 0, and for q = o(n) there are duplicate pieces with high probability and hence
multiple, but possibly all similar, solutions. It should be noted that Bordenave, Feige and Mossel
assume that the pieces are not allowed to be rotated, but remark in the last section of the paper
how their argument can be modified slightly, both to allow rotations and to generalize to the
random jigsaw puzzle model above.

Concerning the problem of how to recover the planted assembly efficiently, Bordenave et al.
describe an algorithm that recovers it with high probability when q � n1+ε with time complexity
nO(1/ε). As a comparison, the general problems of finding one solution to a given n× n jigsaw
puzzle or edge-matching puzzle are known to be NP-complete [4]; see also [3]. The problem also
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seems to be hard in practice. In the summer of 2007, a famous edge-matching puzzle, Eternity II,
was released, with a $2 million prize for the first complete solution [8]. This puzzle consists of
256 square pieces to be assembled into a 16× 16 square. There are in total 22 edge colours,
not including the boundary, which is marked in grey. The competition ended on 31 December
2010, with no solution being found, and at the time of writing, the puzzle is claimed to remain
unsolved.

The aim of this paper is to prove the following result regarding uniqueness of the solution of a
random jigsaw or edge-matching puzzle.

Theorem 1.1. As n → ∞ the following holds with high probability for a random jigsaw puzzle
with q types of jigs or random edge-matching puzzle with q colours.

(i) For 2 � q � 2e−1/2n, there are at least two non-similar solutions.
(ii) For q � (2+ ε)n, for any fixed ε > 0, all solutions are similar.

(iii) For q = ω(n), the solution is unique up to global rotation.

We remark that a weaker form of (i) was first proved in a earlier version of this paper [5]. This
will be shown again in this paper, but using a significantly simpler argument.

The question remains what happens in the interval 2e−1/2n � q � 2n. To try to get a qualitative
understanding for this range, we can compare our random model to a collection of n2 independ-
ently coloured/carved pieces where each colour/jig type is chosen uniformly at random, that is,
without a planted solution. There are 4n2

(n2)! ways to place and orient the pieces into an n× n
grid, and the probability that the pieces fit together in a given configuration is q−2n(n−1). Hence
the expected number of solutions of such a puzzle is

4n2
(n2)!

q2n(n−1) ≈
(

2n√
eq

)2n2

.

We see that there is a transition at q = 2e−1/2n where the expected number of solutions goes
from being very large to very small.

Connecting this back to our model, the fact that we force the puzzle to have at least one
solution may increase the probability that other ways to assemble the pieces are also solutions.
On the other hand, based on the proofs in this article, it is my suspicion that typical solutions
are either similar to the planted assembly, or have very little similarity to it, and hence this
effect should be small. Because of this, I conjecture that the event that all solutions to a random
jigsaw or edge-matching puzzle are similar has a sharp threshold at 2e−1/2n + o(n). Moreover,
considering how strongly the estimates for P(UEA) in Section 2 depend on q, I believe that this
threshold is very sharp. It might even jump directly from o(1) to 1− o(1) when increasing the
number of colours/jig types by 1.

Using a similar heuristic, we can explain the discrepancy between the bounds in parts (i) and
(ii) of Theorem 1.1 (the factor

√
e). In the proof of (i) we consider the entire assembled puzzle,

so, heuristically, random solutions should stop dominating the analysis at q = 2e−1/2n. On the
other hand, the proof of (ii) is based on considering local solutions to the puzzle. The expected
number of ways to build, say, a k× k square of matching pieces out of n2 independently chosen
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pieces for k = o(n) is roughly

4k2
(n2)k2

q2k(k−1) ≈
(

2n
q

)2k2

.

Hence, in this case, solutions unrelated to the planted assembly should stop dominating the
analysis only at q = 2n. It appears that new ideas are needed to close this gap in the main result.

The remainder of the paper will be structured as follows. In Section 2 we give a proof of part (i)
of Theorem 1.1. Section 3 briefly investigates the probability of duplicates and rotationally
symmetric pieces, which shows that (ii) =⇒ (iii). Finally, the proof of part (ii) is split into
Sections 4 and 5. All aforementioned sections will be formulated in terms of the random jigsaw
puzzle model, but as we already noted, the random edge-matching puzzle can be considered as a
special case of this.

2. Proof of Theorem 1.1, part (i)

The statement follows from a counting argument. Let us refer to the unordered collection of
jigsaw pieces of a puzzle as the box of the puzzle. That is, the box contains the information of
how many pieces of each combination of jig types there are in the puzzle, but no information
beyond that about their locations or orientations in the planted assembly. The central observation
is that, in the range 2 � q � 2e−1/2, there are many fewer possible boxes than possible carvings.
Thus, a typical box has many solutions.

In order to make this more precise, let ΩUEA be the set of carvings for which the puzzle has a
unique edge assembly. Then for any ω ∈ ΩUEA, there are at most three more carvings that yield
the same box, namely the 90◦,180◦ and 270◦ rotations of ω . Thus |ΩUEA| is at most four times
the number of possible boxes.

There are q4 ways to choose the jigs of a jigsaw piece, q of which are invariant under a 90◦

rotation, q2 − q being invariant under a 180◦ but not a 90◦ rotation, and the remaining q4 − q2

having no rotational symmetry. Hence there are

q4 −q2

4
+

q2 −q
2

+q =
q4 +q2 +2q

4

possible types of jigsaw pieces. From this it follows that the total number of boxes (including
those without solutions) is ( 1

4 (q4 +q2 +2q)+n2 −1
n2

)
.

As the probability of each carving is q−2n(n+1), it follows that

P(UEA) = q−2n(n+1) · |ΩUEA| � q−2n(n+1) ·4
( 1

4 (q4 +q2 +2q)+n2 −1
n2

)

� 4q−2n(n+1) (
1
4 (q4 +q2 +2q)+n2 −1)n2

n2!

= Θ
(

1
n

)
q−2n

(
e(q4 +q2 +2q+4n2 −4)

4q2n2

)n2

,
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where we used Stirling’s formula in the last step. One can observe that

e(q4 +q2 +2q+4n2 −4)
4q2n2

is convex in q, equals e/4+O(1/n2) for q = 2 and 1+O(1/n2) for q = 2e−1/2n. Hence, for any
2 � q � 2e−1/2n,

P(UEA) � Θ
(

1
n

)
q−2n

(
1+O

(
1
n2

))n2

= Θ
(

1
n

)
q−2n,

which tends to 0 as n → ∞.

3. Proof of Theorem 1.1, (ii) implies (iii)

It is natural to consider uniqueness of the solution as the intersection of two events: the event that
all solutions of the puzzle are similar, and the event that the puzzle does not contain duplicate or
rotationally symmetric pieces. The former is characterized by parts (i) and (ii) of Theorem 1.1,
and, as stated in the Introduction, I conjecture that it has a very sharp threshold at q = 2e−1/2n+
o(n). It remains to consider the latter event.

Proposition 3.1. The probability that a random jigsaw puzzle contains either duplicate or
rotationally symmetric pieces is o(1) for q = ω(n).

Proof. Let X denote the number of pairs of duplicate jigsaw pieces, and Y the number of
rotationally symmetric pieces respectively. The probability that two given jigsaw pieces have
identical jig types is Θ(q−4) if the pieces are non-adjacent in the planted assembly, and O(q−3)
if they are adjacent. Hence,

EX = Θ(n4q−4)+O(n2q−3).

Similarly, the probability that a jigsaw piece has rotational symmetry is q−2, which implies that

EY = Θ(n2q−2).

By Markov’s inequality it follows that

P(X +Y 	= 0) � Θ(n4q−4)+O(n2q−3)+Θ(n2q−2),

which tends to 0 for q = ω(n).

By part (ii) of Theorem 1.1, all solutions of a random jigsaw puzzle are similar with high prob-
ability when q = ω(n). Part (iii) of Theorem 1.1 follows by combining this with
Proposition 3.1.

Remark. Considering the estimates for EX and EY further, one would expect the probability of
X = Y = 0 to be bounded away from 0 and 1 for q = Θ(n). In particular, this would mean that the
probability that a random jigsaw puzzle has a unique solution, up to global rotation, is bounded
away from 0 and 1 when (2 + ε)n � q = O(n). For the sake of brevity, we will not attempt to
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prove this here. We can however note that a partial result to this effect was shown in Section 3 of
[7], namely that

P(X = 0) � exp

(
−n4 −2n2

8q4

)
,

which implies that the probability of a unique solution is bounded away from 1 for q = O(n). In
particular, the bound q = ω(n) in part (iii) of Theorem 1.1 is sharp.

4. Preliminaries for proof of Theorem 1.1, part (ii)

Let us start by defining some concepts. A complete assembly of an n×n puzzle is a positioning
and orientation of the jigsaw pieces into an n×n grid. We will formally consider this as a bijective
map from {1, . . . ,n}2 to itself together with a map {1, . . . ,n}2 → Z4, interpreted as the position
of and orientation of each piece relative to the planted assembly. Similarly, a partial assembly
is a positioning and orientation of a subset of pieces in the jigsaw puzzle into a square grid. We
remark that an assembly itself is not random: it just represents a reordering and rotation of (some
of) the pieces, irrespective of how the pieces may be carved. One important example of a partial
assembly is a k×k window obtained by picking an appropriate square from a complete assembly.

We will consider a jigsaw piece to be a vertex with four cyclically ordered half-edges, rep-
resenting the sides of the piece. For a given (complete or partial) assembly A, we say that two
half-edges are connected in A if they correspond to sides of two different jigsaw pieces that are
aligned next to each other in the assembly. Thus, any assembly A can be considered as a graph by
joining connected half-edges into edges. For an assembly A and ω ∈ Ω, we say that A is feasible
with respect to ω if first assigning the planted assembly the carving ω and then reassembling
the pieces according to A (while keeping the carvings of the individual pieces) means that all
connected pairs of half-edges get complementary jig types.

For any assembly A, we have a natural notion of a dual graph. Considering the assembly
geometrically in the plane, the vertices in this graph are the common corners of at least two
jigsaw pieces, and the edges are the common sides of two pieces. Hence the edges of the dual
graph correspond to the connected pairs of half-edges in A. See Figure 1.

The contour graph of an assembly A, C(A), is the subgraph of the dual graph of A consisting
of all edges whose corresponding pairs of half-edges are not connected in the planted assembly:
see Figure 2. We will refer to the connected components of the contour graph as contours. Note
that the contour graph, together with the boundary of the assembly, partitions the pieces in A into
connected regions given by the sets of pieces contained in each face. An important observation is
that, within each of these regions, the positions and orientations of pieces differ from the planted
assembly by a common translation and rotation, and an edge of the dual graph lies in the contour
graph if and only if its half-edges come from different regions.

One important idea of the proof of part (ii) of Theorem 1.1 is to limit the effect the planted
assembly may have on making other solutions more likely than they would be with the simple
independent model mentioned in the end of the Introduction. Here the dependency effect is going
to be limited by Lemma 4.3 below, which relies on not too many edges in a proposed alternative
assembly being of the same type as each other. This is clearly not possible for complete assem-
blies as are 2n(n−1) interior edges, but only q = O(n) edge types. Hence, this will require us to
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(a) (b)

Figure 1. Illustration of a partial assembly (a) and the corresponding dual graph (b).

(a) (b)

Figure 2. An example of a contour graph. Although not part of the random model, the puzzle is here given a motif to
better visualize the relative position of the jigsaw pieces. (a) The planted assembly of a 5×5 puzzle, and (b) an alternative
assembly. Edges of the contour graph are marked by bold line segments. Here, the contour graph contains three contours,
and partitions the puzzle into eight connected regions.

restrict attention to small partial assemblies of the puzzle. What follows are two rather technical
definitions whose point is to capture this notion.

Given an assembly A, and a carving ω ∈ Ω by which A is feasible, we say that an edge in the
dual graph of A has type { j, ι( j)} (with respect to ω) if the half-edges across it have jig shapes j
and ι( j). Let J = {{ j, ι( j)} : j = 1,2, . . . ,q} be the set of between q/2 and q possible types of
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edges in the dual graph. For any such pair A,ω and a set E of edges in the dual graph of A, the
shape multiplicity of E with respect to ω is defined as

sm(E ,ω) = ∑
J∈J


#{edges in E of type J}/2�.

Similarly, the shape multiplicity of the assembly, sm(A,ω), is the shape multiplicity of its dual
graph. Note that shape multiplicity can be interpreted as the maximal number of disjoint pairs of
edges of the same type in E .

For any complete assembly A and an ω ∈ Ω by which A is feasible, we say that A is k-good
(with respect to ω) if the shape multiplicity of any k× k window is at most 1 when the window
touches the boundary of the puzzle, and at most 2 otherwise.

Proposition 4.1. For k = o(n1/12) and q = Ω(n), the planted assembly is k-good with high
probability.

Proof. In order for a k× k window of the planted assembly to have shape multiplicity at least
i+1, there must exist i+1 disjoint pairs of edges in the dual graph where each pair has a common
type. By the union bound, the probability that this occurs in a carving of a k × k window is
O(k4(i+1)q−(i+1)). Summing this over O(n) windows with i = 1 and O(n2) ones with i = 2 yields
O(nk2·4q−2 +n2k2·6q−3) = o(1).

Proposition 4.2. For k = o(n1/12) and q = Ω(n), with high probability, either all feasible
complete assemblies are similar or there are (at least two) non-similar feasible k-good complete
assemblies.

Proof. Let us denote the event described in the proposition by E. Condition on the complement
of E, that is, the event that all feasible k-good complete assemblies are similar, but there is at least
one more feasible complete assembly that is not k-good. Consider the box of the puzzle (that is,
the unordered collection jigsaw pieces). There are at most four ω ∈ Ω that gives rise to this box,
namely those corresponding to the four rotations of the feasible k-good complete assemblies,
and at least one additional ω ∈ Ω, corresponding to the non-k-good assembly. As the carving
of the planted assembly is chosen uniformly at random, each of these � 5 carvings are equally
likely. Hence, with probability at least 1/5, the planted assembly is not k-good. This means
that (1−P(E)) ·1/5 � P(planted assembly is not k-good), where the right-hand side is o(1) by
Proposition 4.1. Hence, P(E) = 1−o(1), as desired.

We now turn using shape multiplicity for estimating the probability that a given partial as-
sembly A is feasible. If one were to disregard any dependency effects from the planted assembly,
one would expect the probability that A is feasible to be q−E , where E is the number of edges
in the contour graph of A. However, this is not generally true as events of the form pairs of
half-edges fit together may not be independent. In fact, in the case of an edge-matching puzzle,
that is, ι = id, one can show that such events are always increasing in the sense that P(Am|∩m−1

i=1

Ai) � P(Am) where A1,A2, . . .Am each denote the event that some assembly is feasible, and this
inequality can be made strict by choosing appropriate assemblies.
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Lemma 4.3. Fix a partial assembly A and let E denote the number of edges in its contour graph
C(A). If no two half-edges across C(A) are connected in the planted assembly, then

P(A is feasible) = q−E .

Moreover, without this restriction we have that for any i � 0,

P(A is feasible∧ sm(C(A),ω) � i) � q−E+i.

Proof. We construct the abstract graph G whose vertices are the half-edges across in C(A). We
connect a pair of vertices by an old edge if they are connected in the planted assembly, and by
a new edge if they are connected in the partial assembly in the statement of the lemma. We will
refer to such pairs of vertices in G as old pairs and new pairs respectively. Note that each vertex
in G is the end-point of exactly one new edge and at most one old edge, so G consists of paths
and cycles. Further, these components alternate between old and new edges, and, in the case of a
path, begin and end with new edges.

The way the carving of the planted assembly is chosen means that each vertex in G that
is not part of an old pair is independently and uniformly assigned a jig type, and each old
pair is independently and uniformly assigned a pair of complementary jig types. Further, the
new assembly is feasible if the jigs of half-edges in each component alternate between two
complementary types. We say that the component is feasible if this holds.

In the case where no two half-edges across the contour graph are connected in the planted
assembly, there are no old edges in G. Hence each of the E new pairs fits together independently
with probability 1/q.

Considering the latter case, a path in G with E ′ new edges,

h1 → h2 → ·· · → h2E ′ ,

is feasible if h2,h4, . . . ,h2E ′ all have the complementary jig type to h1, which occurs with prob-
ability q−E ′

. Similarly, a cycle in G with E ′ new edges,

h1 → h2 → ·· · → h2E ′ → h1,

is feasible if h2,h4, . . . ,h2E ′ all have the same jig type, which occurs with probability q−E ′+1. As
the total number of new edges is E, we see that the probability that the new assembly is feasible
is q−E when G only consists of paths, and increases by a factor of q for each cycle.

Note that, by the definition of contour graph, a pair of vertices in G cannot be connected by
both an old and a new edge. Hence, each cycle contains at least two new edges. As a consequence,
for each feasible cycle in G there are two edges of the same type in C(A). Hence, if the partial
assembly is feasible, sm(C(A),ω) is at least the number of cycles in G. In particular, there are
either more than i cycles, in which case the probability of the event in the statement is 0, or there
are at most i cycles, in which case the probability is at most q−E+i, as desired.

We further need to bound the number of possible shapes of contours in assemblies. To this
end, we have the following estimate.
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Lemma 4.4. Up to translation, the number of connected subgraphs G ⊂ Z
2 with E edges and

F bounded faces is at most
(3E−4F+4

2E−4F+4

)
. Moreover, for any ε ′ > 0, there exists a M = Mε ′ > 0 such

that (
3E −4F +4
2E −4F +4

)
= Oε ′(M

E−2F(1+ ε ′)E),

where the subscript ε ′ denotes that M as well as the implicit constant in the big O-notation are
allowed to depend on ε ′, but nothing else.

Proof. For any such G, let V denote its number of vertices. Then, by the Euler characteristic
formula, we have

V −E +F = 1.

Note in particular that this means that V is independent of the choice of G. It further follows that

R := ∑
v∈G

(4−deg(v)) = 4V −2E = 2E −4F +4.

Now, consider the following procedure for constructing G. Since we are only interested in the
number of graphs up to translation, we may, without loss of generality, assume that the origin is
a vertex in G. Let G0 be the empty graph, and let G1 be the graph only containing the origin. For
each i � 1, we construct Gi+1 by selecting a subset of the edges between V (Gi) \V (Gi−1) and
Z

2 \V (Gi), and adding them to Gi. If Gi+1 = Gi, then we terminate and put G = Gi.
In order for the procedure to construct a graph with E edges dividing the plane into F regions,

it must choose to include an edge E times, and choose not to do so R times. Hence we can encode
any such graph as a binary string of E ones and R zeros, which can be done in

(E+R
R

)
ways.

Finally, considering the double sum
∞

∑
i=0

∞

∑
j=0

(
i+ j

j

)
xiy j =

1
1− x− y

,

which converges absolutely for |x|+ |y|< 1, it follows that for any i, j ∈N0 and any x,y � 0 such
that x+ y < 1, we have (

i+ j
j

)
� x−iy− j

1− x− y
= Ox,y(x−iy− j).

Letting i = E, j = 2E − 4F + 4, x = (1 + ε ′)−1 and choosing M = Mε ′ sufficiently large so that
y = M−1/2 < 1− x, we get(

3E −4F +4
2E −4F +4

)
= Oε ′((1+ ε ′)EME−2F+2) = Oε ′((1+ ε ′)EME−2F).

5. Proof of Theorem 1.1, part (ii)

Let us once and for all fix the value of ε > 0 such that q � (2+ε)n, and choose a function k = k(n)
such that k is always even, k = ω(lnn) and k = o(n1/12), say k = 2�(lnn)2�. The strategy for the
rest of the proof will be as follows. By Propositions 4.1 and 4.2 it suffices to show that, with
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Figure 3. Example of a minimal partial assembly around a contour. Here, the contour
has two bounded faces, partitioning the assembly into three connected regions.

high probability, the puzzle has no k-good feasible complete assemblies except (possibly) ones
similar to the planted assembly. Let A denote the set of all complete assemblies whose contour
graphs are non-empty and do not contain any contours consisting of exactly four edges that
surround a single jigsaw piece. We know that if, for some ω ∈ Ω, there exists a k-good feasible
complete assembly A which is not similar to the planted assembly, then, by possibly moving
around identical pieces, we may assume that A ∈ A. Hence it remains to show that, with high
probability, no A ∈ A is both feasible and k-good. This is divided into three cases, as described
below, depending on C(A). We have

P(∃k-good feasible A ∈ A) �
3

∑
i=1

P(∃k-good feasible A ∈ A satisfying Case i).

For each case i, we show that, for any ω ∈ Ω, the existence of a k-good feasible A ∈ A (with
respect to ω) implies the existence of a certain kind of partial assembly A′ ∈ A′

i which is feasible
and has sm(A′,ω) at most 2 for i = 1 or 2 and at most 1 for i = 3. Using Markov’s inequality
we show that, with high probability, no A′ ∈ A′

i has these properties. This completes the proof of
part (ii) of Theorem 1.1.

Case 1. There exists a contour not intersecting the boundary of the assembly, where the vertical
and horizontal distances between pairs of vertices are each at most k−2.

Suppose that for a certain ω ∈Ω the contour graph of a k-good feasible complete assembly A∈
A contains such a contour C. Note that C can be contained in a k×k window, hence sm(C,ω) � 2.
By taking the subset of jigsaw pieces that have at least one corner on C, we obtain a feasible
partial assembly with contour graph C that satisfies sm(C,ω) � 2. This is illustrated in Figure 3.

Let us start by fixing a connected graph C ⊂ Z
2, and bounding, among the corresponding

partial assemblies, the expected number of feasible ones. We denote the number of edges of C
by E and the number of bounded faces by F . Without any restrictions on whether half-edges
across the contour should be connected in the planted assembly, there are at most (4n2)F+1 ways
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to choose the original positions and orientations of the F + 1 connected regions in the planted
assembly. In counting the number of these where some pair of half-edges across C are connected
in the planted assembly, we can first choose a pair of such half-edges. This relates the position and
orientation of two connected regions, hence the positions and orientations of connected regions
can be chosen in at most (4n2)F ways. By Lemma 4.3, it follows that, for this fixed C, the
expected number of corresponding feasible assemblies is at most

(4n2)F+1q−E +
(

2E
2

)
(4n2)F q−E+2 � O(E2)(2n)2F−E+2

(
1+

ε
2

)−E

.

Note that C is contained in a k×k window, hence E = O(k2) and we can replace O(E2) by O(k4)
in the right-hand side.

Summing this over all possible C, we apply Lemma 4.4 with ε ′ chosen such that (1+ ε ′)(1+
ε/2)−1 � (1+ ε/3)−1. This gives an upper bound of

Oε(n2k4)∑
E

(
1+

ε
3

)−E

∑
F

(
M
2n

)E−2F

,

where E and F range over all possible combinations of numbers of edges and faces. Making the
substitution T = E − 2F and letting T0 denote the minimal possible value of E − 2F , we can
bound the sum by

Oε(n2k4)
∞

∑
E=0

(
1+

ε
3

)−E ∞

∑
T=T0

(
M
2n

)T

= Oε(n2−T0 k4).

To estimate T0, consider the sum of perimeters of all bounded faces of such a contour C. On
the one hand, this will count every interior edge in C twice, and every edge on the boundary once,
hence the sum equals 2E −P where P is the perimeter of C. On the other hand, each face has
perimeter at least four, hence the sum is at least 4F . We conclude that E −2F � P/2, and as we
assumed that C is not just four edges surrounding a single jigsaw piece, we must have P > 4 and
thus E −2F > 2 Hence T0 � 3, which implies that the expected number of such assemblies tends
to 0 as n → ∞, as desired.

Case 2. No contour satisfies Case 1, but there is a contour with at least one vertex at (geometrical)
distance � k/2 from the boundary.

Again, let ω ∈ Ω and suppose there is a k-good feasible complete assembly A ∈ A with a
contour of this form. Consider a k × k window centred at some vertex meeting the conditions
of Case 2 on this contour. Let C be the contour graph of the partial assembly consisting of this
window, and let S be the surrounding square in the dual graph. Note that since the assembly is
k-good, sm(C,ω) � 2, and as no contour in the complete assembly satisfies Case 1, all contours
of C must reach the boundary of the k×k window. Hence if such a contour exists, then there is a
connected graph C∪S whose boundary S is a square of side length k and such that the midpoint
of the square is a vertex in C, together with a feasible partial assembly in this square with contour
graph C such that sm(C,ω) � 2.

Fix such a pair C,S, and let E denote the number of edges of C, and F the number of bounded
faces of C∪S. By the same argument as in Case 1, the expected number of corresponding partial
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assemblies that are feasible is at most

(4n2)F q−E +
(

2E
2

)
(4n2)F−1q−E+2 = O(k4)(2n)2F−E

(
1+

ε
2

)−E

.

Summing this over all possible C using Lemma 4.4, we get an upper bound of

Oε(k4M4k)∑
E

(
1+

ε
3

)−E

∑
F

(
M
2n

)E−2F

, (5.1)

where, again, E and F run over all possible combinations of numbers of edges and faces.

Lemma 5.1. Let C, S, E and F be as above. Then E −2F � k/4−2−O(E/k).

Proof. Enumerate the bounded faces of C∪S from 1 to F and let Pi denote the perimeter of the
ith face. Then, as every edge in C is counted in the perimeter of two faces, and every edge in S in
one face, we get

F

∑
i=1

Pi = 2E +4k. (5.2)

Note that 2E +4k here corresponds to 2E −4k in Case 1 because there E does not include edges
on the boundary of the k× k square.

The perimeter of each face can be bounded in terms of its area. Suppose face i has area Ai, and
that it contains jigsaw pieces from wi columns and hi rows. Then, on the one hand A � wi ·hi, and
on the other hand the face contains two horizontal and vertical edges for each of these columns
and rows. Hence

Pi � 2wi +2hi � 2wi +2Ai/wi � 4
√

Ai.

For Ai >
15
16 k2 we can improve this lower bound using the fact that the midpoint of the square is

a vertex in C. Let us consider C ⊆Z
2 such that the midpoint is (0,0), that is, the square is the area

[−k/2,k/2]2. Let Γ be a minimal length path from (0,0) to the boundary of [−�k/4�,�k/4�]2.
We may, without loss of generality, assume that Γ hits the boundary on the line x = �k/4�. Note
that this means that the y-coordinate of any vertex along Γ lies between −k/4 and k/4. Then, in
each column [l, l +1]×R for l = 0,1, . . . ,�k/4�−1 there are either at least four horizontal edges
on the boundary of the face, or at most (3k)/4 area units inside the face. Letting x be the number
of columns satisfying the former, and y the number that satisfies the latter, we get

Pi � 4
√

Ai +2x,

Ai � k2 − k
4

y,

x+ y � k
4
.

Hence,

Pi � 4
√

Ai +2x � 4
√

Ai +
k
2
−2y � 4

√
Ai +

8
k

(
Ai −

15
16

k2

)
.
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Let

f (a) = 4
√

a+
8
k

max

(
0,a− 15

16
k2

)
.

This function is continuous, and concave on the intervals [0, 15
16 k2] and [ 15

16 k2,∞]. Then, by (5.2)
and for a given F , the value of 2E +4k is bounded from below by the minimal value of ∑F

i=1 f (ai)
subject to ∑F

i=1 ai = k2 and ai � 1 for i = 1,2, . . . ,F .
If F − 1 � 1

16 k2, we have ai � 15
16 k2 and hence the minimization problem is concave. In this

case the function attains its minimum at an extreme point on the boundary of the domain. Up to
permutation of variables, there is only one such point, namely a1 = k2 − (F −1) and a2 = a3 =
· · · = aF = 1, yielding a minimum of

4
√

k2 − (F −1)+4(F −1) = 4k +4(F −1)−O

(
F
k

)
.

On the other hand, if F −1 < 1
16 k2, we can divide the problem into two concave minimization

problems by considering the case where all ai are less than 15
16 k2 and the case where at least one

variable, say a1, is at least 15
16 k2. Again, up to permutation of variables, the only extremal points

are

a1 =
15
16

k2, a2 =
1

16
k2 − (F −2), a3 = a4 = · · · = aF = 1,

a1 = k2 − (F −1), a2 = a3 = · · · = aF = 1,

with the corresponding values

4

√
15
16

k2 +4

√
1
16

k2 − (F −2)+4(F −2) = (
√

15+1)k +4(F −2)−O

(
F
k

)
,

and

4
√

k2 − (F −1)+
8
k

(
1

16
k2 − (F −1)

)
+4(F −1) =

9
2

k +4(F −1)−O

(
F
k

)
.

Hence, the minimum in this case is 9
2 k +4(F −1)−O(F/k).

Note that for F−1 � 1
16 k2, we have 1

2 k = O(F/k). Hence, for all F , we can write the minimum
as 9

2 k +4(F −1)−O(F/k).
In conclusion, we have 2E +4k � 9

2 k+4(F −1)−O(F/k). Hence E−2F � 1
4 k−2−O(F/k),

where clearly F = O(E).

Using Lemma 5.1, we can bound (5.1) by

Oε(k4M(4+1/4)k−2n2−k/4)
∞

∑
E=0

(
(2n/M)O(1/k)

1+ ε/3

)E

.

As k = ω(lnn), (2n/M)O(1/k) → 1 as n → ∞. Hence the sum is at most

Oε(k4M(4+1/4)k−2n2−k/4),

which tends to 0 as n → ∞. Again, we can conclude that, with high probability, no such partial
assemblies exist.
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Case 3. All vertices in the contour graph have distance < k/2 from the boundary.

For any such A ∈ A there is a large connected region in the assembly that contains the (n−
2k)× (n− 2k) square of all jigsaw pieces at distance at least k from the boundary. Consider
the area in the planted assembly that corresponds to this square. In order to fit in the planted
assembly, this area must cover all jigsaw pieces that are not in the 2k outermost layers. As a
consequence of this, any jigsaw piece in the k outermost layers of A must come from the 2k
outermost layers of the planted assembly.

Consider any 3×3 window in A with a non-trivial contour graph C. Again let S be the boundary
of the window, E the number of edges of C, and F the number of bounded faces of C ∪ S. As
this window is at distance � k from the boundary, it is part of a k × k window that touches
the boundary. Hence, by the definition of k-good, sm(C,ω) � 1. Furthermore, by the above
reasoning, all connected regions come from the 2k outermost layers of the planted assembly.

As before, we apply Markov’s inequality to the number of such partial assemblies that can be
constructed from the random jigsaw puzzle. There are at most 4 ·8kn ways to choose the original
orientation and position of each connected region. Hence, by Lemma 4.3, the expected number
of such assemblies corresponding to a fixed C is at most

(32kn)F q−E +O(1)(32kn)F−1q−E+1 =
(

1+O

(
1
k

))
(32kn)F O(n−E).

We note that if E > F , this is bounded by O(kF nF−E) = O(k9/n)→ 0 as n→∞. Hence, with high
probability, the only 3×3 windows that can occur in any k-good feasible A ∈A are those where
either the contour graph is empty, or possibly those where the contour graph satisfies E � F .

Lemma 5.2. The only possible C where E � F are the ones where C consists of exactly two
edges that separate a corner from the rest of the 3×3 window.

Proof. It is clear that the only possible way for C ∪ S not to be connected is if C consists of
four edges surrounding the centre jigsaw piece, which by choice of A is not possible. If C∪S is
connected, then its Euler characteristic gives that E −F = V −13, where V denotes the number
of vertices of C∪S. Note that there are always 12 vertices on the boundary of C∪S, and, since C
is not empty, it must contain at least one additional vertex. Hence, the only possibility for E � F
is when V = 13, which clearly only happens if C consists of two edges that separate a corner
piece from the rest of the 3×3 window.

Now, consider an A ∈ A with the property that the contour graph of each 3× 3 window is
either empty, or consists of two edges that cut out a corner piece. In the latter case, if we can
shift the window one step either vertically or horizontally towards that corner piece, then we
would obtain a window with some other non-trivial contour graph. Clearly, the only case where
this would not lead to a contradiction is if the cut-out piece is one of the four corner pieces of
A. Hence A can only differ from the planted assembly by a global rotation and reordering of the
four corner pieces.

In conclusion, with high probability, no A ∈ A is both feasible and k-good except possibly
those that only differ from the planted assembly by the positions of the four corner pieces. But,
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with high probability, the 16 sides of the corner pieces all have different jig shapes, and thus no
such reordering is feasible either, as desired.
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Note

After this article was submitted, Balister, Bollobás and Narayanan [1] announced independent
work on a very closely related model. Their main result is analogous to Theorem 1.1 apart from
a less optimized constant.
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