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Abstract
Effects of gaps (rectangular surface cavities) on boundary-layer transition are investigated using a combination
of linear stability theory and experiments, for boundary layers where the smooth-surface transition results from
Tollmien–Schlichting (TS) instability. Results are presented for a wide range of gap characteristics, with the
associated transition locations ranging from the smooth-surface location all the way forward to the gap location.
The transition movement is well described by a variable N-factor, which links the gap characteristics to the level
of instability amplification eN leading to transition. The gap effects on TS-wave transition are characterized by two
limiting behaviours. For shallow gaps d/w < 0.017, the reduction in N-factor is a function of the gap depth d and
is independent of the gap width w. For deep gaps d/w > 0.028, the reduction in N-factor is a function of the gap
width and is independent of the gap depth. When both the gap width and depth are sufficiently large relative to
the displacement thickness 𝛿∗, the TS-wave transition is bypassed, resulting in transition at the gap location. These
behaviours are mapped out in terms of (w/𝛿∗, d/𝛿∗), providing a predictive model for gap effects on transition.

Impact Statement
Laminar-flow control seeks to reduce the drag on aircraft by delaying the laminar-to-turbulent transition in the
viscous boundary-layer flow on aerodynamic surfaces. This reduction in drag translates directly to a reduction
in fuel burn and CO2 emissions.
To achieve extended laminar flow, the aerodynamic surfaces are designed to suppress the growth of naturally
occurring flow instabilities that trigger transition. These instabilities are also sensitive to surface imperfections
(such as steps and gaps), which can result from the manufacturing of the aircraft. Since the minimization
or avoidance of surface imperfections can result in costly constraints on the manufacturing process, high-
fidelity models are needed to predict the impact of these imperfections. This paper provides qualitative
and quantitative descriptions for the underlying mechanisms that can lead to a loss in laminar flow due to
surface gaps. This systematic characterization of gap effects can help facilitate the trades necessary to support
commercial applications.

1. Introduction

The transition location on air vehicles can have a significant impact on the overall vehicle performance.
An extended region of laminar flow results in lower friction drag, and can also influence other contribu-
tors to drag such as wave drag and spanloading. Under quiet-flow conditions characteristic of flight, the
onset of transition is linked to the growth and nonlinear breakdown of naturally occurring instabilities.
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One of the most effective methods for predicting the transition location is to link the linear growth of
instabilities n = ln(A/A0) to the transition onset using a critical growth-factor value N, where A0 is an
initial amplitude (Smith & Gamberoni, 1956; Van Ingen, 1956). In this approach, when the instabil-
ity amplification reaches n = N, the disturbance amplitudes A are estimated to be sufficient to cause
transition.

For many flows of interest (e.g. over low-sweep wings, nacelles and axisymmetric bodies) the
dominant mode of instability is the Tollmien–Schlichting (TS) wave. The TS instability is sensitive to
pressure gradient and Reynolds number – being more stable in favourable pressure gradients (dP/d x < 0)
and less stable in adverse gradients (dP/d x > 0). Thus, for a typical aerodynamic surface, the TS
waves are damped near the leading edge and then go unstable near the pressure minimum, ultimately
transitioning to turbulence farther downstream. In practice, surface irregularities such as steps and gaps
alter the growth characteristics and can move transition forward relative to an idealized smooth surface.
Accounting for these effects is essential for realistic transition predictions on air vehicles to support
laminar-flow applications.

The influence of steps on transition has been considered in several studies, as described in the
summaries of Eppink, Wlezien, King, and Choudhari (2019), Tufts, Reed, Crawford, Duncan, and Saric
(2017), Crouch and Kosorygin (2020) and Perraud, Arnal, and Kuehn (2014). In TS-dominated boundary
layers, studies show that moderate step heights result in a forward movement of transition relative to the
smooth surface. For sufficiently large step heights, the transition location moves all the way to the step
location. The forward movement of transition for moderate step heights is linked to a destabilization
effect on the TS waves in the neighbourhood of the step (Klebanoff & Tidstrom, 1972). This enhanced
growth has been investigated numerically for different flow conditions (see for example Edelmann
& Rist, 2015; Hildebrand, Choudhari, & Paredes, 2020; Nayfeh, 1992; Perraud & Séraudie, 2000). The
calculated change in the linear growth factor n(x) at some downstream position (where transition is
observed or assumed to occur) can be correlated to the transition movement. Alternatively, an exper-
imentally observed change in transition location due to a step can be correlated with a change in the
value of the critical growth factor N (Crouch & Kosorygin, 2020; Crouch, Kosorygin, & Ng, 2006;
Wang & Gaster, 2005). In this variable N-factor approach, the growth factor n(x) is calculated in the
absence of the step, but the threshold value for transition onset varies with the step characteristics.

The influence of surface gaps on transition has received less attention. Early work of Nenni and Gluyas
(1966) investigated gap effects on transition in flight and proposed a threshold free-stream Reynolds
number of 15 000, based on gap width, to identify significant forward movement of transition. The work
of Sinha, Gupta, and Oberai (1982) provided a qualitative classification of gaps based on experimentally
observed flow patterns inside the gap cavity. However, these qualitative distinctions regarding the base
flow do not appear to be linked to differences in the instability growth characteristics, or to the transition
location.

Measurements of Olive and Blanchard (1982), and supplemental experiments of Séraudie (2010) and
Gentili (2012) (see Beguet, Perraud, Forte, and Brazier (2017) for a summary of these Office National
d’Études et de Recherches Aérospatiales – ONERA test results) characterize the threshold effects of
gaps, where transition moves forward to the gap location. The threshold behaviour is expressed in terms
of w/𝛿∗ and d/𝛿∗ boundaries, where w is the width and d is the depth, and 𝛿∗ is the boundary-layer
displacement thickness at the gap location (for the smooth surface). Gaps with w/𝛿∗ ≥ 18 and d/𝛿∗ ≥ 2
are likely to result in transition at the gap location.

A numerically based approach to characterizing the transition movement was presented by Perraud
et al. (2014) based on linear stability theory. A peak in the growth factor n(x), which occurs near the
gap location, is linked to the potential transition at the gap. A far-field change in the growth factor Δn,
compared with the smooth surface, is linked to potential movements of the transition location farther
downstream.

Beguet et al. (2017) provide a survey of several studies conducted at ONERA, and introduce mod-
elling to characterize the effects of gaps on transition. The models capture the localized peak in the
growth factor and the far-field change in the growth factor as a function of the gap width and location
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using two local Reynolds number parameters, Rew and Re𝜃 ; Rew is based on the gap width and Re𝜃 is
based on the (smooth-surface) boundary-layer momentum thickness at the gap location. The model does
not take into account gap depth or any potential influence of pressure gradients. Experiments confirm the
negligible effect of gap depth on transition over the range 0.2 < d/w < 0.7. Beguet et al. (2017) suggest
the need to further investigate the effects of pressure gradient, compressibility and larger gap depths.

Zahn and Rist (2016) used direct numerical simulation to study deep-gap effects on transition for
d/w > 5 in compressible flow, and provided a simple model for estimation. The gaps are analysed
on a flat plate with zero pressure gradient. They observed that deep gaps have an effect on transition
farther downstream, characterized by a change in amplification of Δn between 0 and 0.5, varying non-
monotonically with gap depth. Their observation suggests that the Δn variation results from an acoustic
feedback within the gap cavity. This dependence on gap depth is in contrast to the models introduced
by Beguet et al. (2017) that suggest no dependency of transition on gap depth for shallower gaps. Zahn
and Rist (2016) also show that the presence of a gap in combination with a step can reduce the level of
Δn compared with an isolated step.

For shallow gaps, d/w < 0.02, Crouch and Kosorygin (2020) provide a gap ΔN based on a super-
position of steps. Their results show that shallow gaps produce the same effects on TS-wave growth
as an isolated backward-facing step – without any discernible effect from the forward-facing step at
the downstream edge of the gap. This is in contrast to a rectangular protrusion, where both the initial
forward-facing step and the following backward-facing step contribute to the altered TS-wave growth.

The occurrence of transition at the gap location is investigated using global stability analysis by
Mathias and Medeiros (2019). Their results suggest that the observed transition at the gap location is
a form of bypass transition, independent of the TS instability. The bypass mechanism is driven by the
instability of the shear layer over the gap, with acoustic feedback due to scattering of the shear-layer
instability at the downstream edge of the gap (Rossiter, 1964).

In this paper, we use a combination of experiments and linear stability theory to investigate the effects
of gaps on the transition process. A series of wind-tunnel tests provides a large database with varied
gap characteristics yielding a wide range of effects on transition. In extreme cases, the gaps cause a
rapid transition just downstream of the gap. In other cases, the transition exhibits a more gradual change
resulting in a transition location between the smooth-surface transition location and the gap location.

2. Experimental set-up and flow characteristics

The flow field used for this investigation is based on a typical airfoil pressure distribution, with a
favourable pressure gradient near the leading edge followed by a mild adverse pressure gradient down-
stream. To enable a systematic investigation of many gap geometries, the measurements are conducted
on a flat plate with the pressure gradient imposed by contouring the opposing wind-tunnel wall. Figure 1
provides a schematic description of the test set-up, showing a top-down view on the test plate with a
rectangular gap running spanwise across the plate surface. The gap is characterized by its streamwise
position xG (measured from the plate leading edge to the gap leading edge), width w and depth d. The
gaps are created by interchangeable inserts, resulting in sharp-corner rectangular cavities. Measurements
show the width and depth are uniform across the span to within ±0.1 mm and ±0.01 mm, respectively.

The effect of the gap on transition is primarily assessed by the change in transition location xT
relative to the smooth-surface transition location xT0. This transition movement is expressed in terms of
the normalized transition length 𝜉 = (xT − xG)/(xT0 − xG).

The experiments are conducted in the T-324 low-turbulence wind tunnel at the Khristianovich Institute
of Theoretical and Applied Mechanics. Two test plates are used, each is 2050 mm long and 996 mm wide
spanning the width of the test section. A trailing-edge flap is used to position the stagnation line on the
upper quarter of a semi-circular plate leading edge. Measured coefficient of pressure Cp distributions
are given in figure 2 for both gap positions that are considered, xG = 127 and xG = 450 mm. The
small differences in the pressure (visible on the expanded scale of the inset) are the result of using
different leading-edge lengths to position the gap, and some small inaccuracies in the plate mounting.
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Figure 1. Schematic showing top-down view of the test model, parameters contributing to the normalized
transition length 𝜉 and gap characteristics.

1.00

0.90

0.80

0.70

0.60

0.50Cp

Cp

0.40

0.30
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18

0.20

0.10

0

0

200

200

400

400

600

600

800

800

x (mm)

x (mm)

1000

1000

1200

1200

U18_127-AVE
U18_450-AVE
U18_450-CFD

Figure 2. Pressure distribution, Cp, for the xG = 127 and xG = 450 mm configurations.

These differences in Cp are accounted for in the analysis of § 3. The first measured points downstream
of x ≈ 0 show there is a small suction peak on the upper (working) surface of the plate. Apart from
the local variation at the leading edge, the upstream pressure distribution has a favourable gradient up
to approximately x ≈ 200 mm. This is followed by a mild adverse gradient that extends downstream
beyond the transition location. Thus, the gap at xG = 127 mm is in a favourable pressure gradient, and
the gap at xG = 450 mm is in an adverse pressure gradient.

The study focuses on low Mach numbers, M < 0.1, similar to earlier investigations on steps (Crouch
& Kosorygin, 2020). Measurements are conducted using four different flow velocities, referred to as
U18, U20, U22 and U27, with actual velocities, 18.3, 20.6, 22.6 and 27.5 m s−1, respectively. For this
range of tunnel velocities, the free-stream turbulence (measured with the model in place) varies between
Tu = 0.028 % and Tu = 0.039 % (bandwidth 2–4 × 103 Hz). A representative turbulence spectrum for
this facility is provided in Crouch, Ng, Kachanov, Borodulin, and Ivanov (2015). Average values (over
multiple tests entries) for the unit Reynolds number and the displacement thickness at the gap locations
are provided in table 1. These displacement thickness values are from measurements on the smooth
surface that are used to non-dimensionalize the gap width and depth in the results below.

The transition location is determined using a 1 mm diameter Preston tube to measure the total pressure
near the plate surface, as described in the earlier study on surface-step effects (Crouch & Kosorygin,
2020). The transition onset is here defined based on the mean-flow profile rather than the unsteady
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Table 1. Overview of test parameters.

Case U (m s−1) ReU (m−1) 𝛿∗ (mm) (at xG = 127 mm) 𝛿∗ (mm) (at xG = 450 mm)

U18 18.3 1.19 × 106 0.52 1.12
U20 20.6 1.33 × 106 0.50 1.05
U22 22.6 1.46 × 106 0.47 1.00
U27 27.5 1.80 × 106 0.43 0.90

fluctuations, since the mean flow is the essential quantity for most applications. The dynamic pressure
drops with increasing x distance, due to viscous thickening of the boundary layer. At the onset of
transition, the dynamic pressure begins to rise – similar to the friction coefficient Cf . The transition-onset
location xT is estimated based on the minimum in the dynamic pressure. Repeat runs (between 10 to 20
cases for each of the smooth-surface reference conditions) show the estimated transition location varies
with a standard deviation of approximately ±15 mm. This variation includes flow-condition uncertainty
as well as transition-measurement uncertainty. A direct determination of the transition-measurement
uncertainty based on various fits through the data gives an estimated value of ΔxT ± 10 mm.

3. Linear stability analysis

Linear stability analysis is used to assess the effects of the gaps on the transition location. The experimen-
tal Cp distributions from figure 2 are used to create edge conditions for calculating the boundary-layer
flow for the stability analysis. Earlier studies have shown very good agreement between the measured
and calculated mean profiles for this flow (Kosorygin, Crouch, & Ng, 2010). Calculated values for
𝛿∗ are within ±0.01 mm of the experimental values of table 1. Following quasi-parallel theory, the
amplification of TS instabilities is described by the spatial growth rate 𝛾(x;𝜔, 𝛽), which is determined
from the Orr–Sommerfeld equation for the frequency 𝜔 = 2πf and spanwise wavenumber 𝛽 = 2π/𝜆z.
A physical mode of instability with fixed frequency f and spanwise wavelength 𝜆z can be characterized
by its amplification factor m, defined as the natural log of the amplitude ratio

m(x;𝜔, 𝛽) = ln
(
A(x;𝜔, 𝛽)
A0(𝜔, 𝛽)

)
=
∫ x

x0

𝛾(s;𝜔, 𝛽), ds. (3.1)

In the eN method, when the amplification factor for any given mode reaches a critical value N, transition
is assumed to occur. This is tracked using the n-factor envelope of the physical growth curves,

n(x) = max
𝜔

max
𝛽

m(x;𝜔, 𝛽), (3.2)

such that the transition location is estimated from the occurrence where n reaches the critical value N.
In the variable N-factor approach, the threshold value N is defined as a function of key parameters

that can alter the linear amplitude of the instability through either receptivity or enhanced amplification
(Crouch, 2021). This is equivalent to a linear-amplitude method that correlates the transition onset to
the amplitude A reaching some threshold value AT . Rather than tracking an increase in the physical
amplitude relative to AT , the variable N-factor approach tracks a reduction in the critical value N relative
to a reference condition with N0, N = N0 − ΔN (Crouch, 2021). The amplification factors m or n are
calculated the same as for the standard eN method, with only the critical value N changing as a function
of receptivity or growth modifiers.

Amplification curves m(x;𝜔, 𝛽) for the U18 xG = 450 mm configuration are shown in figure 3 for a
frequency range 100 Hz ≤ f ≤ 520 Hz. For these conditions, the smooth surface transition location is
xT0 = 980 mm. The dominant mode at this location is highlighted in red, and corresponds to f = 180 Hz.
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Figure 3. Instability amplification factors m(x;𝜔, 𝛽), for different frequencies f = 𝜔/2π, based on the
xG = 450 mm Cp distribution and the U18 velocity. The thick red line corresponds to f = 180 Hz.
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Figure 4. Instability amplification-factor envelopes n(x), for different velocities U, based on the
xG = 127 mm and xG = 450 mm Cp distributions.

This yields a non-dimensional frequency F = 106𝜔𝜈/U2 = 51. These growth characteristics are
consistent with TS instability being the mechanism for transition. As is typical for an airfoil pressure
distribution, the same physical mode is dominant over an extended streamwise distance. Thus, any
modest movement in transition is likely to be linked to a change in amplitude for this mode.

The n-factor envelopes for the various conditions tested are given in figure 4 (focusing on the frequency
range relevant to transition). The solid red line in figure 4 is the envelope corresponding to figure 3. The
dashed lines show the envelopes for the xG = 127 mm configuration. The small differences in pressure
distribution shown in figure 2 result in a slight destabilization of the xG = 127 mm configuration
compared with xG = 450 mm. However, the n-factor differences between the two configurations remain
less than 0.3. For all flow conditions considered, the gap at xG = 127 mm is upstream of the instability
neutral point, and the gap at xG = 450 mm is downstream of the instability neutral point for all modes
influencing transition.

https://doi.org/10.1017/flo.2022.1 Published online by Cambridge University Press

https://doi.org/10.1017/flo.2022.1


Flow E8-7

0

1

2

3

4

5

6

7

8

9

10
(a) (b) 5

4

3

2

1

10 20 30 40 50 60 70 80 90 100

ONERA data

50 % < ξ < 90 %
10 % < ξ < 50 %

ξ > 90 %

ξ < 10 %

0 10 20 30 40 50

w/δ∗ w/δ∗

d/δ∗

Figure 5. Scatter plot of experimental points in terms of gap width and gap depth, with symbols
corresponding to the transition length 𝜉. (a) Full data set (both xG =127 and xG = 450 mm), with dashed
line showing the threshold boundary for bypass from Beguet et al. (2017), (b) Expanded view for smaller
values of width and depth.

4. Experimental results on gap effects

For the reference conditions on a smooth plate, the transition location varies between 780 mm
≤ xT0 ≤ 980 mm, changing primarily due to velocity. The associated smooth-plate transition N-factors
are between 8.9 and 9.8, and dominated by two-dimensional modes. The transition location varies
weakly in the spanwise direction, with ΔxT ± 5 mm over Δz = 100 mm, both for the smooth surface and
with the spanwise-uniform gaps. The experimental data consider a wide range of gap widths and depths
– expressed non-dimensionally by 0 < w/𝛿∗ < 110 and 0 < d/𝛿∗ < 11. Uncertainties in these non-
dimensional values are dominated by the small 𝛿∗ variations, and are estimated to be less than ±2 %.
For the smallest values of w and d, the uncertainties are set by the gap-measurement uncertainties of
±0.1 and ±0.01 mm, respectively.

A scatter plot of the various test points is given in figure 5. Each symbol represents a transition
measurement, and the different symbol types show the normalized transition length 𝜉. The small black
open symbols correspond to large transition lengths 𝜉 > 90 %, with relatively little movement of
transition due to the gap. The intermediate black open symbols correspond to 𝜉 between 50 % and 90 %.
The large red open symbols (for larger w/𝛿∗ values) are associated with larger movements of transition
toward the gap, with 𝜉 between 10 % and 50 %. Finally, the solid red symbols show conditions resulting
in transition near, or at, the gap location. These cases of abrupt transition at the gap location appear to be
the result of a bypass mechanism, not related to TS instability. For larger values of d/𝛿∗, the experimental
data suggest a threshold value of w/𝛿∗ > 19 for bypass transition. The dashed lines in figure 5 (for
d/𝛿∗ = 2 and w/𝛿∗ = 18) are taken from Beguet et al. (2017). These lines show the boundary for gap
characteristics leading to rapid transition at the gap location based on several experiments conducted
at ONERA. The boundary between the open symbols and the solid symbols is in good agreement with
these earlier experiments. To compare with the Rew = 15 000 threshold criterion from Nenni and Gluyas
(1966), we recast the observed threshold boundary at w/𝛿∗ = 19 into Rew values. This yields a range of
Rew values from approximately 12 000 up to approximately 33 000. While Rew = 15 000 is within this
range, it does not provide a clear demarcation of the threshold. Note that the conditions studied in the
work of Zahn and Rist (2016) are along the d/𝛿∗ axis, outside the range of the current results.

Figure 5(b) provides an expanded view of the results for smaller values of w/𝛿∗ and d/𝛿∗. For
d/𝛿∗ < 3.7, the boundary for bypass transition shifts toward larger w/𝛿∗. At d/𝛿∗ ≈ 1.8, the threshold
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Figure 6. Streamwise variation of the disturbance amplitude for four different conditions with xG =
450 mm: smooth plate at U18, f = 178 Hz; case A(w/𝛿∗ = 27, d/𝛿∗ = 2.60) at U18, f = 175 Hz; case
B(w/𝛿∗ = 18, d/𝛿∗ = 3.45) at U18, f = 183 Hz; case C(w/𝛿∗ = 20, d/𝛿∗ = 3.83) at U22, f = 830 Hz.
Symbols are measurements and thin lines are linear theory for U18. Rectangles show the measured
transition locations.

value for bypass is estimated as w/𝛿∗ ≈ 35 based on the trend below d/𝛿∗ ≈ 3.7. Values of d/𝛿∗ below
1.8 do not result in bypass transition, even for large values of w/𝛿∗.

Streamwise disturbance amplitudes measured for three different flow conditions from figure 5 are
presented in figure 6. The gap position is shown schematically on the x axis. The amplitudes are measured
using a hot-wire at a varying height above the surface corresponding to U/UeG = 0.4, where U is the
boundary-layer mean velocity and UeG is the edge velocity measured at the gap location xG = 450 mm.
The root-mean-square amplitude is obtained by band pass filtering the u′ signal over a narrow frequency
band of 1.5 % of the central value. The target frequencies are selected to match the dominant frequency
just prior to breakdown, as observed in measured spectra. In all cases, transition occurs due to ‘natural’
background forcing, without any direct excitation.

The black circular symbols are for measurements on the smooth plate for the U18 condition, and
are provided for reference. The disturbance frequency for this case is 178 Hz, which corresponds to
a non-dimensional frequency of F = 106 × 2πf 𝜈/U2 = 53. The solid line running through the data
is derived from the calculated growth factor m from (3.1) for f = 180 Hz. The amplitude variation is
given by em, and the initial amplitude A0 is chosen to provide a good fit to the data in the neighbour-
hood of x ≈ 700 mm. As shown in figure 3, this mode is predicted to be dominant at transition. This
overall agreement with the quasi-parallel theory suggests that the non-parallel effects are small over
this part of the amplification curve. The black rectangle at x = 980 mm shows the measured transition
location for this smooth-plate condition, and the associated linear threshold amplitude at transition is
approximately 0.5 %.

The three amplitude curves identified as A, B and C are measured in the presence of surface gaps
at xG = 450 mm. For cases A (w/𝛿∗ = 27, d/𝛿∗ = 2.6) and B (w/𝛿∗ = 18, d/𝛿∗ = 3.45), the free-
stream conditions are the same as for the smooth-surface reference case, U18. Case C (w/𝛿∗ = 20,
d/𝛿∗ = 3.83) is measured at condition U22. The measured frequency for cases A and B is f = 175 and
f = 183 Hz, respectively. These are essentially the same as the smooth-plate frequency. The calculated
linear-amplitude curve for f = 180 Hz is overlaid on the experimental data for these cases. Similar to
the smooth-plate comparison, the initial amplitude level was chosen to provide a match to the data in
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the neighbourhood of x ≈ 700 mm. The good agreement between theory and experiment for the pre-
transition amplitude variation shows that the primary effect of the gap is to locally destabilize the TS
wave, resulting in a larger amplitude. Assuming the same linear threshold amplitude for transition as for
the smooth plate 0.5 % (using the current u′ amplitude definition), the shifted linear-amplitude curves
for A and B provide a good prediction for the transition onset as shown by the rectangles for these
cases. This provides support for using a linear-amplitude method, or the simplified variant of a variable
N-factor method, for predicting the transition movement due to gaps.

The amplitude variation for case C is qualitatively different from cases A and B. The amplification
at the gap location is much greater, and this leads to a more rapid transition – essentially at the gap
location. In this case, there is no sign of any TS-wave growth. In addition, the frequency for case C is
f = 830 Hz (or F = 163), which is well outside the expected range for TS-wave transition. This case can
be characterized as a bypass to the underlying linear transition mechanism. This supports the observation
that the threshold boundary in figure 5 is associated with bypass transition. Further evidence for this is
provided by the recent global stability analysis of Mathias and Medeiros (2019).

5. Analysis of gap effects for TS transition

Linear stability analysis and the variable N-factor formulation are used to investigate the linkage between
the gap effects on TS waves and the observed transition movement presented in figure 5. For a given
gap and flow condition, a smooth-surface amplification envelope from figure 4 is used to determine the
critical N-factor N at the measured transition location xT . For the same flow condition, the smooth-surface
transition location xT0 is used to determine the reference N-factor N0. This provides a ΔN = N0 − N as
a function of the gap characteristics w/𝛿∗, d/𝛿∗.

There are two primary factors contributing to the uncertainty in the calculated ΔN. The first is the
uncertainty in the measured transition location xT or xT0, which, as noted above, is ±10 mm. Using the
steepest envelope curve from figure 4, this translates to an N-factor uncertainty of ±0.17. The other
source of uncertainty is a 3× (10)4 m−1 standard deviation in unit Reynolds number for the range of test
points corresponding to a given test condition in table 1. This results in an N-factor uncertainty of ±0.12.
The cumulative uncertainty for a given N-factor calculation is ±0.21, and the associated uncertainty
for ΔN is ±0.3. Note that a larger transition uncertainty of ±15 mm would result in a cumulative ΔN
uncertainty of ±0.4.

Figure 7 shows the calculated ΔN for all of the gap measurements with xG = 450 mm as a function
of the gap depth and gap width. The different symbols correspond to the gap-width bins that are used
to organize the data. The solid line in figure 7(a) shows the ΔN = 4.4d/𝛿∗ variation for a backward-
facing step from Crouch et al. (2006). All of the data are bounded by the backward-facing step trend
line, showing that the gap effects on TS waves are no worse than a backward-facing step of height d/𝛿∗.
The results show that the ΔN initially increases with d/𝛿∗ similar to a backward-facing step but then
ΔN plateaus to a nearly constant value, which depends on the gap width. The points in the grey band
between 6 < ΔN < 7.5 correspond to transition occurring at the gap location, and are likely the result
of bypass transition as discussed above.

Figure 7(b) shows the same data plotted as a function of gap width w/𝛿∗. The thick dashed line
through the data (0.1w/𝛿∗) shows the mean value calculated from ΔN/(w/𝛿∗) for data in the range
7 ≤ w/𝛿∗ ≤ 30; smaller values of w/𝛿∗ overly amplify data scatter, and larger values are potentially
influenced by bypass transition. The thin dashed lines in figure 7(b) show the mean slope plus or minus
one standard deviation. The mean plus one standard deviation provides a good bounding curve for the
data.

The non-bypass results of figure 7 show two distinct trends in the ΔN variation. For small values of
d/𝛿∗, the ΔN varies with d/𝛿∗ similar to a backward-facing step. This variation is independent of the
gap width w/𝛿∗, as long as the width is sufficiently large compared with the depth. Qualitatively, this
is a shallow gap that is dominated by the upstream backward-facing step, with minimal influence from
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Figure 7. Variation of ΔN as a function of (a) gap depth and (b) gap width for gaps at xG = 450 mm,
in an adverse pressure gradient. Dashed lines show the mean slope (0.1w/𝛿∗) and ± one standard
deviation.

the downstream forward-facing step. For larger values of d/𝛿∗, the ΔN approaches a constant value that
depends on the gap width. In this deep-gap limiting case, the value of ΔN is independent of the depth.

Based on the slope for the average w/𝛿∗ dependence from figure 7(b), the overall ΔN variation is
given by

ΔN =

{
4.4d/𝛿∗ : d/w ≤ 0.023
0.1w/𝛿∗ : d/w > 0.023. (5.1)

The boundary between the shallow-gap and deep-gap behaviour is determined by equating ΔN from
the two expressions. A deep-gap behaviour is also seen in the study of Beguet et al. (2017) based on the
change in the far-field growth factor Δnfar. When applied to the current test conditions for xG = 450 mm,
their Δnfar variation slopes are between 0.07w/𝛿∗ and 0.08w/𝛿∗, which is at the lower end of the range
of slopes from figure 7(b).

The limiting behaviours of (5.1) are shown schematically by the solid and dashed straight lines in
figure 8. A simple model that smoothly transitions between the shallow-gap and deep-gap behaviour,
based on the average slope of ΔN versus w/𝛿∗, is

ΔN ≈ 0.1w/𝛿∗ tanh
(
44d
w

)
. (5.2)

This model variation is shown by the red dashed curve in figure 8, in relation to the limiting behaviours.
Due to the data scatter of figure 7, the d/w value differentiating shallow-gap behaviour from deep-

gap behaviour is not well defined, but is in the range 0.017 < d/w < 0.028 (or, 36 < w/d < 59), based
on using the slopes of the two thin dashed lines from figure 7(b). To conservatively account for this data
scatter, an alternative expression for ΔN is given by

ΔN ≈ 0.122w/𝛿∗ tanh
(
36d
w

)
. (5.3)

This provides an approximate bounding curve for the results (Crouch, Kosorygin, & Sutanto, 2020) –
essentially one sigma above the average in figure 7(b). This study did not include detailed investigation
of the gap flow, but the shallow-gap/deep-gap boundary is thought to be linked to the flow-reattachment
distance within the gap. For the shallow gap, the recirculation length is set by the gap depth, but for the
deep gap it is limited by the gap width.

Comparisons between the model expressions of (5.2) and (5.3) and the experimental data are provided
in figure 9, which essentially combines figures 7 and 8. Similar to figure 7, the grey bands at larger ΔN
show points that have transition at the gap location, and are likely bypass transition. The thicker dashed
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Figure 8. Schematic showing the ΔN variation with gap depth for a fixed gap width. For shallow gaps
the ΔN varies like a backward-facing step, and for deep gaps the ΔN takes on a constant value that
depends on the width.

lines are for the average behaviour of (5.2), and the thin dashed lines are for the bounding case of (5.3).
Figure 9(a) shows the results for xG = 450 mm, with the gap in the adverse pressure gradient. This is
from the same data set shown in figure 7, and used to develop the model. Figure 9(b) shows results for
xG = 127 mm, with the gap in the favourable pressure gradient. These data also show good agreement
with the model, although biased towards smaller ΔN values, similar to earlier step results (Crouch et al.,
2006). Even though the TS-instabilities are nominally damped at x = 127 mm, this location is relatively
close to the neutral points for the critical modes. In this case, the destabilizing effects of the gaps are
still significant.

To provide a general characterization of the gap effects, the model of (5.2) is used to recast the
transition length results of figure 5 into ΔN contours. Figure 10 shows the ΔN resulting from different
gap widths and depths. The cross-hatch area shows the region where bypass transition occurs, which is
independent of the TS-wave amplification.

(i) For gap depths greater than d/𝛿∗ ≈ 3.7, bypass transition occurs for gap widths w/𝛿∗ > 19; for
narrower widths, w/𝛿∗ < 19, the maximum ΔN is less than 2. For this range of gap depths, the
reduction in the critical N-factor results in a relatively small movement in transition compared
with bypass.

(ii) For depths in the range 1.8 < d/𝛿∗ < 3.7, the reduction in critical N-factor can be as large as 3.5.
(iii) For depths below d/𝛿∗ ≈ 1.8, the transition movements result from changes in the TS-wave

critical N-factor. In this range of depths, the transition movement is a function of both the gap
width and depth.

6. Conclusions and recommendations

Linear stability analysis in conjunction with detailed boundary-layer transition experiments have been
used to characterize the effects of spanwise-running gaps on transition in nominally two-dimensional
boundary layers. Similar to earlier studies, the gap effects are expressed in terms of the non-dimensional
gap width w/𝛿∗ and depth d/𝛿∗ for a rectangular cross-section gap. A variable N-factor model has been
developed to capture the movement in transition due to enhanced amplification of TS waves. Results
show two limiting behaviours for the effects on TS waves: a shallow-gap limit where the incremental
amplification is independent of the gap width, and a deep-gap limit where the incremental amplification
is independent of the gap depth. The model is shown to be in good agreement with the experimental
data for gaps placed upstream of the instability neutral point (in a favourable pressure gradient) and
downstream of the instability neutral point (in an adverse pressure gradient).
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and experimental results, symbols.
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Figure 10. The TS-wave ΔN contours and bypass-transition region as a function of the gap width w/𝛿∗
and depth d/𝛿∗ based on low Mach number data (M < 0.1) for nominally two-dimensional boundary
layers.
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Transition movements observed in the experiments that are not correlated to changes in TS-wave
amplification are shown to result from some form of bypass transition, with a significantly higher charac-
teristic frequency. The boundary for bypass transition is in good agreement with earlier experiments. The
variable N-factor results, in combination with the bypass-transition boundary, provide a full description
for the potential transition movement due to gaps for nominally two-dimensional boundary layers.

Even though these results are based on low-speed test conditions, the basic methodology and gap
characterization extends to higher-speed flows typical for commercial transport aircraft. Future studies
are needed to assess the quantitative effects of Mach number to enable the full generalization of the
current findings. In addition, the current results have focused on nominally two-dimensional flows
where the smooth-surface transition is dominated by TS waves. For swept flows that are dominated by
cross-flow instability, additional investigations are needed. In these cases, the TS-wave variable N-factor
results are not applicable, but the bypass boundary is likely to be similar to the current findings.
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