K. Nomizu Nagoya Math. J. Vol. 60 (1976), 181-188

A CHARACTERIZATION OF THE VERONESE VARIETIES*

KATSUMI NOMIZU

Let $P^{m}(C)$ be the complex projective space of dimension m. In a previous paper [2] we have proved

THEOREM A. Let f be a Kaehlerian immersion of a connected, complete Kaehler manifold M^n of dimension n into $P^m(C)$. If the image $f(\tau)$ of each geodesic τ in M^n lies in a complex projective line $P^1(C)$ of $P^m(C)$, then $f(M^n)$ is a complex projective subspace of $P^m(C)$, and f is totally geodesic.

In the present note, we shall first provide a much simpler geometric proof of this result and then give a characterization of the Veronese varieties by means of the notion of circles in $P^m(\mathbf{C})$. Generally, a curve x(t) with arc-length parameter t in a Riemannian manifold is called a circle if there exists a field of unit vectors Y_t along the curve, which, together with the unit tangent vectors X_t , satisfies the differential equations

$$abla_t X_t = k Y_t \quad \text{and} \quad
abla_t Y_t = -k X_t,$$

where k is a positive constant (see [4]).

By the Veronese variety we mean the imbedding of $P^n(C)$ into $P^m(C)$, where m = n(n + 3)/2, which is defined as follows. Let S^{2n+1} be the unit sphere in the complex vector space C^{n+1} with the standard hermitian inner product (z, w) and corresponding real inner product $\langle z, w \rangle = \text{Re}(z, w)$. On the other hand, the set of all complex symmetric matrices of degree n + 1 can be considered as the vector space C^{m+1} , where m = n(n + 3)/2, in which the standard hermitian inner product can be expressed by

 $(A,B) = \operatorname{trace} A\overline{B}, \qquad A,B \in C^{m+1}.$

The mapping v which takes $x \in C^{n+1}$ into $x^{t}x \in C^{m+1}$ maps S^{2n+1} into the

Received June 10, 1975.

^{*} Work supported by NSF Grant GP-38582X.

unit sphere S^{2m+1} of C^{m+1} , and induces a holomorphic imbedding of $P^n(C)$ into $P^m(C)$. If we choose the Fubini-Study metrics of constant holomorphic curvature $c \ (>0)$ for $P^m(C)$ and c/2 for $P^n(C)$, then the imbedding is isometric. This is what we call the Veronese imbedding.

We now state our new result.

THEOREM B. Let f be a Kaehlerian immersion of a connected, complete Kaehler manifold M^n of dimension n into $P^m(\mathbf{C})$ with Fubini-Study metric. The image $f(\tau)$ of each geodesic τ in M^n is a circle in $P^m(\mathbf{C})$ if and only if f is congruent (by a holomorphic isometry of $P^m(\mathbf{C})$) to $i \circ v$, where v is the Veronese imbedding of $P^n(\mathbf{C})$ into $P^{m'}(\mathbf{C})$, with m' = n(n + 3)/2, and i is the totally geodesic inclusion of $P^{m'}(\mathbf{C})$ into $P^m(\mathbf{C})$.

1. Simpler proof of Theorem A.

Let x_0 be a point of M^n and let M^* be the complete totally geodesic complex submanifold (namely, *n*-dimensional projective subspace $P^n(C)$) through the point $f(x_0)$ and tangent to $f(M^n)$, that is, the tangent space $T_{f(x_0)}(M^*)$ equals $f_*(T_{x_0}(M^n))$, where f_* denotes the differential of f.

Let τ be an arbitrary geodesic in M^n starting at x_0 . By assumption, there is a complex projective line $P^1(C)$ which contains $f(\tau)$. If X denotes the initial tangent vector of τ at x_0 , then $f_*(X)$ is tangent to $P^1(C)$. If we denote by J the complex structure of $P^m(C)$ as well as that of M^n , then the vector $Jf_*(X) = f_*(JX)$ is tangent to $P^1(C)$. It follows that $T_{f(x_0)}(P^1(C))$ is spanned by $f_*(X)$ and $f_*(JX)$. On the other hand, these two vectors are contained in $f_*(T_{x_0}(M^n)) = T_{f(x_0)}(M^*)$. Thus $T_{f(x_0)}(P^1(C))$ $\subset T_{f(x_0)}(M^*)$. Since $P^1(C)$ and M^* are totally geodesic in $P^m(C)$, it follows that $P^1(C)$ is contained in M^* ; thus $f(\tau)$ is contained in M^* . Since τ is an arbitrary geodesic in M, we have $f(M) = M^*$.

2. Veronese imbedding.

We shall show that the Veronese imbedding v of $P^n(C)$ into $P^m(C)$ with m = n(n + 3)/2 has the property that the image of each geodesic in $P^n(C)$ is a circle in $P^m(C)$. This property does not depend on the choice of a positive constant c which we choose for the holomorphic sectional curvature of $P^m(C)$ (and that of $P^n(C)$ will be c/2). We recall how geometry of $P^m(C)$ is related to that of S^{2m+1} . The standard fibration $\pi: S^{2m+1} \to P^m(C)$ is a principal S¹-bundle. It has a connection whose

VERONESE VARIETIES

horizontal subspaces Q_x , $x \in S^{2m+1}$, are given by

$$Q_x = \{X \in C^{m+1}; \langle X, x \rangle = \langle X, ix \rangle = 0\}$$
.

The projection π_* maps Q_x isomorphically onto the tangent space $T_u(P^m(C))$, where $u = \pi(x)$. If we let

$$g(\pi_*X,\pi_*Y)=(4/c)\langle X,Y
angle$$
 , $X,Y\in Q_x$,

then g is the Fubini-Study metric with holomorphic sectional curvature c for $P^m(\mathbf{C})$. We shall choose c = 4 (to simplify constant factors in the computations that follow). Let us denote by \overline{V}' the Riemannian connection for S^{2m+1} and by \tilde{V} the Kaehlerian connection for $P^m(\mathbf{C})$. We formulate the relationship between \overline{V}' and \tilde{V} (see [3], Proposition 3) in the following form. A curve in S^{2m+1} is said to be horizontal if its tangent vectors are horizontal.

LEMMA 1. Let x_t be a horizontal curve in S^{2m+1} and $u_t = \pi(x_t)$. If Z_t is a horizontal vector field along x_t and if $W_t = \pi_*(Z_t)$, then $\tilde{\mathcal{V}}_t W_t = \pi_*(\mathcal{V}_t' Z_t)$.

LEMMA 2. If x_t is a horizontal curve in S^{2m+1} with arc-length parameter t, then $\nabla'_t X_t$, where X_t denotes the tangent vector, is horizontal.

Proof. We have

$$\nabla'_t X_t = dX/dt + x_t \; .$$

Since x_t is horizontal, we have $\langle X_t, ix_t \rangle = 0$ and hence

 $\langle dX/dt, ix_t \rangle + \langle X_t, iX_t \rangle = 0$.

But $\langle X_t, iX_t \rangle = 0$ so that $\langle dX/dt, ix_t \rangle = 0$. Thus we obtain

$$\langle ec{v}_t'X_t,ix_t
angle = \langle dX/dt,ix_t
angle + \langle x_t,ix_t
angle = 0$$
 .

LEMMA 3. If x_t is a circle in S^{2m+1} which is furthermore a horizontal curve, then $u_t = \pi(x_t)$ is a circle in $P^m(\mathbf{C})$.

Proof. We have a field of unit vectors Y_t along x_t such that

$$abla'_t X_t = k Y_t \quad ext{and} \quad
abla'_t Y_t = -k X_t \;,$$

where k is a positive constant and X_t is the tangent vector. By Lemma 2, $V'_t X_t$ and hence Y_t are horizontal. The tangent vector of u_t is given by $U_t = \pi_*(X_t)$. Consider the field of unit normal vectors $V_t = \pi_*(Y_t)$;

note that π_* is isometric from Q_x to $T_{\pi(x)}(P^m(C))$. By Lemma 1, we have

$$\tilde{\mathcal{V}}_t U_t = \pi_*(\mathcal{V}_t X_t) = \pi_*(kY_t) = kV_t$$

and, similarly,

$$\tilde{\mathcal{V}}_t V_t = \pi_*(\mathcal{V}'_t Y_t) = \pi_*(-kX_t) = -kU_t .$$

Thus u_t is a circle in $P^m(C)$.

Now we shall prove our assertion about the Veronese imbedding. We observe that the unitary group U(n + 1) acts naturally on S^{2n+1} and $P^n(C)$ as a group of isometries. Each geodesic τ in $P^n(C)$ is congruent by a transformation belonging to U(n + 1) to the curve with homogeneous coordinates ($\cos t$, $\sin t$, 0, ..., 0). On the other hand, we can let U(n + 1) act on the space C^{m+1} of all complex symmetric matrices of degree n + 1 by $Z \to AZ^{t}A$, where $Z \in C^{m+1}$ and $A \in U(n + 1)$. This action preserves inner product in C^{m+1} and thus induces the action of U(n + 1) on S^{2m+1} and $P^m(C)$ as a group of isometries. Now the Veronese imbedding v is equivariant relative to the actions of U(n + 1) on $P^n(C)$ and on $P^m(C)$.

It is thus sufficient to prove the following. Let τ be the geodesic w_t in $P^n(C)$ given by $w_t = \pi(z_t)$, where $z_t = (\cos(t/\sqrt{2}), \sin(t/\sqrt{2}), 0, \dots, 0)$ is a curve on S^{2n+1} . Since the holomorphic sectional curvature of $P^n(C)$ has been chosen to be 2, we have

$$\|dw/dt\|^2 = 2 \, \|dz/dt\|^2 = 1$$
 ,

which shows that t is the arc-length parameter for the geodesic w_t . Let

$$x_t = v(z_t)$$
, $u_t = v(w_t)$ so that $u_t = \pi(x_t)$.

We wish to show that u_t is a circle in $P^m(C)$. The curve x_t on S^{2m+1} can be represented simply by the first 2×2 block of the form

$$egin{bmatrix} \cos^2{(t/\sqrt{2})} & \sin{(t/\sqrt{2})}\cos{(t/\sqrt{2})} \ \sin{(t/\sqrt{2})}\cos{(t/\sqrt{2})} & \sin^2{(t/\sqrt{2})} \end{bmatrix}$$

since the other components are all 0. The tangent vectors X_t of the curve x_t are represented in the same sense by

$$X_t = (1/\sqrt{2}) \begin{bmatrix} -\sin\left(\sqrt{2}t\right) & \cos\left(\sqrt{2}t\right) \\ \cos\left(\sqrt{2}t\right) & \sin\left(\sqrt{2}t\right) \end{bmatrix}.$$

Since $\langle X_t, ix_t \rangle = 0$, x_t is a horizontal curve in S^{2m+1} . If we show that it is a circle in S^{2m+1} , then Lemma 3 implies that $u_t = \pi(x_t)$ is a circle in $P^m(C)$.

We have

$$dX/dt = \begin{bmatrix} -\cos\left(\sqrt{2}t\right) & -\sin\left(\sqrt{2}t\right) \\ -\sin\left(\sqrt{2}t\right) & \cos\left(\sqrt{2}t\right) \end{bmatrix}$$

The vector

$$\nabla_t X_t = dX/dt + x_t$$

is also horizontal (since its components are real) and has length 1, because

$$egin{aligned} &\langle dX/dt+x_t, dX/dt+x_t
angle \ &= \langle dX/dt, dX/dt
angle + 2\langle x_t, dX/dt
angle + \langle x_t, x_t
angle \ &= 2+2(-1)+1=1 \;, \end{aligned}$$

by virtue of $\langle x_i, dX/dt \rangle = -\langle dx/dt, X_i \rangle = -1$.

We thus set $Y_t = dX/dt + x_t$, namely, $V'_t X_t = Y_t$. Since $\langle Y_t, X_t \rangle = 0$, we have

$$\begin{split} & V'_t Y_t = dY/dt = d^2 X/dt^2 + X_t \\ & = \sqrt{2} \begin{bmatrix} \sin\left(\sqrt{2}t\right) & -\cos\left(\sqrt{2}t\right) \\ -\cos\left(\sqrt{2}t\right) & -\sin\left(\sqrt{2}t\right) \end{bmatrix} \\ & + (1/\sqrt{2}) \begin{bmatrix} -\sin\left(\sqrt{2}t\right) & \cos\left(\sqrt{2}t\right) \\ \cos\left(\sqrt{2}t\right) & \sin\left(\sqrt{2}t\right) \end{bmatrix} \\ & = (1/\sqrt{2}) \begin{bmatrix} \sin\left(\sqrt{2}t\right) & -\cos\left(\sqrt{2}t\right) \\ -\cos\left(\sqrt{2}t\right) & -\sin\left(\sqrt{2}t\right) \end{bmatrix} = -X_t \; . \end{split}$$

Thus we have shown that x_t is a circle of curvature k = 1.

3. Proof of Theorem B.

We now finish the proof of Theorem B. Let f be a Kaehlerian immersion of a complete Kaehler manifold M^n into $P^m(C)$ with the property that for each geodesic τ in M^n the image $f(\tau)$ is a circle in $P^m(C)$. We shall first show that

(i) the second fundamental form α is parallel;

(ii) f is isotropic, that is, $\|\alpha(X, X)\|$ is equal to a constant for all unit tangent vectors X to M^n at each point;

(iii) M^n has constant holomorphic curvature.

Let x_t be a geodesic on M^n with tangent vectors X_t of length 1. Denoting by \tilde{V} and V the Kaehlerian connections of $P^m(C)$ and M^n , respectively, we have

$$\tilde{\mathcal{V}}_t X_t = \mathcal{V}_t X_t + \alpha(X_t, X_t) = \alpha(X_t, X_t)$$

where α is the second fundamental form. We obtain

(1)
$$\widetilde{\mathcal{V}}_t^2 X_t = -A_{\alpha(X_t, X_t)} X_t + \mathcal{V}_t^{\perp} \alpha(X_t, X_t) ,$$

where A is the second fundamental tensor and \mathcal{V}^{\perp} the normal connection. On the other hand, since $f(x_t)$ is a circle by assumption, there exists a field of unit tangent vectors Y_t along x_t and k > 0 such that

$$\tilde{\mathcal{V}}_t X_t = k Y_t$$
 and $\tilde{\mathcal{V}}_t Y_t = -k X_t$,

thus

$$\widetilde{\mathcal{V}}_t^2 X_t = -k^2 X_t \; .$$

From (1) and (2) we obtain

$$(3) A_{\alpha(X_t,X_t)}X_t = k^2 X_t$$

and

$$(4) \qquad \qquad \nabla_t^{\perp} \alpha(X_t, X_t) = 0 \; .$$

Since x_t is a geodesic in M^n , the covariant derivative

$$(\nabla_t^* \alpha)(X_t, X_t) = \nabla_t^\perp \alpha(X_t, X_t) - \alpha(\nabla_t X_t, X_t) - \alpha(X_t, \nabla_t X_t)$$

is equal to 0 by virtue of (4). Evaluating this at t = 0 and observing that X_0 can be an arbitrary unit tangent vector at an arbitrary point of M^n , we have

(5)
$$(\mathcal{F}_{X}^{*}\alpha)(X,X) = 0$$
 for all tangent vectors X to M^{n} .

Since $(\mathcal{F}_{\mathcal{X}}^*\alpha)(Y, Z)$ is symmetric in X, Y and Z, we conclude that $\mathcal{F}^*\alpha = 0$, that is, α is parallel.

From (3) it follows that for any unit tangent vector X to M^n there exists a certain constant k > 0 such that

$$A_{\alpha(X,X)}X = k^2 X \, .$$

If Y is a tangent vector perpendicular to X, then

VERONESE VARIETIES

 $\langle A_{{}_{\alpha(X,X)}}X,Y\rangle=0$

so that

(6)
$$\langle \alpha(X, X), \alpha(X, Y) \rangle = 0$$
 whenever $\langle X, Y \rangle = 0$.

This condition implies that f is isotropic, that is, $||\alpha(X, X)||$ is equal to a constant for all unit tangent vectors X at each point (see [6], Lemma 1). It also follows that M^n has constant holomorphic sectional curvature (see [6], Lemma 6).

We now wish to prove that f is essentially the Veronese imbedding. Since α is parallel, the first normal spaces (spanned by the range of α at each point) are obviously parallel relative to the normal connection. The (complex) dimension of the normal spaces, say, p, is at most n(n+1)/2. It is known [1], Proposition 9, that there is a totally geodesic $P^{n+p}(C)$ in $P^m(C)$ such that $f(M^n) \subset P^{n+p}(C)$. We shall see that this immersion f_0 of M^n into $P^{n+p}(C)$ is the Veronese imbedding (and indeed p = n(n+1)/2).

If p < n(n + 1)/2, Theorem 2 of [6] says that f_0 is totally geodesic. This will mean that the image of a geodesic in M^n is a geodesic in $P^{n+p}(C)$ and hence a geodesic in $P^m(C)$, contrary to the assumption that it is a circle in $P^{m}(C)$. Hence we must have p = n(n + 1)/2. We already know that M^n has constant holomorphic sectional curvature. Since the second fundamental form is parallel, it follows from [5], Theorem 4.4, that this constant is half the constant holomorphic sectional curvature of $P^{n+p}(C)$. Moreover, such an immersion f_0 is rigid. Thus M^n is $P^n(C)$ with holomorphic sectional curvature, say, 2, if we assume that $P^m(C)$ and hence $P^{n+p}(C)$ has holomorphic sectional curvature 4. Now the Veronese imbedding v is a Kaehlerian imbedding of $P^{n}(C)$ into $P^{n+p}(C)$. By rigidity, f_0 is congruent to v by a holomorphic isometry of $P^{n+p}(C)$. Since this holomorphic isometry can be extended to a holomorphic isometry of $P^m(C)$, we can now conclude that $f: M^n \to P^m(C)$ is in fact congruent to $i \circ v$, where v is the Veronese imbedding of $P^n(C)$ into $P^{n+p}(C)$, p = n(n+1)/2, and i is a totally geodesic inclusion of $P^{n+p}(C)$ into $P^{m}(C)$. We have thus completed the proof of Theorem B.

References

 Cecil, T. E.: Geometric applications of critical point theory to submanifolds of complex projective space, Nagoya Math. J., 55 (1974), 5-31.

- [2] Nomizu, K.: Eine Kennzeichnung der projektiven Unterräume in dem komplexen projektiven Raum nach ihren Geodätischen, Math. Z., **137** (1974), 147–150.
- [3] Nomizu K. and Smyth, B.: Differential geometry of complex hypersurfaces II, J. Math. Soc. Japan, 20 (1968), 498-521.
- [4] Nomizu, K. and Yano, K.: On circles and spheres in Riemannian geometry, Math. Ann., 210 (1974), 163-170.
- [5] Ogiue, K.: Differential Geometry of Kaehler Submanifolds, Advances in Mathematics, vol. 13, no. 1 (1974), 73-114.
- [6] O'Neill, B.: Isotropic and Kähler immersions, Canadian J. Math., 17 (1965), 907-915.

Brown University