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A CHARACTERIZATION OF THE VERONESE VARIETIES*

KATSUMI NOMIZU

Let Pm(C) be the complex protective space of dimension m. In a
previous paper [2] we have proved

THEOREM A. Let f be a Kaehlerian immersion of a connected,
complete Kaehler manifold Mn of dimension n into Pm(C). If the image
f(τ) of each geodesic τ in Mn lies in a complex projective line Pι(C) of
Pm(C), then f(Mn) is a complex projective subspace of Pm(C), and f is
totally geodesic.

In the present note, we shall first provide a much simpler geomet-
ric proof of this result and then give a characterization of the Veronese
varieties by means of the notion of circles in Pm(C). Generally, a curve
x(t) with arc-length parameter t in a Riemannian manifold is called a
circle if there exists a field of unit vectors Yt along the curve, which,
together with the unit tangent vectors Xt, satisfies the differential equa-
tions

VtXt = kYt and VtYt = -kXt ,

where k is a positive constant (see [4]).
By the Veronese variety we mean the imbedding of Pn(C) into Pm(C),

where m = n(n + 3)/2, which is defined as follows. Let S2n+1 be the
unit sphere in the complex vector space Cn+1 with the standard hermitian
inner product (z, w) and corresponding real inner product (z, w> = Re (z, w).
On the other hand, the set of all complex symmetric matrices of degree
n + 1 can be considered as the vector space Cw+1, where m = n(n + 3)/2,
in which the standard hermitian inner product can be expressed by

(A,B) = traceAB , A,Be Cm+ι .

The mapping v which takes xeCn+1 into xtxeCm+1 maps S2n+1 into the
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unit sphere S2m+1 of Cm+1, and induces a holomorphic imbedding of Pn(C)
into Pm(C). If we choose the Fubini-Study metrics of constant holomor-
phic curvature c(>0) for Pm(C) and c/2 for Pn(C), then the imbedding
is isometric. This is what we call the Veronese imbedding.

We now state our new result.

THEOREM B. Let f be a Kaehlerian immersion of a connected,
complete Kaehler manifold Mn of dimension n into Pm(C) with Fubini-
Study metric. The image f(τ) of each geodesic τ in Mn is a circle in
Pm(C) if and only if f is congruent (by a holomorphic isometry of Pm(C))
to iov, where v is the Veronese imbedding of Pn(C) into Pm'(C), with
mf = n(n + 3)/2, and i is the totally geodesic inclusion of Pm\C) into
Pm(C).

1. Simpler proof of Theorem A.

Let x0 be a point of Mn and let M* be the complete totally geodesic
complex submanifold (namely, ^-dimensional protective subspace Pn(C))
through the point f(xQ) and tangent to f(Mn), that is, the tangent space
T/(a.0)(M*) equals f*(TXo(Mn)), where /* denotes the differential of /.

Let τ be an arbitrary geodesic in Mn starting at α?0. By assumption,
there is a complex projective line Pι(C) which contains /(r). If X de-
notes the initial tangent vector of τ at x0, then f*(X) is tangent to P\C).
If we denote by / the complex structure of Pm(C) as well as that of Mn,
then the vector J/*(X) = f*(JX) is tangent to P\C). It follows that
Tf{XQ)(P\C)) is spanned by /*(X) and f*(JX). On the other hand, these
two vectors are contained in f*(TXo(Mn)) = T/(J,0)(iIf*). Thus TfiXo)(Pι(C))
c T/Uo)(M*). Since Pι(C) and M* are totally geodesic in Pm(C), it fol-
lows that P\C) is contained in ilί*; thus /(τ) is contained in M*. Since
T is an arbitrary geodesic in M, we have f(M) = M*.

2. Veronese imbedding.

We shall show that the Veronese imbedding v of Pn(C) into Pm(C)
with m = n(n + 3)/2 has the property that the image of each geodesic
in Pn(C) is a circle in Pm(C). This property does not depend on the
choice of a positive constant c which we choose for the holomorphic
sectional curvature of Pm(C) (and that of Pn(C) will be c/2). We recall
how geometry of Pm(C) is related to that of S2m+1. The standard fibra-
tion π: S2m+1 —»Pm(C) is a principal S^-bundle. It has a connection whose
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horizontal subspaces Qx, x e S2m+\ are given by

Qx = {Xe Cm+1 <Z, x) = <Z, ix> = 0} .

The projection π* maps Qx isomorphically onto the tangent space
Tu(Pm(C)), where u = π(x). If we let

, Y> , X,YeQx,

then # is the Fubini-Study metric with holomorphic sectional curvature
c for Pm(C). We shall choose c = 4 (to simplify constant factors in the
computations that follow). Let us denote by V the Riemannian con-
nection for S2m+1 and by V the Kaehlerian connection for Pm(C). We
formulate the relationship between V and V (see [3], Proposition 3) in
the following form. A curve in S2m+1 is said to be horizontal if its
tangent vectors are horizontal.

LEMMA 1. Let xt be a horizontal curve in S2m+1 and ut = π(xt). If
Zt is a horizontal vector field along xt and if Wt — π*(Zt), then FtWt =

LEMMA 2. If xt is a horizontal curve in S2m+1 with arc-length para-
meter t, then V'tXu where Xt denotes the tangent vector, is horizontal.

Proof. We have

V'tXt = dX/dt + xt .

Since xt is horizontal, we have (XtJixty = 0 and hence

<dX/dt,ixt> + <Xt,iXt> = 0 .

But (Xt,iXty = 0 so that (dX/dt,ixt} = 0. Thus we obtain

<V'tXt,ixty = <dX/dt,ixty + <xt,ixty = 0 .

LEMMA 3. If xt is a circle in S2m+1 which is furthermore a hori-
zontal curve, then ut = π(xt) is a circle in Pm(C).

Proof. We have a field of unit vectors Yt along xt such that

V'tXt = kYt and V'tYt = -kXt ,

where k is a positive constant and Xt is the tangent vector. By Lemma
2, Vr

tXt and hence Yt are horizontal. The tangent vector of ut is given
by Ut = π*(Xt). Consider the field of unit normal vectors Vt = π*(Yt)
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note that π* is isometric from Qx to Ts(a;)(Pw(C)). By Lemma 1, we
have

= ΊcVt

and, similarly,

vtvt = ^(FίΓ,) - ^(-fcsr,) = -fee/,.

Thus ut is a circle in Pm(C).
Now we shall prove our assertion about the Veronese imbedding.

We observe that the unitary group U(n + 1) acts naturally on SZn+ι and
Pn(C) as a group of isometries. Each geodesic τ in Pn(C) is congruent
by a transformation belonging to U(n + 1) to the curve with homoge-
neous coordinates (cos t, sin t, 0, ,0). On the other hand, we can let
U(n + 1) act on the space Cm + 1 of all complex symmetric matrices of
degree n + 1 by Z-^AZιA, where ZeCm+1 and A e U(n + 1). This
action preserves inner product in cm+1 and thus induces the action of
U(n + 1) on S2m+1 and Pm(C) as a group of isometries. Now the Veronese
imbedding v is equivariant relative to the actions of U(n + 1) on Pn(C)
and on Pm(C).

It is thus sufficient to prove the following. Let τ be the geodesic
wt in Pn(C) given by wt — π(zt), where zt = (cos (t/\Γ2), sin (ί/VΊf),O,
• ••,0) is a curve on S27Z+1. Since the holomorphic sectional curvature
of P\C) has been chosen to be 2, we have

which shows that t is the arc-length parameter for the geodesic wt. Let

xt = ^(^j) , wt = ^(Wί) so t h a t ut = 7rθ£ί) .

We wish to show that ut is a circle in Pm{C). The curve #« on S2m+1

can be represented simply by the first 2 x 2 block of the form

Γ cos2 (t/V~2) sin (t/v^) cos (t//2")Ί
Lsin (ί//2") cos (ί/VT) sin2 (ί/vΊΓ) J

since the other components are all 0. The tangent vectors Xt of the
curve xt are represented in the same sense by

cos
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Since ζXt,ixty = 0, xt is a horizontal curve in S2m+1. If we show that
it is a circle in S2m+1, then Lemma 3 implies that ut — π(xt) is a circle
in Pm(C).

We have

The vector

V[Xt = dX/dt + xt

is also horizontal (since its components are real) and has length 1, be-
cause

ζdX/dt + xt,dX/dt + xt}

= <dX/dt,dX/dt> + 2<xt,dXldty + <xt,xt>

= 2 + 2(-l) + 1 = 1,

by virtue of (xt,dX/dt} = —<dx/dt,Xt> = —1.
We thus set Y ί=:dZ/dί + a;ί, namely, F ^ = Γίβ Since <Γ ί,Z ί> = 0,

we have

FίYί = dY/dt = d2X/dt2 + Xt

= ΛΛS" ί s i n ( ^ ^ ~ c o s

L - cocos (V~2t) - sin (vΊΓί)

~sin (^"° C0S
) Γ ~ s i

L co

= α/λ/ΊΓ)Γ s i n ( Λ ^ ί ) -cosCv^O] = _χw ;L-cos(VTO -sinCvTt)] t #

Thus we have shown that xt is a circle of curvature k — 1.

3. Proof of Theorem B.

We now finish the proof of Theorem B. Let / be a Kaehlerian
immersion of a complete Kaehler manifold Mn into Pm{C) with the prop-
erty that for each geodesic τ in Mn the image /(τ) is a circle in Pm(C).
We shall first show that

( i ) the second fundamental form a is parallel
(ii) / is isotropic, that is, ||α(-X",X)\\ is equal to a constant for all

unit tangent vectors X to Mn at each point;
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(iii) Mn has constant holomorphic curvature.

Let xt be a geodesic on Mn with tangent vectors Xt of length 1.

Denoting by V and V the Kaehlerian connections of Pm(C) and Mn, re-

spectively, we have

FtXt = VtXt + a(Xt,Xt) = a(Xt,Xt) ,

where a is the second fundamental form. We obtain

(1) V\Xt = -Aa{XuΣt)Xt + FMXt, Xd ,

where A is the second fundamental tensor and FL the normal connection.

On the other hand, since f{xt) is a circle by assumption, there exists a

field of unit tangent vectors Yt along xt and k > 0 such that

VtXt = fcYί and ΨtYt = -fcZ t ,

thus

(2) P»X t= - fc 2 ^ .

From (1) and (2) we obtain

(3) Aa{ΣttΣt)Xt = Jc2Xt

and

( 4 ) FMXt,Xt) = 0.

Since ajj is a geodesic in Mn, the covariant derivative

(Fta)(Xt,Xt) =

is equal to 0 by virtue of (4). Evaluating this at t = 0 and observing

that Xo can be an arbitrary unit tangent vector at an arbitrary point

of Mn, we have

(5) (F*a)(X,X) = 0 for all tangent vectors X to Mn.

Since (Ff αr)(Y, Z) is symmetric in X, Γ and Z, we conclude that F*αr = 0,

that is, a is parallel.

From (3) it follows that for any unit tangent vector X to Mn there

exists a certain constant fc > 0 such that

If Y is a tangent vector perpendicular to X, then
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<A α ( X , X ) x, y> = o

so that

(6) <α(Z, X), α(Z, Y)> = 0 whenever <X, Γ> = 0 .

This condition implies that / is isotropic, that is, ||α(X, X)|| is equal to
a constant for all unit tangent vectors X at each point (see [6], Lemma
1). It also follows that Mn has constant holomorphic sectional curvature
(see [6], Lemma 6).

We now wish to prove that / is essentially the Veronese imbedding.
Since a is parallel, the first normal spaces (spanned by the range of a
at each point) are obviously parallel relative to the normal connection.
The (complex) dimension of the normal spaces, say, p, is at most n(n + l)/2.
It is known [1], Proposition 9, that there is a totally geodesic Pn+p(C)
in Pm(C) such that f(Mn) c Pn+p(C). We shall see that this immersion
/0 of Mn into Pn+p(C) is the Veronese imbedding (and indeed p =
nin + l)/2).

If p < n(n + l)/2, Theorem 2 of [6] says that /0 is totally geodesic.
This will mean that the image of a geodesic in Mn is a geodesic in Pn+p(C)
and hence a geodesic in Pm{C), contrary to the assumption that it is a
circle in Pm(C). Hence we must have p = n(n + l)/2. We already know
that Mn has constant holomorphic sectional curvature. Since the second
fundamental form is parallel, it follows from [5], Theorem 4.4, that this
constant is half the constant holomorphic sectional curvature of Pn+p(C).
Moreover, such an immersion f0 is rigid. Thus Mn is Pn(C) with
holomorphic sectional curvature, say, 2, if we assume that Pm(C) and
hence Pn+p(C) has holomorphic sectional curvature 4. Now the Veronese
imbedding t; is a Kaehlerian imbedding of P\C) into Pn+p(C). By ri-
gidity, /o is congruent to v by a holomorphic isometry of Pn+p(C).
Since this holomorphic isometry can be extended to a holomorphic iso-
metry of Pm(C), we can now conclude that f\Mn->Pm(C) is in fact
congruent to ίov, where v is the Veronese imbedding of Pn(C) into
Pn+p(C), p = n{n + l)/2, and i is a totally geodesic inclusion of Pn+p(C)
into Pm(C). We have thus completed the proof of Theorem B.
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