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ABSTRACT. This paper investigates the practical use of the nonrotating origin (NRO) 
(Guinot 1979) for estimating the Earth Rotation Parameters from VLBI data, which is 
based on the rotational transformation between the geocentric celestial and terrestrial frames 
as previously derived by Capitaine (1990). Numerical checks of consistency show that the 
transformation referred to the NRO is equivalent to the classical one referred to the equinox 
and considering the complete "equation of the equinoxes" (Aoki & Kinoshita 1983). The 
paper contains die expressions for the partial derivatives of the VLBI geometric delay to be 
used for the adjustment of die pole coordinates, UT1 and deficiencies in the two celestial 
coordinates of the Celestial Ephemeris Pole (CEP) in the multiparameters fits to VLBI data. 
The use of the NRO is shown to simplify the estimates of these parameters and to free the 
estimated UT1 parameter from the model for precession and nutation. 

1. INTRODUCTION 

The classical procedure for estimating the Earth Rotation Parameters (ERP) from VLBI 
observables refers, due to historical reasons, to the equinox of date. This leads to a 
coordinate transformation from the Terrestrial Reference System (TRS) to the Celestial 
Reference System (CRS) in which the concepts of precession, nutation and the celestial 
Earth's angle of rotation are mixed. 

As VLBI observations are nearly not sensitive to the position of the ecliptic (and 
therefore of the equinox), but only to the position of the equator, the use of a coordinate 
transformation from the TRS to the CRS based both on the nonrotating origin (NRO) 
(Guinot 1979) and on the two celestial coordinates (Capitaine 1990) of the Celestial 
Ephemeris Pole (CEP) should be more convenient for deriving the ERP from VLBI 
observations. 

The purpose of this paper is to investigate the practical use of this proposed 
transformation in the computation of the geometric delay for VLBI estimates of the ERP; it 
contains numerical checks of consistency between this transformation and the classical one 
and gives the expressions of the partial derivatives of the geomenic delay with respect to 
the fundamental parameters. 
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2. DEFINITION, USE AND POSITIONING OF THE NRO 

2.1. Definition 

Let (Oxyz) be the instantaneous system based on the instantaneous equator, its 
corresponding pole P and the NRO; the NRO has been defined by Guinot (1979) by the 
kinematical condition that when P moves in the CRS, the system (Oxyz) has no component 
of instantaneous rotation along the equator with respect to the CRS (Figure 1). 

Figure 1: Kinematical definition of the NRO 

The kinematical condition defining the NRO corresponds to a necessary concept to 
describe any motion of rotation along the moving equator. It allows to define a NRO in the 
CRS, denoted by o, and also a NRO denoted by to in the TRS, as an exact definition of 
the "instantaneous origin of the longitudes" (i.e. instantaneous prime meridian). 

2.2. The use of the NRO for the representation of the Earth Rotation 

The "stellar angle", 9 = raOa, gives the "specific Earth angle of rotation", such that 9=(i)z,and 
UT1 should therefore be conceptually defined as an angle proportional to 9 (Guinot 1979). 

2.3. Positioning of the NRO 

The positioning of the NRO can be easily derived from the origin £„on the fixed equator of 
the CRS by the use of the quantity s. A similar quantity s' is necessary for positioning GJ in 
the TRS (Figure 2). 

Figure 2: The positioning of the NRO 

The quantity s can be written as (Guinot 1979): s =/(cos d-1) E dt, which provides 
the position of a on the moving equator as soon as the celestial motion of the CEP is 
known between the epoch to and the date t. Its expression as a function of time has been 
shown to be nearly not sensitive to the model of the pole trajectory (Capitaine et al. 1986). 
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3. THE COORDINATE TRANSFORMATION FROM THE TRS TO THE CRS TO BE USED IN THE 
VLBI EARTH ROTATION PARAMETERS ESTIMATES 

Any procedure for parameter estimation fromVLBI observables requires the calculation of 
the "geometric delay" : x = - l?.K/c (where IT is the baseline vector, It is the unit vector 
pointing in the direction of the observed source and c is the velocity of light). 

One step in such a calculation is to apply to the baseline vector in the TRS, the 
rotational transformation Q of coordinate frames from the TRS to the CRS: 

[CRS] = Q [TRS], 

Q being composed of several separate rotations. 

3.1. The classical transformation 

In the classical procedure Q is written as: Q=Qi.Q2.Q3, such that, if RiCn) represents, as 
usual, the rotation matrix of angle T) around the i-axis: 

DQi =R3(CA).R2(-eA).R3(zA).Ri(-eA).R3(Av)-Ri (eA+Ae), 
eA being the mean obliquity of the ecliptic at date t, and zA> £A, 0A) Ae, Ay the usual 
precession and nutation quantities in right ascension, obliquity and ecliptic longitude 
respectively, referred to the mean ecliptic of epoch (or of date), 

2) Q2 = R3(-GST), GST being Greenwich True Sidereal Time at date t, including 
both the effect of Earth rotation and the precession and nutation in right ascension, 

3)Q3 = R1(yp).R2(Xp), 
xp and yp being the "pole coordinates" of the CEP in the TRS, 

3.2. The use of the NRO in the transformation from the TRS to the CRS 

The use of the NRO allows us to separate Q into three independant rotation matrices, such 
that: Q=Qi.Q2.Q3, each of the matrix Oj corresponding to one component of the Rotation 
of the Earth around its center of mass: 

1) Ch = R3(-E). R2(-d). R3(E). R3(s), 
for those rotations arising from the celestial motion of the CEP (see Fig 2), including the 
rotation s which takes into account the displacement of a on the instantaneous equator due 
to the celestial motion of the CEP, 

2) Q2 = R3 (-9) for the rotation of the Earth around the axis of the CEP, 

3) Q3 = R3(-s').R3(-F). R2(g). R3(F) = R3(-s,+xpyp^).R1 (yp).R2 (xp) , 
for those rotations arising from the terrestrial motion of the CEP (see Fig 2), including the 

rotation s' (Capitaine 1990) which takes into account the displacement of OJ on the 
instantaneous equator due to polar motion. 

4. NUMERICAL CHECKS OF CONSISTENCY OF THE COORDINATE TRANSFORMATIONS 

The coordinate transformation from the TRS to the CRS has been applied to vectors in the 
terrestrial frame such that: (r = 1, <p = 0°, X = Oh, 6h, 12h; 9 = 45°, X = Oh, 6h, 12h), 
from t = 1900.0 to t = 2100.0, every 0.1 century. 
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4.1. Numerical expressions to be used for the parameters referred to the NRO 

In order to check the consistency of the coordinate transformation from the TRS to the 
CRS referred to the NRO with die classical one referred to the equinox, it is necessary to 
have consistent numerical expressions for the parameters used in the two transformations. 

(1) Numerical relationship between OandUTl 
We have used the following relationship, which has been given by Capitaine et al. (1986) 
in order to be consistent with the conventional relationship between GMST and UT1 (Aoki 
et al. 1982): 9 = 2)t {0.779 057 273 264 + 1.002 737 811 911 354 Tu }, (1) 
Tu being the number of days elapsed since 2000 January 1,12h UT1. 

(2)Numerical expression for the celestial pole coordinates of the CEP 
We have used the developments as functions of time of the coordinates X=sindcosE and 
Y=sindsinE of the CEP in the CRS as given by Capitaine (1990) with a consistency of 
5xl0"5" after a century with the conventional developments for precession and nutation. 

Each development, including both effects of precession and nutation, is the sum of a 
polynomial form of t, of periodic terms corresponding to the nutations and of pseudo-
periodic terms arising from the cross terms between general precession and luni-solar 
nutations. It can be expressed as: 

X(t) = X(to)+2004.310 9"t-0.426 65"t2-0.198 656"t3+0.000 014 0"r* +Ei(aio+ailt)sin(coit-<t>i) 
-0.000 35"sin2Q+Zja'j1t cos(tojt-(|»i)+0.002 04"t2sin« + 0.000 16"t2 sin20+O.OOO 06"t2 cosQ 

(2) 
Y(t) = Y(to)-22.409 92"t2+0.001 836"t3+0.001 113 0"t4+Ii(bio+bi1t)cos((0it-<|»i) 

+0.000 13"cos2n+Zjb jjt sin(a)jt-<t»i) - 0-002 31"t2 c o s Q - 0 0 0 ° 14"t2 COS20, 

where (a;0, bi0)i=i.io6 are the coefficients in longitudexsine0 and obliquity of arguments 
((0^)1=1,106 of the 1980IAU nutation, and ajj.bĵ a'ĵ b'j are quantities lower than 5x10s", 
except for a few terms (5 for index i and 18 for index j). 

(3) Numerical expression for the quantity s 
We have used the numerical expression of s as derived, by the relation: s=-5e-XY/2, from 
the numerical values of X and Y and from the following numerical development of SO, 
with an accuracy of 5xl0-5" after a century (Capitaine 1990): 

69 = - 0.003 85"t+0.072 59"t3 + 0.002 65" sin fl + 0.000 06"sin 2Q 
- 0.000 74"t2 sin Q - 0.000 06"t2 sin 20, (3) 

which is equivalent to the expression of s previously given (Capitaine et al. 1986). 

4.2. Internal checks for the transformation referred to the NRO 

Three different forms of Qi have been tested, using the previous numerical developments 
(1), (2) (3) and a polar motion equal to zero (i.e. xp=yp=s'=0) : 

(i): Qi as defined as a product of rotation matrixes, with: E=arctan(Y/X), d=arcsin/X2+Yz' 

Ql=R3(-E). R2(-d). R3(E). R3(s), (4) 

(ii): Qi as given directly as a function of X and Y and s: 
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/ 2 . _ . \ 

Qi = 

1-aX -aXY X 

• R3(s) (5) -aXY 1-aY2 Y 

M -X -Y l-a(X +Y 

with a = l/(l+cosd) =1/2+1/8 (X2+Y2) +..., 

(iii): Qi as given with an accuracy better than 10"7" after a century (Capitaine 1990), as a 
function of X, Y and 66 (symmetrical form of the matrix transformation Q3): 

' 1-aX2 -2aXY+a^C3Y X ' 

Qi = 0 1-aY2 Y 

-X(l+aY2) -Y(l-aX2) l-aCX^Y2) 

• Ri-Se) (6) 

The numerical checks of the transformation applied to the terrestrial vectors show the 
identity of the transformation (i) and (ii) and show moreover that (ii) and (iii) are in all 
cases equivalent with an accuracy better than 10"8 "• 

4.3. Numerical checks of consistency between die transformation referred to the NRO and 
the classical transformation 

The proposed coordinate transformation using the most simple form (4) for Qi has been 
compared with the classical transformation for the terrestrial vectors as considered in the 
previous section, for the same period of time, assuming as previously, a polar motion 
equal to zero (i.e. Xp=yp=s'=0). The numerical developments as given by (l), (2), (3) have 
been used for the transformation referred to the NRO, whereas for the classical 
transformation, CA. ZA. 8A. EA are the precession parameters as given by Lieske et al. 
(1977), and Ay, Ae are the parameters as given by the IAU 1980 theory of nutation. 

Greenwich Sidereal Time, GST, has been derived from the expression of Greenwich 
Mean Sidereal Time, GMST 0hUTl» as given by Aoki et al .(1982): 

GMSTohUTl = 24 110.548 41s + 8 640 184s.812 866 T'u + 0.s0931 04 Tu
2- (..^lOr6 Tu

3, (7) 

with T'u =du/365 25, du being the number of days elapsed since 2000 January 1, 12h UTl, 
taking on values ±0.5, ±1.5,..., and from the periodic terms of the so-called "equation of 
the equinoxes", in two different forms: 

(i) as: GST = GMST +AycoseA+0.002 65" sinn+0.000 06"sin 2Q, (8) 
corresponding to the periodic terms as given by Woolard (1953), or by Aoki and Kinoshita 
(1983) for the "equation of the equinoxes" in a "wider sense", 

(ii) as: GST =GMST+A\|/coseA, (9) 
corresponding to the "equation of the equinoxes" limited, as it is the general case, to the 
nutation in right ascension. 

It should be noted that the expression (8) of the equation of the equinoxes can only be 
obtained by using implicitely the concept of the NRO in order to express the accumulated 
precession and nutation on the moving equator between the epoch and the date. 

The numerical tests of consistency of the coordinate transformation referred to the 
NRO witii the classical transformation referred to the equinox gives the following results 
for the differences in the equatorial coordinates a and 8 of the terrestrial vector in the CRS: 
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(i) with the complete expression (8) for the equation of the equinoxes: 
from 1900.0 to 2000.0: 0.4 x 10-6"< 8a <1 x 10"4" 

0.4 x 10-6"£ 88 <1 x 10"4", 
except for a very few cases for which the difference reachs 1.4 x 10"4" 

from 2000.0 to 2100.0: 0.1 x 10-6"£ 8a £0.9 x 104" 

0.5 x 10"6"£ 88 £0.9 x 10^". 

In most cases, from 1900.0 to 2100.0, the differences 5a, 85 are lower than SxlO5", which is 
the order of the consistency of the used developments (1), (2), (3) with the conventional 
developments for precession, nutation, and Greenwich Sidereal Time (7) and (8). 

(ii) with the incomplete expression (9) for the equation of the equinoxes, nearly 
identical results are obtained for 65, which is not sensitive to a rotation around the axis of 
the CEP, but periodic variations appear in the differences in right ascension, with the 
period of £2 and an amplitude of the order of 2 mas (see Table 1). 

1900.0: -2.2 x 10"3" 1920.0: -2.0 x 103" 1940.0: -1.1 x 103" 
1960.0: -0.5 x 10"5" 1980.0:+1.2 x 10"3" 2000.0:+2.2 x 10"3" 

Table 1: examples of the differences in right ascension of the Gx terrestrial axis in the CRS 
resulting from the use of the incomplete expression (9) for the "equartion of the equinoxes" 

Complementary calculations show, for example, that the difference is minimum in 1988 
and 1997 and maximum in 1992 and 2002. 

Such numerical checks show the consistency of the coordinate transformation referred 
to the NRO and using the numerical developments (1) for the stellar angle, (2) for the 
coordinates of the CEP in the CRS and (3) for the positioning of the NRO with the 
classical transformation referred to the equinox and using the conventional models for 
precession and nutation, Greenwich Mean Sidereal Time, as well as the complete 
expression (8) for the "equation of the equinoxes". Such numerical checks show moreover 
that the use of the incomplete equation of the equinoxes in the expression of Greenwich 
Sidereal Time at the date of the observation, as it is presently the case in the reduction of 
VLBI data, leads to a spurious periodic rotation around the axis of the CEP with an 
amplitude of a few mas. Such a rotation is probably mainly absorbed in the estimated UT1, 
which includes therefore a periodic error of this amplitude. 

This results show the advantage of using the NRO as an explicit origin fo reckoning 
the Earth's rotation in order to derive an accurate UT1 parameter from the observations. 

5. PROCEDURE FOR ERP ESTIMATES FROM THE VLBI OBSERVABLES 

5.1. General case of the partial derivatives of the geometric delay with respect to the ERP 

The ERP affect the expression of the VLBI geometric delay only through the orientation of 
the Earth as a whole. Therefore, if x is the geometric delay in the geocentric frame, we 
have, for each of the ERP (Sovers and Fanselow 1987), Kj, 1^ being the components of~K 
and L in the CRS and the TRS respectively and Q^ being the elements of the matrix OJ 

Hm a<iQ*>Lk 
3TJ C dr\ 
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The corrections to the ERP can therefore be estimated by a least squares fit among the 
VLBI observed delays, using the expression for the partial derivatives of the rotational 
matrix transformation Q with respect to each of the parameter xp, yp, UTl, X and Y. 

In the proposed transformation referred to the NRO, die coordinates X and Y of the 
CEP in the CRS appear only in the matrix Qi, UTl appears only in the matrix Q2 and the 
coordinates xp and yp of the CEP in the TRS appear only in the matrix Q3. Such a form of 
the rotational transformation Q simplifies the calculation of its partial derivatives with 
respect to the ERP as compared to the classical case in which die precession and nutation 
parameters appear in a complicate way both in Qi and Q2. 

The rotation matrix Q2 being independent of the celestial pole coordinates X and Y, 
the UTl parameter as estimated from VLBI observables using mis transformation would 
be free from the errors on the model for precession and nutation. This represent an 
improvement as compared to the classical method in which the estimated UTl is 
dependent, due to the used relationship between GST and UTl, on the precession and 
nutation model in right ascension. 

The partial derivatives with respect to UTl and the pole coordinates are, such that, k 
being the conversion factor between the stellar angle, G, and UT1:9Q _ _l_Ql- BR̂ CO)- Q3 

3UTl k 9e 
ag = Ql.Q2.R3(-s,+xpyp/2).Ri(yp).aR2(xp)) d&= Qi.Q2.R3(s,+xpyp/2).^1(yp).R2(xp)) 

3x 9x ay* dyP 

the derivatives 3R2(xp)/3xp, 3Ri(yp)/3yp, 3R3(6)/9e being easily obtained as the 
derivative of a rotation matrix of angle 11 with respect to r\. 

The partial derivatives with respect to the coordinates of the CEP in me CRS are such that: 
<£ = 90_1.Q2.Q3 3Q = aOj.Q2Q3 . 
ax ax ' 9Y 3Y 

5.2. Expression of the partial derivatives with respect to the celestial coordinates of the CEP 

For computing the partial derivatives of Qi with respect to X and Y, the forms (5) or (6) 
are the most convenient ones, as, firstly X and Y appear explicitly, and secondly, die 
partial derivatives of 89 or s wim respect to X and Y can be neglected. 

Such partial derivatives can be written as: 

ax' 

-x-
X 3 X Y 2 

-1 - -

-Y+I 
4 

Y 2 

- X 

XY+ XV 

\ 

X 2 
-X--(X +Y 

2 *> 

R/se) (10) 

3Q, 

3 Y ' 

- — ( l + X ^ Y 2 ) 
4 

-XY YX 

-X- 3XY 

Y 3 X 2 

.Y-i- -Y-

x2 x4 

- 1 + — + — + 
2 8 

4 

3xV 
8 

_Y-X(X2+Y *) 

.R*se) (ID 
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5.3. Interpretation of the estimated quantities dX and dY 

The corrections dX and dY which can be estimated from VLBI observables, using the 
partial derivatives (10) and (11) of the rotational matrix Qi, correspond to the deficiencies 
in the conventional model for the coordinates X and Y of die CEP in the CRS. They can be 
written as: 

dX = £0 + 8X , dY = r\0 + 5Y, where £0> *\o are for the constant offset 
between the pole of the CRS and the pole of the epoch of the model and 8X, 8Y for the 
deficiencies in the models (including both precession and nutation) at the date of the 
observation. Using the developments of X and Y as given by Capitaine (1990), the 
deficiencies 8X, 8Y in the models can be written, with an accuracy better than 5xl0-5" after 
a century, as: 8X = dyA sine0+dAvsine0, 8Y = deA+dAe, where d\yA and deA are the 
errors on the model for precession and dAy, dAe, the errors on the model for nutation. 

dX and dY are the quantities to which the VLBI observations of radio-sources are 
actually sensitive, as they provide the position of the instantaneous equator with respect to 
the equator of the CRS. Such quantities are presently derived from VLBI observables on 
die form dysine0 and de by using a more complicated procedure involving separately 
precession and nutation of which the effects are in fact not separable using VLBI 
observations. 

This shows the advantage of using X and Y as the two fundamental parameters for the 
celestial motion of the equator instead of the large number of the precession and nutation 
parameters generally considered. 

6. CONCLUSION 

The coordinate transformation from the TRS to the CRS using both the NRO and the 
coordinates of the CEP in the CRS has been shown to be numerically consistent with the 
classical one (when the complete equation of the equinoxes is used) with an accuracy better 
than 0.1 mas. Such a representation, which clarifies the involved concepts, has been shown 
to simplify the estimates of the Earth Rotation Parameters from VLBI observables and to 
free the estimated UT1 parameter from the precession and nutation model. 
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