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NONDUALISABLE SEMIGROUPS

DAVID HOBBY

An infinite family of finite semigroups is studied. It is shown that most of them do
not generate a quasivariety which admits a natural duality.

The theory of natural dualities has its roots in the duality for Boolean Algebras
due to Stone (see [21]) and in Pontryagin's duality for Abelian Groups (see [15, 16]).
The discovery by Priestley of a duality for Distributive Lattices (see [17, 18]) provided
additional momentum to the field. After this, many similar dualities were rapidly dis-
covered. Then in [11], Davey and Werner provided a general framework within which
most dualities could be placed. Their theory of natural dualities is applicable to any
quasivariety generated by a finite algebra, and shows how such dualities arise naturally
from the structure of the quasivariety.

There is now a large body of results on natural dualities. The recent book [3] by
Clark and Davey is the definitive work on the subject. The dualisability problem is basic
to the theory of natural dualities. It asks which finite algebras in a given class are
dualisable, that is, generate a quasivariety which admits a natural duality. This problem
is subtly different from that of finding which quasivarieties have dualities, since a natural
duality is produced from a particular generator of a quasivariety. The Independence
Theorem (jointly discovered by Davey and Willard in [12] and by Saramago in [20])
simplifies the situation somewhat. It states that when two finite algebras generate the
same quasivariety, it is dualisable with respect to one if and only if it is dualisable with
respect to the other.

The dualisability problem has been solved piecemeal for various well-known classes
of algebras. Since the quasivariety of Boolean Algebras is generated by any one of its
members, every finite Boolean Algebra is shown to be dualisable by a combination of
Stone's original result and the Independence Theorem. Similarly, every finite Distributive
Lattice is dualisable. In [11], Davey and Werner built on Pontryagin's duality for Abelian
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492 D. Hobby [2]

Groups, and showed that every cyclic group is dualisable. This was later extended by
Davey, who showed in [7] that every finite Abelian Group is dualisable.

In the three classes above, the dualisability problem was solved by showing that
every finite algebra in the class was dualisable. It is of course possible that some of the
finite algebras in a class are dualisable while some are not. This happens in the class of
congruence distributive algebras. Davey and Werner proved in [11] that a finite algebra in
a congruence distributive variety is dualisable if it has an n-ary near-unanimity term for
some n. Davey, Heindorf and McKenzie proved the converse in [8]. Together, these two
results reduce the dualisability problem for an algebra in a congruence distributive variety
to the problem of deciding whether or not it has an n-ary near-unanimity term for some
n. This is not exactly a solution of the dualisability problem for this class, since there
is no known recursive method to determine whether or not such a near-unanimity term
exists. Indeed, recent unpublished work by Ralph McKenzie and by Miklos Maroti shows
that several problems related to the existence of a near-unanimity term are undecidable.

In broad generality, the "simplest" algebras in a class of algebras are dualisable,
while the others are not. For example, the dualisability problem has been solved for
finite Commutative Rings with Identity by Clark, Idziak, Sabourin, Szabo and Willard
in [6]. They show that a finite commutative ring is dualisable if and only if its Jacobsen
radical annihilates itself. On the other hand, the results of Clark, Davey and Pitkethly
in [5] show how messy things can be. They completely solve the dualisability problem
for the class of three-element unary algebras. While one might expect such a simple class
to have a correspondingly simple dividing line between its dualisable and nondualisable
members, their results show that this is not at all the case. For more examples and for
background, the reader is again referred to the Clark and Davey book [3].

An area that is presently being worked on is the class of Semigroups. As mentioned
above, finite Abelian Groups are dualisable. Davey and Quackenbush show in [10] that
the finite dihedral groups Dn for odd n are dualisable as well. On the other hand,
Quackenbush and Szabo prove in [19] that finite nonabelian nilpotent groups are not
dualisable.

While the dualisability problem is nowhere near solved for the class of Groups, even
less is known for other Semigroups. It is known that Rectangular Bands are dualisable
(see [3]). Davey and Knox show in [9] that certain small commutative semigroups are
dualisable. Among other results, their method shows that any semigroup produced by
adjoining a zero to a dualisable group is dualisable. Their method also applies to left-
zero semigroups (which satisfy x • y & x) and to right-zero semigroups, both of which
are rectangular bands. It yields that semigroups produced by adjoining a zero to a finite
left-zero or right-zero semigroup are dualisable.

Apart from the work of Quackenbush and Szabo mentioned above, no examples of
nondualisable semigroups were known. The role of this paper is to provide a new class of
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[3] Nondualisable semigroups 493

such examples, the first which are not groups. The new results are in the second section,
after a preliminary section devoted to background material and notation. A section of
examples and remarks concludes this paper.

1. PRELIMINARIES

We let N denote {0 ,1 ,2 , . . .•}, the set of natural numbers, and we use N+ for the set
{1 ,2 ,3 , . . . } . Our notation will be standard for Universal Algebra—either of the books
[2] or [14] may be used as a reference.

We shall briefly review the key concepts and definitions of natural duality theory,
and then state the theorems which we shall borrow from other sources. A more detailed
exposition may be found in Clark and Davey [3].

We let M be a finite algebra, and attempt to construct a duality for the quasivariety
A := ISPM by using an alter ego of M. This alter ego will have the same universe
M as M, but will have new operations and relations on it. So we define an algebraic

relation on M to be a set R C M" which is the universe of a subalgebra of M". The
arity of R can be any n € N + . For each n € N+, we could also define an algebraic

operation (or algebraic partial operation) on M to be a homomorphism from M" (or a
subalgebra of M n ) to M. Since it will be enough for our purposes to represent any such
algebraic (partial) operation by the relation that is its graph, we shall restrict ourselves
to considering algebraic relations on the set M.

We say that an alter ego o / M i s a topological structure M — (M; R, T) where R is
a set of algebraic relations on M, and T is the discrete topology on M. If we can find the
correct alter ego M of M, we may be able to represent the algebras in the quasivariety
A as algebras of continuous homomorphisms.

So let M = (M; R, T ) be some fixed alter ego of M. Given any algebra A G A,

we define its dual, D(A), to be the set .4(A,M), of all homomorphisms from A to M,
viewed as a substructure of M^ . (We give M.A the product topology.) Now D(A) is a
substructure of M 4 , and it is closed since all of the relations of M are finitary.

Similarly, the set of continuous homomorphisms from D(A) into M forms a subal-
gebra ED(A) of M D ' A ' . For E and D to give a duality, we need that A is isomorphic
to ED(A), Note that the evaluation map e&. : A —> ED(A) defined by eA,(a)(x) — x(a)

is an embedding. These considerations lead us to the following definition.

We say that M yields a duality for A if and only if ex is surjective. This is equivalent
to having every continuous homomorphism a : D(A) -¥ M equal to evaluation at some
a £ A (so a(x) = x(a) for this a). We then say that the algebra M is dualisable if and
only if there is some choice of M which yields a duality on each member of A. And of
course M is nondualisable if and only if it has no alter ego which yields a duality for
every algebra A e A Thus to show that the algebra M is nondualisable, it is enough to
produce an algebra A in A such that no alter ego M yields a duality for it.
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When a : D(A) —» M, a subset B of A is a support for a if and only if for all
x € D(A) the value of a(x) is determined by x\B. For each Y C D(A) and a € A, a map
a : D(A) —> M is given by evaluation at a onY if afy = eA(a)IV- For each n € N+, let
Rn denote the set of n-ary algebraic relations on M. When a : D(A) —» M, we say that
a preserves Rn if and only if a preserves every relation in Rn. The following lemma was
first explicitly proved in [4].

LEMMA 1 . 1 . Let n £ N + , Jet A e ISPM and let a : D(A) -»• M. Then a
preserves Rn if and only if a agrees with an evaluation on each n-element subset of
D(A).

2. A CONDITION FOR NONDUALISABILITY

We shall use the ghost element method to prove that certain semigroups are nond-

ualisable. This method was introduced in [11] and has been used extensively since then.

For a good survey of its use, the interested reader is referred to [3].

The basic idea of this method is to use a lemma such as the following to obtain a

contradiction. The nicely polished lemma below is quoted from [5].

For an algebra A ^ M 5 and s 6 5, we define p3 : A —> M to be the restriction to

A of the projection onto s.

LEMMA 2 . 1 . Let M be a finite algebra. Suppose that S is a nonempty set, A is
a subalgebra of M s and that a : D(A) -> M. Assume that

(i) Q has finite support in A, and

(ii) Q is an evaluation on each finite subset of D(A).

Define ga € Ms by go(s) :— a(ps), for all s £ 5. Then if M is dualisable, gQ must be in

A.

This lets us show that a finite algebra M is nondualisable by finding an algebra A
and a map a : D(A) —> M which satisfies (i) and (ii) of Lemma 2.1, such that ga £ A.

The element ga is then called a ghost element of A.

We shall use the following consequence of the previous lemma for all our ghost
element proofs. This lemma is due to David Clark, and is a special case of Lemma 5.2
of [5]. As a newcomer to the field of Natural Dualities, I admire it for its simplicity and
ease of application.

LEMMA 2 . 2 . Let a finite algebra M be given. Let S be a nonempty set, let

A ^ M s , and let Ao be an infinite subset of A. Assume that for every homomorphism

x : A —» M, there is an element ax of Ao such that x has the same constant value a(x)

on Ao — {ax}- As in the previous lemma, we define the element ga of Ms by setting

ga(s) :— a(ps) for all s € S. If M is dualisable, gQ must be in A.
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P R O O F : Pick any three distinct elements of AQ, {a\, a-i, a-^\. For any homomorphism

x, a(x) is the majority of x{a,i), x(a2) and x(a3). Thus {a i ,a 2 ,a 3 } is a finite support for

a.

Given any finite subset X of D(A), choose b 6 AQ — {ax | x € X}. Then a is given by

evaluation at b on X. It now follows from Lemma 2.1 that ga 6 A if M is dualisable. D

For various semigroups M we shall be working with elements of the Cartesian power
M N that are almost everywhere constant. It will be convenient to modify some notation
from [5] to refer to these sequences. So let k, n\,..., nk € N and let a, b\,..., bk € M.

We define the sequence On'"!** m M N by

h. bk , ••> _ I bi i f i = ni> f o r s o m e J G {1, • • • i * } ,an,...ntW — S .
I a otherwise.

Ghost element arguments in the literature tend to be ad hoc, with new approaches
needed for every new class of algebras. It does indeed seem to be hard to prove a nice
general result for semigroups by this method as well. The next lemma carves out a
large class of semigroups in which one particular kind of ghost element argument shows
nondualisability.

LEMMA 2 . 3 . Let M be a finite semigroup. Then M is nondualisable if there are

three distinct elements a, b and c of M such that the following conditions hold.

(i) For all x € M, b • x = b.

(ii) We have a • a = a, a- b = a, c• a — a, and c• c — c.

(iii) Whenever (p is an endomorphism of M that does not send a and b to the

same element, we have that <p(a) — a and that for all y in M, p(c)-y = ip{c)

implies y • a = a.

PROOF: Suppose that M is a finite semigroup that satisfies the conditions of the
lemma. We shall use Lemma 2.2, taking S to be N and g € MN to be ab

0 = (b, a, a, a,...).
The set AQ will be {OQ* | j ^ 1}, and we sgall take A to be the subalgebra of MN

generated by {h € M N | h(0) = b and there exists j > 1 with h(j) = b} together with
AQ. Note that condition (i) implies that g is not in A. Let x : A —> M be such that
x\Ao is not constant. So there are m,n ^ 1 with z(aom) ¥" z(aon)- Now consider x(ag^).

It must be different from at least one of x{ab^n) and x{a^). Without loss of generality,
suppose it differs from x{ab

Q^l), and consider B — {aj^n I ̂  € M}. We have that B is a
subalgebra of A, and that / : M -> B given by f(d) = a ^ n is an isomorphism.

Then (x\B)of is an endomorphism of M that takes a and 6 to different elements, so
condition (iii) applies to it. Thus z(a§£) = x(oo^) = a, and z(a{jm*) = d, where d e M
is such that for all y, d • y — d implies y • a = a.

Now consider x(aot)> where A: is a number different from 0, m and n. We shall
be done if we can show that x(a!$) must always be a, for then a ^ will be the only
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element of Ao that x does not send to o. By (ii), we have that a^n = a^n • a^it and
aomfcaon = aot Applying the homomorphism x to these equations gives us d = d-x{o^X)

and z(aomjt) • a = i(ao£), so z(ao*) = a by condition (iii). D

It should be noted that the above lemma does not capture the full power of the
ghost element method. In different drafts of this paper, I used a number of similar state-
ments. Each one was better suited to showing that a particular class of semigroups was
nondualisable. The above lemma just happens to be the best one for proving Lemma 2.4.

It seems natural to define semigroups by representing them as sets of functions under
composition, for this way it is not necessary to check associativity. By the analogue of
Cayley's Theorem, nothing is lost by doing this.

If p ^ 1, we define the following functions on {0,1,2, . . . ,p). Let 0,1,2, . . . , p
be the constant functions with values 0,1,2,... ,p respectively. If T is any subset of
{ 1 , 2 , 3 , . . . , p), we say that T is oned if and only if it contains 1. Then for any such oned
subset T, we define the function fa on {0,1,2, . . . ,p} by setting /r(fi) to be 1 if n € T,

and setting it to be 0 otherwise. (So fa can be thought of as the characteristic function
of T.) We shall call functions of the form fa 2-idempotent, since they are idempotent
functions into a two-element set. For consistency, we shall always take this two-element
set to be {0,1}.

Observe that whenever T and U are oned subsets of {1 ,2 ,3 , . . . ,p), that 0 o fT =
fT o 0 — 0, 1 o fT — fT o 1 = 1 and that fr ° fu = fu- Thus it is easy to see that
whenever p ^ 1, k ^ 1 and T\,T2, • • • ,T^ are distinct oned subsets of {1 ,2 ,3 , . . . ,p} that
the set { 0 , 1 , 2 , . . . , p, / r , , . . . , frk} is closed under composition and forms a semigroup.
We shall call semigroups produced by this construction 2-idempotent derived, since their
nonconstant functions are all idempotent functions into a common two element set.

Note that many features of the representation of a 2-idempotent derived semigroup
can be recovered from that semigroup. Every element of the underlying set is the range
of a constant function, and these constant functions are definable in the semigroup as
{u | u o v = u for all v}. The fTi are definable since they are the only non-constant func-
tions. We may use each constant function to access its value, and vice versa. Thus we
shall sometimes identify constant functions with their values, where convenient. For ex-
ample, we say that we can define {0,1} as the range of any of the non-constant functions.
What this actually means is that 0 and 1 are the only functions g such that g = h o g for
some h such that there are functions u and v with h o u -£ h o v.

So which 2-idempotent derived semigroups can be shown by Lemma 2.3 to be non-
dualisable? To answer this question, we need to examine the structure of the hypergraph

with edges T\,..., Tk. Hypergraphs are the natural generalisation of (undirected) graphs,
where we allow edges to be sets of cardinality other than 2. So we shall consider a hyper-

graph to consist of a set V of vertices, together with a set E of subsets of V. Elements
of E will be called edges of the hypergraph (V, E). We say that two hypergraphs {V, E)

https://doi.org/10.1017/S0004972700020542 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700020542


[7] Nondualisable semigroups 497

and (W, F) are isomorphic if and only if there is a bijection ip: VUE-tWuF such

that V goes to W, E goes to F and for all v € V and e 6 E, we have D G e if and only

if ^ (u ) € ?/>(e). Note that we are forced to view hypergraphs as multi-sorted relational

structures, and that our definition of isomorphism reflects this. (If one imposes orders on

the edge sets E and F, and demands that ip take each element of E to the corresponding

element of F, the resulting notion is called strong isomorphism) Observe tha t when

it is specialised to graphs, our definition of hypergraph isomorphism agrees with graph

isomorphism.

We define the complement of the hypergraph (V, E) to be (V, {e \ e 6 E}), where e

denotes V — e, the complement of e. Note tha t this is not the hypergraph with edgeset

V(V) - E, although this would be another possible way to define the complement of a

hypergraph. We shall not need it here, but more material on hypergraphs can be found

in [1].

When S = ( { 0 , 1 , 2 , . . . , p , /r^fa, • • •. / r t } , ° ) is a 2-idempotent derived semigroup,

we define its derived hypergraph H(S) to be ( { 0 , 1 , 2 , . . . , p } , {TUT2,.. -,Tk}).

We shall also need to consider the equivalence relation /3 on { 0 , 1 , 2 , . . . ,p}, defined

by 0 = {(u,v) | for all i, fTi(u) = fTi(v)}.

LEMMA 2 . 4 . Letp^ l,letk ^ 1, andletS = ({0,1,2,... ,p, fTi, fa,..., fTk},o)

be 2-idempotent derived. Then if the following conditions are met, S is not dualisable.

(i) SEPARABILITY The equivalence relation 0 is equal to A on { 0 , 1 , . . . ,p}.

(ii) RIGIDITY The derived hypergraph H(S) is not isomorphic to its com-

plement.

P R O O F : Let S = ( { 0 , 1 , 2 , . . . , p , fTl, • • • frk}, °) satisfy the separability and rigidity
conditions of this lemma. We shall use Lemma 2.3, with a = 0, 6 = 1 and c = //•,.
Checking the conditions of that lemma, we see that (i) and (ii) are true.

For (iii), we first show that S is subdirectly irreducible with monolith {0,1}2 U A.
So let distinct q and r in 5 be given. If q and r are both in { 0 , 1 , 2 , . . . , p} , then (i) gives
a Tj such that one of /r,(<z) and fair) is 0 and the other is 1. This shows that (0,1)
G Cg ((</, r)). Next suppose that one of the two elements, say q, is in { 0 , 1 , 2 , . . . , p},
while r is some fTj. Then roO- fT.(Q) = 0, while 9 0 0 = 9. Thus (q,0) € Cg ((q,r)).
Similarly, r o l = /Tj.(l) = l and qol = q yield (q, 1) € Cg ((9, r)) . Combining, we get
(0,1) € Cg ((q,r)). Lastly, suppose that q is /JJ and r is fTj, for some i and j . Since
q z£ r, T; ^ Tj and there is some s ^ p with / ^ ( s ) ^ /TJ{S)- That is, fTi o s ^ fa, o s . So
one is 0, the other is 1, and (0,1) € Cg ((q, r)) . It is easy to verify that {0,1}2 U A is a
congruence, so it is the monolith of S.

Letting ip be any endomorphism of S that does not send 0 and 1 to the same place, we
have that ip must be an automorphism. Now rp permutes the elements of { 0 , 1 , 2 , . . . , p},
since they are characterised as the values y such that y o z — y for all z. Thus ip also
permutes the set F = {fTl, • • •, frk}, and {0,1} = {y | / o y = y for all / € F}.
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We claim that ip fixes both 0 and 1. For if not, then ip must switch them. Assuming
this is so, we look at any u € { 0 , 1 , 2 , . . . , p} and at any fT. £ F. Let j be the unique
element of { 1 , . . . , A;} such that fTj = ^ ( / T J - Then u £ Tt if and only if fTi o u = 1 if
and only if ^ ( / r j ° i^W) — 0 if and only if /T\ O ip(u) — 0 if and only if ijj(u) $ Tj if and
only if ip(u) € Tj. This shows that V induces an isomorphism between the hypergraph
({0,1, 2 , . . . , p}, {T\,... ,Tk}) and its complement, a contradiction.

So we have that ip takes a to a, and takes c to some element d of the set
F = {/TI, • • • ,frk}- Now if c* o y = d, y must equal d', in which case y o a = a,

and (iii) is.proved. 0

The separability condition of the lemma ensures that the semigroup is subdirectly
irreducible with monolith containing (0,1). This implies that any endomorphism that
does not identify 0 and 1 is an automorphism. The rigidity condition imposes additional
restrictions by ruling out any automorphism that exchanges 0 and 1. In the context of
2-idempotent derived semigroups, this is enough to allow a ghost element argument of
the form used here to work.

We can generalise the previous lemma to show that more 2-idempotent derived
semigroups are nondualisable. The key to doing this is to get around the restriction
of the separability condition of the lemma. We shall use the Independence Theorem of
Davey, Saramago and Willard (see [12] or [20]), which states that whenever two finite
algebras generate the same quasivariety, one is dualisable if and only if the other one is.

LEMMA 2 . 5 . Let S be a finite 2-idempotent derived semigroup containing at least

one 2-idempotent function. Then there is a 2-idempotent derived semigroup S' which

satisfies the separability condition of Lemma 2.4 and generates the same quasivariety as

S.

PROOF: Let S = ( { 0 , 1 , 2 , . . . , p , /T, , /r2, • • •, frk}, °) be a given 2-idempotent de-
rived semigroup, with p ^ 1 and k > 1.

We shall also use /3 to denote the corresponding equivalence relation on the constant
functions of the semigroup S. Since k is nonzero, ft has at least two blocks. The new
semigroup S' is now formed as a subalgebra of S produced by removing all but one
member from each block of /?. If 0 or 1 is in a block of 0 of size greater than one, they
are chosen to be the remaining constant function from that block. It is easy to check
that S' is in fact a subalgebra of S containing 0 and 1, and that it now satisfies the
separability condition.

To complete the proof, we shall show that S is in the quasivariety generated by S'.
It suffices to give a method using products and subalgebras that constructs a semigroup
with the size of all the blocks of (5 doubled. For this construction can then be used
repeatedly, to make all the blocks of /3 at least as large as they are in S. After this, S is
obtained as a subalgebra of the constructed semigroup.

So let B - ({0 ,1 , 2 , . . . , p , / r , , /T 2 , • • •, frk}, °) D e any 2-idempotent derived semi-
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[9] Nondualisable semigroups 499

group, and consider C = ( { 0 , 1 , 2 , . . . , p} x {0,1}) U ({fa, fa,..., fTk} x {0}), a subset
of B x B. It is easily proved that it is the universe of a subalgebra C of B x B , and that
(fa , 0 ) , . . . , (fa, 0) are the idempotent functions into the 2-element set {{0,0), (1 ,0)}.
Observe that for all j < k and for all u € {0,1 ,2 , . . . , p } , that (fa, 0) ((u, 0)) and
( / T J , 0 ) ( ( U , 1)) are equal to (1,0) if and only if u € 7). So the idempotent functions
UTJ . 0) produce an equivalence relation 0 on C that has the same structure as the origi-
nal 0 on B , except that every block of the new 0 has twice as many elements. D

We can sum all this up'in the following.

THEOREM 2 . 6 . Let p > 1, let k ^ 1, and let TuT2,...,Tk be distinct sub-
sets of {1,2,3,---p} which all contain 1. Consider the hypergraph constructed from
({0 ,1 ,2 , . . . ,p} , { 7 \ , . . . ,Tk}) by removing extra vertices where needed so that no two
vertices ever lie in exactly the same set of edges. If this hypergraph is not isomorphic to
its complement, the semigroup ( { 0 , 1 , 2 , . . . , p , fa, fa,..., fa}, o) is nondualisable.

P R O O F : This follows easily from Lemma 2.4, Lemma 2.5, and the Independence
Theorem. D

The use of hypergraphs in the above theorem seems to be unavoidable, since they give
a simple framework in which the theorem can be easily stated. It also seems unlikely that
the condition that a hypergraph is not isomorphic to its complement can be replaced with
a nicer equivalent condition. It can be shown that the problem of deciding whether or not
a hypergraph is isomorphic to its complement is equivalent to the Graph Isomorphism
Problem, for which no polynomial-time algorithm is known. (I omit the proof of this,
although it does not appear in the literature. The interpretations used are fairly obvious,
and the issue is only tangentially related to the results of this paper. For background,
the interested reader is referred to [13].)

3. E X A M P L E S AND REMARKS

The smallest 2-idempotent derived semigroups do not meet the conditions of
Lemma 2.4. When p is 1, then {1 ,2 ,3 , . . . ,p} has a unique oned subset, {1}. The
derived hypergraph is ({0,1}, {{1}}), which is isomorphic to its complement. The cor-
responding 2-idempotent derived semigroup has 3 elements. This interesting semigroup
will be considered in this section.

When p = 2, the only possible 2-idempotent functions are /{ij and /{i,2}- Separa-
bility fails unless both are included in the semigroup, but rigidity fails if they are.

When p = 3, there are four 2-idempotent functions: /{i>, /{i,2}> /{i,3}> /{i,2,3}- If not
enough of them are included in a semigroup with constant functions {0 ,1 ,2 ,3} , then it
will not meet the separability condition of Lemma 2.4. For instance, in the semigroup
({0 ,1 ,2 ,3 , /{i,3}, /{i,2,3}}i ° ) , we have that {1,3} is a block of 0, and separability fails. To
illustrate Lemma 2.5, we consider the subalgebra formed by removing 3. It is isomorphic
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Table 1: Smallest nondualisable semigroup known

to ( {0 ,1 , 2,/{i},/{i,2}},°), and the lemma gives us that the two semigroups generate
the same quasivariety. Since rigidity fails for this new semigroup, we can not show that
either of the two semigroups is nondualisable.

Going back to the case where p = 3, we see that separability holds whenever at
least three functions in {/{i},/{i,2}>/{i,3},/{i,2,3}} are included, or when just /{i,2} and
/{i.3} a r e - But rigidity fails for all of these, except when the set of included functions is
{/{i},/{i,2}>/{i,3}} ° r {/{i,2},/{i,3},/{i,2,3}}- Since these yield isomorphic semigroups, we
shall only look at the former set. So the smallest nondualisable semigroup given by our
theorem has its operation given by Table 1.

Even for the class of 2-idempotent derived semigroups, the dualisability problem
is not yet solved. By Lemma 2.5, every 2-idempotent derived semigroup generates the
same quasivariety as one which satisfies the separability condition. So within our class,
the problem reduces to the dualisability of semigroups which satisfy separability but not
rigidity.

The simplest such semigroup is ({0, l , i} ,o) , where i denotes the identity function
on {0,1}. This is the one obtained by taking p = 1 as mentioned before. As do the
other 2-idempotent derived semigroups which fail rigidity, it has an endomorphism which
switches 0 and 1. The presence of such an endomorphism is a serious obstacle to the
kind of ghost element argument used in this paper.

It would be interesting to know if this semigroup was dualisable. This semigroup
({0,1 , i} ,o) satisfies the quasi-identity (y-z = z A z-y = y) = > y = z which is true in
a 2-idempotent derived semigroup if and only if it has only one 2-idempotent function.
This shows that it does not generate the same quasivariety as any of the semigroups we
have shown to be dualisable.

David Clark has done some unpublished work on the dualisability of ({0, l , i} ,o) .
He has made a good deal of progress in characterising the subalgebras of its powers, but
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has not succeeded in resolving the question of the dualisability of this semigroup.
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