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Abstract
We identify an axis connecting two opposite ‘ears’ in the supernova remnant W49B and morphological signatures of three arcs around
this axis that we claim are sections of full circum-jet rings. Based on recent identifications of morphological signatures of jets in core-
collapse supernovae (CCSNe), including ejecta-rich axes, we re-examine images of W49B and identify a heavy element-rich protrusion
(ear) as a jet-inflated structure. We identify the opposite ear and a clump at its tip as the signature of the opposite jets. The line connecting
the two clumps at the tips of the two opposite ears forms the main jet axis of W49B. We compare the three arcs around the main jet axis in
W49B to the circum-jet rings of the jets in the Cygnus A galaxy and deduce that these arcs are sections of full circum-jet rings in W49B.
In W49B, the jets are long gone, as in some planetary nebulae with circum-jet rings. Identifying the main jet axis is incompatible with
a type Ia supernova. It leaves two possibilities: that jets exploded W49B as a CCSN, i.e., the jittering jets explosion mechanism where
the pair of jets we identify is one of many that exploded the star, or that the explosion was a common envelope jet supernova with a
thermonuclear outburst, i.e., both the pair of jets and thermonuclear outburst exploded the core of a red supergiant star as a pre-existing
neutron star tidally destroyed it.
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1. Introduction

The supernova remnant (SNR) W49B (G43.3–0.2; Wester-
hout 1958) is a puzzling SNR concerning, among others, its
explosion process and symmetry axis. The dynamically esti-
mated age of W49B is 4-6 kyr (Hwang, Petre, and Hughes
2000; Zhou and Vink 2018). Several studies presented its ther-
mal and emission properties (e.g., Ozawa et al. 2009; Patnaude
et al. 2015; H. E. S. S. Collaboration et al. 2018; Tanaka et
al. 2018; Yamaguchi et al. 2018; Liu et al. 2019; Sano et al.
2021; Siegel et al. 2021; Suzuki et al. 2024), including im-
ages of W49B (e.g., Lacey et al. 2001; Lee et al. 2019; Lee,
Koo, and Lee 2020; Castelletti et al. 2021), and its properties.
Lopez et al. (2009) studied in detail the X-ray morphology,
and found the iron to have a different distribution from sul-
phur and silicon. Zhou et al. (2011) simulated the interaction
of W49B with its inhomogeneous circumstellar and interstel-
lar medium and claim that mixing of relatively cold medium
gas with the hot shocked ejecta and the rapid adiabatic expan-
sion of the ejecta explains the presence of overionized plasma,
which was later strengthened by X-ray observations (Chan-
dra: Lopez, Pearson, et al. 2013; NuSTAR: Yamaguchi et
al. 2018). On the other hand, Holland-Ashford, Lopez, and
Auchettl (2020) found the overionization to increase from east
to west, like Lopez, Pearson, et al. (2013) found, and argued
that cooling by thermal conduction can explain this overi-
onization. Sun and Chen (2020) studied W49B and its ove-
rionized ejecta, and concluded that the ejecta’s metal abun-
dance ratios are compatible with a CCSN of a star with an
initial mass of < 15M⊙, except for a high Mn/Fe. Sano et
al. (2021) found that CO clouds at low velocity show a good
spatial correspondence to the X-ray and synchrotron struc-
ture of the SNR, and Zhou et al. (2022) found strong inter-
action with a cloud. Zhu, Tian, and Zuo (2014) studied the
molecular clouds in the W49B environment and suggested

that the warm dust comes from the evaporation of clouds in-
teracting with W49B. The complicated structure of W49B
and its environment promoted suggestions of several scenar-
ios for its formation.

The three progenitors that the literature discusses are ther-
monuclear explosion as a type Ia supernova (SN Ia; e.g., Hwang,
Petre, and Hughes 2000; Zhou and Vink 2018; Siegel et al.
2020; Sato et al. 2024), core-collapse supernova (CCSN; e.g.,
Lopez et al. 2011; Lopez, Ramirez-Ruiz, et al. 2013; Yam-
aguchi et al. 2014; Patnaude et al. 2015), and a common enve-
lope jets supernova with thermonuclear outburst (Grichener
and Soker 2023). Some studies find W49B to be a peculiar
remnant that does not fit any scenario well (e.g., Patnaude et
al. 2015; Siegel et al. 2020). Sawada et al. (2024) argue that
the Fe-group ejecta mass ratios might result from either an
SN Ia or a CCSN. Sato et al. (2024) claim that their deter-
mined titanium abundance excludes almost all hypernova/jet-
driven supernova models. We note that they refer to an explo-
sion driven by a fixed-axis jet that requires rapid pre-collapse
core rotation (e.g., Khokhlov et al. 1999; Leung, Nomoto,
and Suzuki 2023); they do not refer to nor exclude the jit-
tering jet explosion mechanism (JJEM) of CCSNe (for recent
simulations of the JJEM see Braudo et al. 2025).

There is also a debate on the direction of the jet axis of
W49B, with the two views orthogonal to each other. One
group takes the jet axis to be the narrow high concentration
of iron in the centre, in the general east-west direction (e.g.,
Miceli et al. 2008; Miceli et al. 2010; Lopez et al. 2011; Lopez,
Ramirez-Ruiz, et al. 2013; González-Casanova et al. 2014),
as the axis of the barrel-shaped morphology that (Keohane
et al. 2007) suggest for W49B. The other view is that the
general symmetry axis, the main jet axis, is more or less in
the north-south direction, as Bear and Soker (2017) defined
it and a few papers adopted (Akashi, Bear, and Soker 2018;
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Siegel et al. 2020; Grichener and Soker 2023). In this study,
we strengthen the latter view.

Recent new identifications of jet axes in several CCSN
remnants (CCSNRs; e.g., Soker and Shishkin 2024; for a re-
view, see Soker 2024d) and finding similarities with some jet-
shaped morphologies in planetary nebulae (PNe; e.g., Soker
2024b; Bear, Shishkin, and Soker 2024) and cooling flow clus-
ters (Soker 2024a, 2024b), motivate us to re-examine images
of SNR W49B and to search for the main jets axis; we do this
in Section 2. In section 3, we compare the morphology of
W49B with jet-shaped objects to strengthen our identifica-
tion of the main jet axis. We summarize in Section 5 with a
discussion on the possible origins of SNR W49B.

2. Themain jet axis of W49B
We start with radio images from Lacey et al. (2001) that we
present in panels a and b in Figure 1 . The radio image shows
a prominent ear in the southwest and a larger and less promi-
nent one in the northeast, as we mark on panels a and b. Panel
c is an X-ray image with two clumps at the tips of the ears,
which we mark by NE and SW clumps. The four insets are
images from Lopez, Ramirez-Ruiz, et al. (2013) that present
the morphology of four elements as indicated. The double-
headed red arrow has the exact location in all panels.

Figure 2 presents X-ray images adapted from Lopez, Ramirez-
Ruiz, et al. (2013). We identify arcs around the main jet axis;
we will argue in Section 3 that these are fractions of circum-jet
rings the jets shaped when they were active at the explosion.
We identify three arcs as we mark on the different panels. The
boundaries we draw partially go through faint zones around
the bright arcs. The bright arcs are not complete, nor are
the faint zones bounding the arcs. Nonetheless, we think the
images do reveal these three arcs.

Bear and Soker (2017) defined an ‘H-shaped’ structure
composed of the two legs, which are the bright regions on
the northwest and southeast as we mark on Figure 2, and the
bright iron structure connecting them. The legs are the pro-
jection of the axisymmetrical sides of a barrel-shaped struc-
ture. Based on morphologies of H-shaped planetary nebulae,
they assume the axis of the two opposite jets in W49B is paral-
lel to the legs but did not use observed morphological features
on the jet axis. Bear and Soker (2017) speculated on the loca-
tion of the jet axis to be more or less parallel to the legs and
approximately at an equal distance between the two legs.

We use the two bright clumps and the ears to locate the
main jet axis somewhat to the northwest and at 4◦ counter-
clockwise to the axis that Bear and Soker (2017) speculate at.
It is more or less perpendicular to the jet axis that some other
studies assume (e.g., Keohane et al. 2007; Miceli et al. 2008;
see Section 1).

A word of caution is in place here. We assume that the
ears are shaped by jets that are part of the explosion process.
However, in principle, ears can be formed in the circumstel-
lar material into which the explosion occurs, not by jets in
the explosion. This might be the case with type Ia SN rem-
nants that have ears. The explosions of type Ia SNe are not

expected to include jets, hence the ears are already shaped in
the medium around the explosion (e.g., Soker 2024c for type
Ia SNR G1.9+0.3). If the ears are shaped in the circumstel-
lar material, no signatures of the symmetry axis the ears de-
fine exist near the centre of he explosion. In W49B, there is
a non-spherical mass distribution near the centre that, as we
claim below, has the same symmetry as the line connecting
the two ears. We therefore argue that the ears in W49B are
shaped by jets.

Like Bear and Soker (2017), we argue that two opposite
jets shaped the barrel-like structure, as observed in some plan-
etary nebulae and as numerical simulations show (e.g., Akashi,
Bear, and Soker 2018). The hot gas in the galaxy M84 pos-
sesses a prominent H-shaped structure shaped by the observed
still-active active galactic nucleus (AGN) jets (e.g., Bambic et
al. 2023a); in M84 the jets are parallel to the leg, but the jets’
axis is displaced and much closer to one leg than the other.
What Bear and Soker (2017) attributed to a compressed gas
in the equatorial plane (the plane between the two jet-inflated
lobes), we attribute to Arc 1 that we mark on Figure 2; some
gas might be due to gas compression by the jets in the equa-
torial plane.

Bear and Soker (2017) assumed that the two jets were en-
ergetic to the degree that they opened the SNR W49B on the
northeast and southwest sides (top and bottom of the barrel-
shaped structure), and that is the reason for the absence of ap-
parent morphological features along the jet axis, especially in
the southwest. The small ear on the southwest and the small
SW clump suggest that this jet had a small fraction of the total
explosion energy. The conclusion is that the jets we identified
as having shaped the ears did not supply the entire explosion
energy. There are two possibilities with which our results
are compatible. (1) More pairs of jets powered the explosion
in case W49B is a descendant of a CCSN, i.e., the explosion
was due to the JJEM. (2) Thermonuclear energy supplied the
rest of the explosion energy, as in the common envelope jets
supernova with thermonuclear outburst model suggested by
Grichener and Soker (2023).

3. Comparison to other objects with circum-jet rings
The main new claim of this study is that some of the dense
(bright) ejecta material near the centre of W49B is not the
bar of an H-shaped structure nor a jet but instead arcs that
are part of circum-jet rings. We compare W49B with other
astrophysical objects to strengthen this new claim.

Aiming to explain W49B structure, González-Casanova
et al. (2014) simulated the interaction of one pair of energetic
jets with ambient gas in the frame of the fixed-axis jet-driven
explosion model of CCSNe (magnetorotational jet explosion
model; see Ramirez-Ruiz and MacFadyen 2010 for another
simulation of fixed-axis jets with comparison to W49B). Most
relevant to us is that González-Casanova et al. (2014) obtained
the appearance of a few rings around the jet axis; however,
they did not identify the circum-jet rings we define here in

a. https://chandra.harvard.edu/blog/node/843
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Figure 1. Panels a and b are radio images of SNR W49B from Lacey et al. (2001), contours, and linear gray scale from 0 to 175 Jy/beam, respectively. Panel c is
an X-ray image from Chandra (https://chandra.harvard.edu/photo/2013/w49b/; credit NASA/CXC/MIT/Lopez, Ramirez-Ruiz, et al. 2013). Inset images are from
Lopez, Ramirez-Ruiz, et al. (2013) with the scale bar marking 1′. We labelled our proposed main jet axis with a double-headed red arrow between the two
ears and the clump at the tip of each ear.
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Figure 2. X-ray images of SNR W49B adapted from Lopez, Ramirez-Ruiz, et al. (2013) with our marks of morphological features we identify. (a) A Chandra
0.5 – 8.0 keV raw X-ray image. We marked our identification of the main jet axis, and an arc (dashed red line) we suggest is a fraction of a circum-jet ring.
(b1+b2) Enlargement of the argon map (inset of panel c) to allow comparison of an image with and without our marks of two arcs. (c) Similar to panel c in
Figure 1, with the addition of marks as indicated. The two calcium panels allow comparison without our marks.
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W49B. We will use rings observed in other astrophysical ob-
jects instead of numerical simulations.

3.1 SNR 0540-69.3
Figure 3 presents an HST image of SNR 0540-69.3 adapted
from Morse et al. (2006). Based on the slit spectroscopy by
Larsson et al. (2021), Soker (2022) identified a point-symmetric
morphology in a plane along the line of sight (not shown
here), and the main jet axis that we mark with the red-double-
headed arrow in Figure 3. We mark two circum-jet rings that
we identify in the HST image. We see some similarities be-
tween the circum-jet rings around the main-jet axis in SNR
0540-69.3 and the arcs we argue are part of circum-jet rings
in SNR W49B.
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Rings 

Figure 3. An HST image of SNR 0540-69.3 adapted from Morse et al. (2006).
The red double-headed arrow marks the main jet axis according to Soker
(2022). We also marked two circum-jet rings that we identify in this study.

3.2 Planetary nebulae
We present two PNe with prominent circum-jet rings. Since
the jets in PNe are no longer active, their signatures are clumps
along the polar axis isolated from the centre and the left-over
circum-jet rings.

Figure 4 presents the bipolar PN MyCN 18. The inset
(based on Sahai et al. 1999) is an HST image of the inner
hourglass structure. It possesses several rings. The large image
includes the regions along the polar axis that display clumps
formed by no-long-active jets (e.g., O’Connor et al. 2000).
Therefore, the rings that compose the hourglass structure are
circum-jet rings.

Another PN with signatures of jets and circum-jet rings is
Hen 2-104 (the ‘Southern Crab Nebula’). Figure 5 presents an
image adapted from Corradi et al. (2001). The black marks of

 
Jet 

Jet 

Circum-jet rings 

Figure 4. An image of the PN MyCn 18 adapted from O’Connor et al. (2000).
The inset is an HST image from the HST site adapted from Sahai et al. (1999)
and resolves the circum-jet rings in the hourglass structure.

jets and rings are in the original study of Corradi et al. (2001).
We added marks in red to emphasize the jets and the circum-
jet rings. The three-dimensional reconstruction of Hen 2-
104 structure by Clyne et al. (2015) shows that three rings
compose each lobe of the inner hourglass structure.

These two PNe demonstrate the presence of circum-jet
rings in objects where the jets are not active anymore. In
PNe, such rings cannot be attributed to explosion processes
or the energy of radioactive decay (called nickel bubbles in
CCSNe). Their mirror and axial symmetries imply that they
do not result from instabilities.

3.3 Clusters of galaxies
Cygnus A is a galaxy with active AGN jets and is another
example of jet launching with circum-jet rings. Soker (2024a)
compared the rings of SNR 0540-69.3 (Figure 3) to those of
Cygnus A to strengthen the identification of the main jet axis
of SNR 0540-69.3. We argue for a similarity between the
bright segments of the rings in Cygnus A and the arcs in the
SNR W49B.

Figure 6 presents an X-ray image of the galaxy Cygnus
A adapted from Snios et al. (2020). We identify several rings,
which we denote with blue circles in Figure 6 panel b. The
centres of most of these circles align with the X-ray jet. We
note that the rings are not uniform in intensity; in each ring,
some segments are brighter than others, and the bright seg-
ments form arcs.

To strengthen the comparison of the circum-jet rings of
SNR W49B to those in Cygnus A, we degrade the 2Ms Chan-
dra X-ray image of Cygnus A from Snios et al. (2020). We use
Figures 1 and 2 from the Snios et al. (2020), which we then
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Figure 5. [N II] HST image of the PN Hen 2-104 adapted from Corradi et
al. (2001); the black marks of jets and rings are from their paper. We added
red marks to emphasize the circum-jet rings in the inner hourglass.

convert to a scalar image. To match the existing W49B ob-
servations, we perform two adaptations to this scalar image.
(1) We truncate the lower 50% brightness pixels to correct
for the 10 times shorter observation time of W49B (Lopez,
Pearson, et al. 2013). (2) We apply Gaussian smoothing with
a 2-pixel scale to correct for the 4 times larger field of view
of W49B compared to Cygnus A. We present the degraded
image of Cygnus A in the lower panel of Figure 6. Only a
fraction of the brightest rings are visible in this processed im-
age, forming arcs. We mark the less bright regions between
the bright arc segments with dashed lines.

Another interesting feature of the degraded Cygnus A’s
image in panel c of Figure 6 is that the only parts visible from
the jets are two opposite clumps. Such clumps can testify to
the activity of jets, at present, as in Cygnus A, or in the past,
as in the planetary nebulae we present in Figures 4 and 5.

To illustrate the similarity with W49B, we rotate the im-
age in panel c of Figure 6 in the plane of the sky by 90 degrees
clockwise, such that right ascension and declination are now
the vertical and horizontal axis respectively. We present our
reduced version and a comparison image of W49B in Fig-
ure 7.

We identify a similar structure in the reduced image of
Cygnus A and the X-ray image of W49B, consisting of arcs

Figure 6. An X-ray image of the cluster of galaxies Cygnus A (0.5-7 keV;
adapted from Snios et al. 2020). (a) Figure 1 from Snios et al. (2020) with
their original marks. The horizontal bar is a scale of 20 kpc. (b) The same
X-ray image, with pale ellipses on top of several possible rings (see also
Soker 2024a for comparison with SNR 0540-69.3). (c) Our processed image
of Cygnus A with reduced sensitivity and resolution (reduced version). Two
rings denoted in panel b appear as arcs in panel c. Dashed arcs denote faint
regions between rings. Two opposite clumps (or hotspots) are the only vis-
ible parts of the jets in this degraded image.
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Figure 7. A comparison between an X-ray image of W49B and panel (c) of
Figure 6 rotated 90◦ clockwise. Upper panels: Side-by-side comparison of
X-ray images of Cygnus A and W49B. Solid arcs denote parts of rings, and
dashed arcs denote regions of lower brightness between (or adjacent to)
rings. Red rectangles denote the area of interest displayed in the lower pan-
els. Lower panels: Zoom-in on the areas of interest, showing the ringed in-
ner structure of Cygnus A within the vicinity of the jet-launching AGN (left)
and X-ray bright region of W49B where we identify a similar ringed structure
(right).

which we attribute to being partially visible rings (solid lines
in Figures 6 and 7), and lower brightness gaps between arcs
(dashed lines in Figure 6). This comparison further strength-
ens the similarity between an established "jetted" system (Cygnus
A) structure and the observed inner structure SNR W49B.

4. The formation of circum jet rings
In principle, three classes of interactions might form circum-
jet rings: We discuss them here, but leave the simulations to
future studies.

(1) Continuous jet propagation into a shell. Akashi and Soker
(2016) simulated the interaction of a pair of opposite jets with
a shell, followed by a fast low-density wind. They showed that
this type of interaction leaves a circumjet ring where each jet
interacts with the shell. Their aim was planetary nebulae. The
core with which the jets interact in CCSNe does not have a
dense shell. Therefore, this scenario does not apply to CCSNe
(unless the rings are from jets interacting with a circumstellar
shell; this is irrelevant to the rings in W49B because the rings
are near the centre).

(2) Several jet-launching episodes in the same direction into
a smooth environment. Let us then consider the case of two
(or more) jet-launching episodes in the same direction into a
smooth core. The first jet inflates a bubble that compresses a
cap at its front. The next jet along the same direction interacts
with this denser than the environment cap, and the interac-
tion forms a ring, as in the simulation by Akashi and Soker
(2016).

(3) Instabilities. The interaction between a jet and a sur-
rounding gas is prone to Kelvin–Helmholtz instabilities. The
shocked hot low-density gas forms a chain of vortices, and
between these vortices there is dense gas around the jet (e.g.,
Refaelovich and Soker 2012). González-Casanova et al. (2014)
conducted simulations of jets to explain the structure of W49B.
They obtained rings from instabilities in the interface be-
tween the jet inflated bubble and the surrounding medium.
They did not relate these rings to what we identify as rings.
More simulations are needed to check whether instabilities
can explain the observed rings.

Considering the thick torus of the rings in W49B, we in-
clined towards the second scenario above. However, only
dedicated three-dimensional simulations can determine the
outcome of such interactions.

5. Summary
We addressed the question of the location of the main jet axis
in the enigmatic SNR W49B. To that end, we take the two
radio ears (Figure 1) to be two structures inflated by two op-
posite jets, and the line connecting the ears is the main jet
axis. Two X-ray clumps on the tips of the ears are compatible
with this identification because dense clumps are remnants of
ears in many other jet-shaped objects, as in planetary nebu-
lae (Figures 4 and 5). We identified the bright zones at the
centre of SNR W49B as arcs, which we argue are part of
complete rings (Figure 2). Circum-jet rings exist in many
jet-shaped objects, like SNR 0540-69.3 (Figure 3), planetary
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nebulae (Figures 4 and 5), and AGN jets. Cygnus A’s cool-
ing flow cluster jets shaped several circum-jet rings (Figure
6). We degraded the X-ray image of Cygnus A by remov-
ing fainter zones and reducing its resolution. The outcome is
an image where only segments of the rings are visible and the
bright ends of the two jets (clumps). Namely, an image of arcs
around the axis connecting the two opposite clumps (panel c
of Figure 6). We argued that the X-ray image of SNR W49B
shares many properties with the degraded image of Cygnus
A (Figure 7). Since Cygnus A jets are visible and still active,
this similarity supports our claim for circum-jet rings in SNR
W49B, where jets are long gone, and for the location of the
W49B main jet axis.

The direction of the main jet axis we claim for, is 4◦ coun-
terclockwise to the axis that Bear and Soker (2017) argued for.
The more significant difference is in the jets’ energy. Bear
and Soker (2017) speculated that one pair of jets was ener-
getic enough to shape the entire structure of W49B, includ-
ing the legs (Figure 2). In their model, the jets broke out from
the main part of the ejecta to the northeast and southwest. In
this study, we argue for a pair of jets that shape the ears but
do not break out from the ejecta. This pair is not energetic
enough to shape the entire ejecta. The additional explosion
energy might come from more jets or nuclear burning. If
SNR W49B is a CCSN remnant, many more pairs of jets
can supply the extra energy in the frame of the JJEM. In that
case, one or two pairs might be along the direction that Bear
and Soker (2017) speculated. If SNR W49B is a remnant of a
common envelope jets supernova, then nuclear burning of the
destroyed core can supply the extra energy (for the different
scenarios, see Section 1).

Our identification of the signatures of jet activity, i.e., the
shaping of ears and circum-jet rings, does not support claims
that W49B is a remnant of SN Ia explosion. We leave the
comparison of the two plausible scenarios, CCSN explosion
in the frame of the JJEM or common envelope jets supernova,
for the future.
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