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ON CONVERGENCE THEOREMS FOR NONABSOLUTE INTEGRALS

LEE PENG YEE AND CHEW TUAN SENG

In this paper the Perron integrability of the limit of a sequence of

functions is proved under certain convergence conditions.

1. Introduction and the Perron integral

The Denjoy, Perron and Henstock-Kurzweil integrals are known to be

equivalent, [4, 5, SI. They are nonabsolute in the sense that if a function

f is integrable, then i t s absolute value I/I may or may not be integrable.

Note that the Lebesgue integral is absolute and is included in any of the

above integrals. Recently, some convergence theorems, which are in some

sense better than the dominated convergence theorem, have been proved for the

Denjoy and Henstock-Kurzweil integrals [2, 3, 6, 7]. In this note, we shall

prove two convergence theorems for the Perron integral, which are

generalizations of the well-known dominated convergence theorem and the mean

convergence theorem respectively.

A function H is said to be a Perron major function of a function /

in La,bl if

- <= ? Dffte) > f(x) for every x

where 'D̂  denotes the lower derivative. A function G i s said to be a

Perron minor function of / in [a,£>] if -G i s a Perron major function of

- / in La, bl . A function / is said to be Perron integrable on [a, £>] if

inf{#(2>) - H(a)} = sup{G{b) - G(a)) ? ± °°

Received 11 October 1985. The authors are grateful to Professor Bullen
for suggesting the use of the Marcinkiewicz theorem in the proof of the
lemma and to Professor Vyborny for an interesting discussion which led to
the formulation of Theorem 4 and i t s proof.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/86
$A2.00 + 0.00.

133

https://doi.org/10.1017/S0004972700004585 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700004585


134 Lee Peng Yee and Chew Tuan Seng

where the infimum is over a l l Perron major functions H of f in [a,bl
and the supremum over a l l Perron minor functions G of / in [a,£>] .
The common value i s defined to be the Perron integral of f on La,bl. For
brevity, given a function F we shall write F(u, V) = F(V) - F(u) .

We shall consider the following three conditions:

(i) fn^
x^ "* / te) almost everywhere in La,bl as n •> °° where each

f i s Perron integrable on [a,£>] ;
(ii) the primitives F of / converge uniformly on La,bl ;

( i i i ) f have at least one common major function and at least one
common minor function in La,b] .

The idea of common major and minor functions is useful. For example,
we can easily prove the following result.

THEOREM 1. If f and g are Perron integrable on [a,b] and have
at least one oorrmon continuous major function and at least one common
continuous minor function in La,bl , then max(/, g) and min(/j g) are
also Perron integrable on La,b~\ .

In fact, the above result i s a special consequence of Marcinkiewicz's
theorem [8; p. 253] and i t remains valid for a family of functions instead
of just two functions / and g .

Now we state our f i r s t main result whose proof is given in Section 2.
The second main result i s Theorem 4 to be given in Section 3.

THEOREM 2. If conditions ( i ) , (ii) and (iii) hold, then f is
Perron integrable on [a,b] and we have

j fn(x)dx ->• / f(x)dx as n •*• °° .

In view of the remark after Theorem 1, we see immediately that if both

common major and minor functions are continuous then f is dominated by

inf f and sup f , both Perron integrable. Thus the above theorem

reduces to the dominated convergence theorem.

In general, the common major and minor functions are not continuous, as

shown in the following example. Let

F{x) = x2sin(l/a;2) when 0 < x < 1 ,

= 0 when x = 0 .
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Define f (x) = F' ix) when 1/n < x < 1 and /„ (#) ~ ° otherwise. Then

/ satisfies conditions (i), (ii) and (iii). Note that the common major

function is given by H(x) = E (x) + H (x) where H^(x) = F(x) when F

is increasing and 0 otherwise and ff_(x) is a continuous and increasing

function such that H (a) = 0 , H (b) < e , and H'2 (x) = + <*> for the

points x at which H^ix) has a jump. Burkill [7] shows that such #2

exists. The common minor function can be defined similarly.

2. Controlled convergence

We shall define the controlled convergence of a sequence of functions.

First a function F is said to be absolutely continuous in the restricted

sense on X or, in short, AC A(X) , if for every e > 0 there is an

n > 0 such that for every finite or infinite sequence of non-overlapping

intervals {La-, b.]} with a- b- e X and ) .\b.-a-\ < n we have

u(F; La., b.l) < e

where w denotes the oscillation of F over [a- , b •] . Further F is
Is If

said to be generalized absolutely continuous in the restricted sense on

[a,i>] or ACGj if La,b1 is the union of a sequence of closed sets X-

such that on each X. the function F is ACj.(X.) . Similarly, we can

define VB^(X) where VB stands for bounded variation (see [8]).

In addition to (i) - (ii) , we need the following conditions:

(iv) the primitives F of fn are ACGA uniformly in n , that is ,

La,b1 is the union of a sequence of closed sets X. such that on each X.
If *V

the functions F are AC^(X.) uniformly in n ; in other words, n > 0

in the definition of AC^{X.) is independent of n ;

(v) [a,i>] is the union of a sequence of closed sets X. and for

eveTj i and e > 0 there i s an integer N such that for every partial

division of [<2,i>] given by

a < a1 < b± < a2 < b2 < ... < a < b_ < b
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with a1,b1,a2,b2,...,a , b e X^ we have

< E

whenever n , m S N .

A sequence of functions / is said to be control-convergent to /

if conditions (i) , (ii) and (iv) are satisfied. The following lemma gives
sufficient or necessary conditions for controlled convergence.

LEMMA. Suppose that (i) and (ii) hold. Then ( i i i ) implies (iv)., and

(iv) implies (v).

Proof. Suppose that (i i i) holds. Following the second half of the
proof of Marcinkiewicz1s theorem, C8; p. 253], we obtain that every closed
subset P of [<2,£>] contains a portion Q on which each / is Lebesgue
integrable, and that f have a common major function and a common minor
function which are both VB^(Q) . Furthermore, let J be the smallest
interval containing Q . Then

I U(Fn; [ V 6 ])

converges uniformly in n for the sequence of the intervals La-, b .1 in

I contiguous to Q . In view of (ii) , the above series of oscillations is

also convergent uniformly in n for the sequence of the intervals [a., b.]
Is %

in [a,i>] contiguous to Q .

Next, we observe that continuous functions F are ACG^ uniformly in

n i f and only i f every closed subset of [<2,Z>] contains a portion on which
the functions F are AC % uniformly in n , [S; p. 233, Theorem 9.1].

Therefore we have (iv).

I t is known, [6; Lemma 4] , that (i) , (ii) and (iv) imply (v) .

In view of the lemma. Theorem 2 follows from the following controlled
convergence theorem which was originally proved for the Henstock-Kurzweil
integral , C6].

THEOREM 3. If fn is control-convergent to f , then f is Perron

integrable on La, fc] and we have
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\hJn(x)dx -*• faf(x)dx as n

We remark (see C73) that condition (ii) in the definition of the

controlled convergence can be replaced by

(vi) F are equicontinuous in [<2, £>] .

The above theorem with (ii) replaced by (vi) was proved by Dzvarseisvili

using the Dejoy integral, [Z; p. 50 Theorem 47] or [3].

We further remark that a direct proof of Theorem 2 using the same

argument as Marcinkiewicz's theorem is also possible.

3. Generalized mean convergence

Let / be Perron integrable on [a,£>] with primitive F . Then

f is said to be generalized mean convergent on [<2,fc] if (ii) and the

following condition hold:

(vii) [a, b~S is the union of a sequence of closed sets X- and for

z>

every i and E > 0 there i s an integer N such that for every part ial
division of [a, bl given as in (v) we have

*iFn-Fm; la., b.1) < e
l

whenever n , m ^ N.

We remark that when X. = [a, bl for a l l i , both conditions (v) and

(vii) are equivalent to the mean convergence of f on [a, i>] , hence the
term generalized mean convergence above.

THEOREM 4. Let f be Perron integrable on \_a,b~\ and generalized
mean convergent on [a,2>] . Then there exists a function f which is
Perron integrable on [a,£>] and there exists a subsequence f ... of f

n \i') n

such that f ... ix) •*• fix) almost everywhere in [a,£>] as n(i) •*• °° and

that fn,j) is generalized mean convergent to f on [a,i>] . Furthermore,

j a fn(x)dx ->• I f(x)dx as n ->- °° .

Proof. Let conditions (ii) and (vii) be satisfied. Fix X, and let
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foj. , &£ ] , k = 1 , 2 , . . . , be the sub-intervals of la, b~\ contiguous to

X. . We may assume a , b e X . Consider the sequence F and define

G (x) = Fn(x) when i £ ^ and piecewise l inear on the complement of X.

such tha t

[a^, Z>fe]) for k = 1 ,2 , . . . .

Let g (x) = G' (x) almost everywhere. Then g is mean convergent on

la, h] , that is

^a^9nix)~9m{x) ' ^ "* ° a s n ' m "*" °° '

Hence there is a subsequence g ... of g which i s dominated on the right

by 9 Q\ + ^ an<3 o n t^6 left by g ... - h where

ooh = l
Furthermore, 9nijs. (x) converges almost everywhere to a Perron integrable

function g on [a, £>] . Note that g ... (x) = f .. (x) almost everywhere

in X. . Hence / . . . (x) converges almost everywhere in X, to a function

f(x) where fix) = g (x) when x e X± .

Since f i±\ i s Perron integrable on la, bl and i t s primitive F . . .

i s ACG* , then [a, b] i s the union of closed sets J . , j = 1,2,. . . ,

such that ? . i s /4C^(7.) for each j . In view of g ... being

dominated by 3nt±\ + h a n d 9 Q) ~ ^ ' w e s e e t h a t t n e functions G . . .

and, therefore, F ... , are 4C* (Z n Y.) uniformly in n(i) for each j .

Repeat the above process for X and the sequence F . . . obtained
£ 7X \l* 1

above and so on. Consequently, by the diagonal process, we obtain a new

subsequence fnu\ o f fn
 s^ch that / . •. (x) ->- f (x) almost everywhere in

la,bl as n(i) -*•<*• and that fnu\ i s generalized mean convergent to f

on la,bl with primitives F . being ACG* uniformly in n(i) . Then

i t follows from Theorem 3 that f is Perron integrable on [a,i>] and we have
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>a fn(i) {x)dx "* >a f(x)dx a s

Since every subsequence of f has a sub-subsequence which satisfies the

above expression, i t holds for the sequence f i tself , and the proof is
complete.

I t follows from the proof above that if / i s generalized mean

convergent on La, bl , then a subsequence of f i s control-convergent to

some function f on [a, bl . Similarly, we can prove that if / i s

control-convergent to f on La, bl , then there i s a subsequence of /

satisfying ( i i i ) . We remark that a simple and direct proof of Theorem 4
using the Henstock-Kurzweil integral is also possible (see [5; p. 86]).

The equivalence theorem in [7] states that f i s Perron integrable on
La, bl if and only if there is a control-convergent sequence {<\> } of step

functions such that (j> (x) •*• fix) almost everywhere in La, bl as n •*• => .

Consequently, Theorem 4, together with the equivalence theorem in [7] ,
gives the following alternative definition of the Perron integral.

THEOREM 5. A function f is Perron integrable on La bl if and only
if there is a sequence of step functions which is generalized mean
convergent to f on La,bl .

From a functional analytic point of view, the space of Perron
integrable functions i s nothing but the completion of the class of a l l step
functions under generalized mean convergence. As we can see, Theorem 2 is
a natural extension of the dominated convergence theorem and Theorem 4 that
of the mean convergence theorem. Since the Denjoy. Perron and Henstock-
Kurzweil integrals are a l l equivalent, the various convergence theorems are
valid for al l three integrals.
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