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COMPUTATIONS IN RELATIVE ALGEBRAIC K-GROUPS

WERNER BLEY and STEPHEN M. J. WILSON

Abstract

Let G be finite group and K a number field or a p-adic field
with ring of integers OK . In the first part of the manuscript
we present an algorithm that computes the relative algebraic
K-group K0(OK [G],K) as an abstract abelian group. We also
give algorithms to solve the discrete logarithm problems in
K0(OK [G],K) and in the locally free class group cl(OK [G]).
All algorithms have been implemented in Magma for the case
K = Q.

In the second part of the manuscript we prove formulae
for the torsion subgroup of K0(Z[G],Q) for large classes of
dihedral and quaternion groups.

1. Introduction

Let G denote a finite group. The study of the locally free class group cl(Z[G]) has
been to a very large extent motivated by questions and conjectures arising in the
field of Galois module theory. Among the large amount of existing work we mention
Fröhlich’s conjecture (proved by Martin Taylor [19]) on the Galois module structure
of rings of integers in tame Galois extensions of number fields and the Ω-conjectures
of Chinburg [9], extending and generalizing Fröhlich’s conjecture.

The locally free class group cl(Z[G]) is the subject of the following exact sequence
which is a truncation of the K-theory exact sequence of the functor ⊗ZR from
projective Z[G]-modules to R[G]-modules,

K1(Z[G]) −→ K1(R[G]) −→ K0(Z[G],R) ∂0−→ cl(Z[G]) −→ 0. (1)

Here, K0(Z[G],R) is the relative K0 of the functor. (See Section 2.1 for a brief
definition of this and similar relative groups or see [17, p. 215]. For a more general
view see [1, VIII §5]). The interest in K0(Z[G],R) stems mainly from arithmetic
geometry, where in recent years the study of the values of motivic L-functions at
the integers has led to some remarkable conjectures formulated in terms of elements
in K0(Z[G],R). Among this large body of work we mention the Tamagawa Number
Conjecture of Bloch and Kato, and in particular its equivariant refinement due
to Burns and Flach. In special cases (namely for Tate motives) these conjectures
refine and generalize the conjectures of Fröhlich and Chinburg mentioned above, cf.
[7], [4], [6]. Stark-type conjectures imply the validity of the Equivariant Tamagawa
Number conjectures modulo the rational subgroup K0(Z[G],Q) of K0(Z[G],R). It
is therefore of particular interest to study K0(Z[G],Q).
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Relative algebraic K-groups

Let K be a number field and write OK for its ring of algebraic integers. In [2],
Boltje and the first named author described an algorithm for the explicit compu-
tation of the locally free class group cl(OK [G]). This algorithm was implemented
in Magma for the case K = Q. Extending the methods of loc.cit., we derive an
explicit description of the relative group K0(OK [G],K) which is suitable for nu-
merical computations. Based on this description we develop an algorithm for the
computation ofK0(OK [G],K) as an abstract abelian group and a further algorithm
for the solution of the discrete logarithm problem in this group. (So the latter algo-
rithm takes an element of K0(OK [G],K) and expresses it in terms of the generators
given by the former). Using the K-rational analogue (3) of the exact sequence (1)
together with an explicit description of ∂0 this also solves the discrete logarithm
problem in cl(OK [G]). Finally, we describe how to compute the natural induction,
restriction and quotient maps with respect to our explicit description of the relative
group.

All algorithms have been implemented in Magma for K = Q. We conclude the
first part of the manuscript with some remarks on this implementation. The source
code and a sample file are available from

http://www.mathematik.uni-kassel.de/~bley/pub.html.
The second part of this manuscript is motivated by the following two observa-

tions.

(a) There were few theoretical results for checking the correctness of our imple-
mentation.

(b) Our numerical results clearly show that for certain types of groups, namely
dihedral and generalized quaternion groups, one could expect nice and sys-
tematic results.

We recall that the relative group that we target has a prime-by-prime decompo-
sition

K0(OK [G],K) �
∐
p

K0(OKp [G],Kp),

where the coproduct extends over all non-zero prime ideals p of OK . Each of the
groupsK0(OKp [G],Kp) is finitely generated and modulo torsion is simply described.
(It is naturally isomorphic to the character group of G over Kp.) The more difficult
and interesting part is its torsion subgroup,

DT(OKp [G]) := K0(OKp [G],Kp)tors.

We point out that if p does not divide the order of G, then DT(OKp [G]) is trivial.
Indeed, in this case OKp [G] is a maximal order and we may apply Theorem 2.4,
(ii).

By using sequences derived from cartesian squares and the special opportuni-
ties afforded by twisted group rings (extending the methods of [21]) we prove the
following results.

Theorem 1.1. Let G be a quaternion or dihedral group of order 2nm with (2,m) = 1.
(a) Let p be prime such that p | m and p2 � m. Then

DT(Zp[G]) � F×
p ×

∏
1<d|2n−1m/p

(
F×
prd

)sd/rd

,
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Relative algebraic K-groups

where sd is the order of the group Ud := (Z/dZ)× /{±1} and rd is the order of p
in Ud.

(b) Suppose that n = 2 or 3. Then

DT(Z2[G]) � C2 × C
(n−2) m+1

2
2 ×

∏
1<d|m

(
F×

2rd

)(n−1)sd/rd
,

where sd is the order of the group Ud := (Z/dZ)× /{±1} and rd is the order of 2
in Ud.

Our methods of proof apply to a much larger class of groups and we refer the
reader to Theorem 8.15 for a general result on metacyclic groups. As a further
example we state

Theorem 1.2. Let A4 be the alternating group of order 12. Then DT(Z3[A4]) and
DT(Z2[A4]) both have order 2.

2. Relative K-groups and their torsion

Much of this theory goes through very generally (see [1, Chapters VII to IX] and
e.g. [22]) but we restrict ourselves to the cases in point. We suppose thatK is a finite
extension field of Q (the global case) or of Qp (the local case). (After Subsection
2.1 we assume that K itself is global.) We put OK for the ring of integers of K.
Indeed, if L is a sum, ⊕iKi, of such fields we put OL for its maximal order, ⊕iOKi ,
and we denote by I(L) the group of fractional ideals of OL (so I(L) ∼= ⊕iI(Ki)).

We take A to be an OK-order in a semi-simple K-algebra A and we choose a
maximal order M in A containing A. Since the index |M : A| is finite, there is a full
(two-sided) ideal of M contained in A (e.g. |M : A|M) and we choose such an ideal
f, our conductor. We take C to be the centre, Z(A), of A and we put g := OC ∩ f.

2.1. Relative K-groups of arithmetic orders
In this subsection we recall the definition of the relative algebraic K-group of

A with respect to the functor extending its base ring OK to a field. We recall
also the basic exact sequences in which the relative group lies and relevant facts
about reduced norms. We identify a formula for the torsion subgroup of the relative
group. For a ring R, we write P(R) for the category of finitely generated projective
R-modules.

Let E/K be a field extension. We consider the category Φ(P(A),⊗OKE) whose
objects are triples (P, ϕ,Q), where P,Q ∈ P(A) and ϕ : P ⊗OK E −→ Q ⊗OK E
is an isomorphism of A ⊗K E-modules. A morphism (P, ϕ,Q) −→ (P1, ϕ1, Q1)
is a pair of morphisms u : P −→ P1, v : Q −→ Q1 of A-modules such that
ϕ1◦(u⊗idE) = (v⊗idE)◦ϕ. Clearly, this morphism is an isomorphism if and only if u
and v are isomorphisms. We denote the isomorphism class of (P, ϕ,Q) by ((P, ϕ,Q)).
We say that a sequence 0 −→ (P1, ϕ1, Q1) −→ (P, ϕ,Q) −→ (P2, ϕ2, Q2) −→ 0 in
this category is a short exact sequence if the component sequences 0 −→ P1 −→
P −→ P2 −→ 0 and 0 −→ Q1 −→ Q −→ Q2 −→ 0 are short exact sequences.

The group K0(A,⊗OKE), the relative K0 of A with respect to the functor
⊗OKK, is the abelian group generated by isomorphism classes of such triples with
relations ((P, ϕ,Q)) − ((P1, ϕ1, Q1)) − ((P2, ϕ2, Q2)) for each short exact sequence
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as above and ((P, ϕψ,R)) − ((P, ψ,Q)) − ((Q,ϕ,R)) for each P,Q,R ∈ P(A) and
isomorphisms ϕ : Q ⊗OK E −→ R ⊗OK E and ψ : P ⊗OK E −→ Q ⊗OK E. We
write [P, ϕ,Q] for the image of ((P, ϕ,Q)) in K0(A,⊗OKE). If the ground field K
is understood (as in the case where A = OK [G] for some finite group G) one often
writes K0(A, E) for K0(A,⊗OKE).

In fact, for any such E, K0(A,K) may be identified with a subgroup of K0(A, E)
and is, indeed, the most interesting part. So we shall restrict our attention to
K0(A,K). It is worth noting that, as can be readily deduced from the work below,
if A is commutative then the group, I(A), of invertible fractional ideals of A is
isomorphic to K0(A,K) (by a 
→ [a, 1,A]). Thus K0(A,K) can be viewed as a
(commutative) generalization of I(A) for non-commutative A.

We put DT(A) for the torsion subgroup of K0(A,K). Note that up to a nat-
ural isomorphism K0(A,K) depends only on A, since the functors, ⊗ZQ, ⊗OKK
and A⊗A from P(A) to P(A) are isomorphic. Indeed, K0(A,K) has an alternative
description as K0(Ht(A)) (also written K0T (A)), the Grothendieck group (with
respect to exact sequences) of Ht(A), the category of Z-torsion A-modules of finite
projective dimension (see [1, p. 432]). It then follows (by using the Chinese Re-
mainder Theorem decomposition of these torsion modules) that, for K global, we
have the following decompositions induced by the localisation functors:

K0(A,K) � ∐
pK0(Ap,Kp), DT(A) � ∐

p DT(Ap). (2)

The coproducts run over all the non-zero prime ideals p of OK . Here and below we
use the following standard notation. If p is a prime of OK , then Kp denotes the
completion of K at p. If M is an OK-module, we write Mp := M ⊗OK OKp for the
completion of M at p. Similarly, if V is a K-vector space, we set Vp := V ⊗K Kp.

If ρ : R → S is a ring homomorphism we write ki(ρ) : Ki(R) → Ki(S) for
the homomorphisms induced by S⊗R. We recall ([1, VII 5.3 or IX 6.3]) that our
relative group, as this name suggests, fits into the exact sequence of the functor
A⊗A : P(A) → P(A):

K1(A)
k1(λ)−→ K1(A) δA−→ K0(A,K) ∂0−→ K0(A)

k0(λ)−→ K0(A) (3)

Here δA([An, ϕ]) = [An, ϕ,An], ∂0[P, ϕ,Q] = [P ] − [Q] and λ : A → A is the
inclusion map.

Remark 2.1. We choose our notation “DT(A)” because (see Theorem 2.4(iii)) for
a group ring A, at least, DT(A) bears a similar relation to K0(A,K) = K0T (A) as
the “kernel” subgroup, D(A) does to K0(A). Indeed, ∂0 maps DT(A) onto D(A).

We make considerable use of the reduced norm nr = nrA : A× → C×, of its
extension to K1(A) and of the restriction of this to K1(A), these last two maps will
also be denoted nr. In view of (2) our work on the relative group will be almost
exclusively with local orders, even if we keep a global order in mind. We now group
together a number of the local results to which we shall need to refer. Recall that
SK1(A) is the kernel of the reduced norm on K1(A).

A ring R is called (left) hereditary if every left ideal of R is projective as a left R-
module. We recall that every maximal order over a Dedekind domain is hereditary.
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Theorem 2.2. In the local case:
(i) nr : K1(A) −→ C× is an isomorphism and nr(A×) = C×.
(ii) nrA ◦ δ−1

A induces an isomorphism nA : δA(K1(A)) −→ C×/nr(K1(A)). This
is natural with respect to extension of order: if B is an order containing A

then we have a commutative square.

δA(K1(A)) nA−→ C×/nr(K1(A))
↓ [B⊗A] ↓

δB(K1(A)) nB−→ C×/nr(K1(B))

(iii) The map A× −→ K1(A) is surjective and so nr(A×) = nr(K1(A)).
(iv) If A is hereditary then nr(A×) = OC

×.
(v) If A is commutative then SK1(A) = {0} and nr : K1(A) −→ A× is an iso-

morphism.
(vi) K0(A) is torsion free.

Proof. (i) We have nr(A×) = nr(K1(A)) = C× (see e.g. [8, Theorem 7.48] or [20,
X, Prop. 6]) and, by Wang’s theorem [18], SK1(A) = {0} (but this case is due to
Nakayama and Matsushima [15]).
(ii) nA is the composition of the two isomorphisms

δA(K1(A))
(δ−1

A
)−→ K1(A)/img(K1(A))

(nrA)−→ C×/nr(K1(A)).

The naturality follows from the fact that [B⊗A] ◦ δA = δB.
(iii), (v) & (vi) See [1, IX 1.4] (A is semilocal).
(iv) See e.g. [22, Theorem 2].

Part (ii) is a little unsatisfactory as it involves the rather ad hoc δA(K1(A))
(though this may be nicely described as the subgroup of triples involving only free
modules). The situation for group rings is neater.

Theorem 2.3. In the local case, if A is a group ring or a maximal order then
(i) In (3), k0(λ) is an isomorphism and so δA(K1(A)) = K0(A,K).
(ii) nA is an isomorphism nA : K0(A,K) → C×/nr(K1(A)).
(iii) If A is a maximal order then nA : K0(A,K) ∼−→ C×/OC

× ∼= I(C).

Proof. (i) See [1, X 1.3 & 1.4] — A satisfies the Cartan condition [1, X 1.7 & 1.8].
For (ii) see Theorem 2.2(ii) and for (iii) see Theorem 2.2(iv).

It follows from Theorem 2.3(i) (after a certain amount of diagram chasing) that,
in the global case, if A is a group ring or a maximal order then the cokernel of δA
consists of the locally trivial elements of K0(A), that is cl(A), the locally free class
group. So we have an exact sequence

K1(A) −→ K1(A) −→ K0(A,K) −→ cl(A) −→ 0 (4)

(see [8, Th. (32.1)] or [22, (7)]).
We can now give a formula for DT(A) in terms of reduced norms.
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Theorem 2.4. In the local case:
(i) nA gives an isomorphism from DT(A) to OC

×/nr(A×), and this group is
finite.

(ii) If A is hereditary (in particular, if A is a maximal order) then DT(A) = {0}.
(iii) The map on relative groups induced by ring extension (M⊗A) from A to a

maximal order gives an exact sequence

0 −→ DT(A) ↪→ δA(K1(A))
[M⊗]−→ K0(M,K) −→ 0. (5)

(iv) Non-canonically, δA(K1(A)) ∼= I(C) × DT(A)

Proof. Note first that by (3) and Theorem 2.2(vi), DT(A) ⊆ δA(K1(A)) so that
DT(A) = δA(K1(A))tors. By Theorem 2.2(ii) and Corollary 2.3, we have a com-
mutative diagram with exact rows and vertical isomorphisms (the one on the left
being forced by the other two):

0 −→ ker([M⊗]) −→ δA(K1(A))
[M⊗]−→ K0(M,K) −→ 0⏐⏐
 (nA)

⏐⏐
 nA

⏐⏐
 nM

0 −→ O×
C/nr(A×) −→ C×/nr(A×) −→ C×/O×

C −→ 0

(6)

We find (recall that the conductor f was chosen above) that∣∣O×
C/nr(A×)

∣∣ =
∣∣nr(M×)/nr(A×)

∣∣ �
∣∣M×/A×∣∣ �

∣∣M×/(Zp + f)×
∣∣

� |(M/f)×| < |M/f|.
So ker([M⊗]) ∼= O×

C/nr(A×) is finite. Moreover K0(M,K) ∼= I(C) is torsion free.
Thus

DT(A) = ker([M⊗]) ∼= O×
C/nr(A×)

and we have parts (i) and (iii). Morover, since I(C) is torsion free, (5) splits and
part (iv) follows.

Also, part (ii) follows from part (i) and Theorem 2.2(iv).

In the global case Ap is a maximal order for all but finitely many maximal ideals
p of OK so we have from (2):

Corollary 2.5. In the global case, also, DT(A) is finite.

We now give a description of DT(A) in terms of calculable finite groups. Recall
we have chosen a conductor f for A relative to M and that g = f ∩ C.

Theorem 2.6. (i) The reduced norm induces a homomorphism

μ : K1(A/f) −→ (OC/g)× .

(ii) We have a canonical isomorphism DT(A) ∼−→ cok(μ). In the local case it is
induced by nA.

Proof. We consider the local case first.
(i) Put Uf(A) := {a ∈ A× | a ≡ 1 mod f}. Note that Uf(A) = Uf(M). By

[2, Cor. 2.4], nr(Uf(A)) = Ug(OC). Whence, also, nr(UfM (M)) = Ug(OC), where
M = Matn(A). Thus the reduced norm induces a map

μ̃ : GL(A/f) −→ (OC/g)×
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and hence the map μ of (i).

(ii) We can now construct a diagram with exact rows:

0 → Uf(A) −→ A× −→ (A/f)× → 0
↓ nr ↓ nr ↓ μ′

0 → Ug(OC) −→ O×
C −→ (OC/g)× → 0

where μ′ factors via μ and has the same image since the map from (A/f)× to
K1(A/f) is surjective (the ring is semilocal). Now, since the left hand vertical map
is surjective, the cokernels of the other two are isomorphic. By Theorem 2.4(i) the
cokernel of the central arrow is canonically isomorphic to DT (A).

In the global case, for each maximal ideal p of OK the work above gives us maps

μp : K1(Ap/fp) → ((OC)p/gp)× (7)

and then isomorphisms induced by the Chinese Remainder Theorem give us our
homomorphism μ as the composite

μ : K1(A/f)
∼−→

∐
p

K1(Ap/fp)
‘
μp−→

∐
p

((OC)p/gp)×
∼−→ (OC/g)× .

Thus we obtain the composite isomorphism:

DT(A) ∼−→
∐
p

DT(Ap) ∼−→
∐
p

cok(μp)
∼−→ cok(μ). (8)

2.2. Local decomposition and uniformising parameters
In this section, continuing with the assigments and notation established above,

we assume the global case (so K is a finite extension of Q) and set up notation to
deal with the decomposition of A and the further decomposition of Ap for maximal
ideals p of OK . We finish by describing how, in the case where A is a group ring,
we set up an explicit isomorphism between K0(Ap,Kp) and I(Cp) × cok(μp).

The primitive idempotents of C = Z(A) will be denoted by e1, . . . , er. For i =
1, . . . , r, we set Ai := Aei. Then

A = A1 ⊕ · · · ⊕Ar (9)

is a decomposition into the indecomposable ideals Ai of A. Each Ai is a K-algebra
with identity element ei. By Wedderburn’s Theorem, the centers Ki := Z(Ai)
are finite field extensions of K via K → Ki, α 
→ αei, and we have K-algebra
isomorphisms Ai ∼= Matni(Di) for each i = 1, . . . , r, where Di is a division ring
with Z(Di) ∼= Ki. The Wedderburn decomposition (9) induces decompositions

C = K1 ⊕ · · · ⊕Kr (10)

and

OC = OK1 ⊕ · · · ⊕ OKr . (11)

Since M is a maximal OK-order of A, it contains the central idempotents ei and
decomposes into M = M1 ⊕ · · · ⊕Mr with Mi := Mei. As a consequence, the ideal
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f of M also decomposes into f = f1 ⊕ · · ·⊕ fr with ideals fi = fei of Mi and the ideal
g = OC ∩ f of OC decomposes similarly into ideals gi = gei of OKi .

In the following, p will usually stand for a maximal ideal of OK . For an OK-
module M we write Mp for the completion at p. We let

J(A) := {(ap)p ∈
∏
p

A×
p | ap ∈ A×

p for almost all p}

denote the (“finite”) idèles of A and write U(A) =
∏

p A×
p for the subgroup of

unit idèles. Here p runs through all maximal ideals of OK . One has canonical
isomorphisms

Ap
∼= Kp ⊗K A ∼=

r⊕
i=1

(Kp ⊗K Ai) ∼=
r⊕
i=1

((Kp ⊗K Ki) ⊗Ki Ai)

∼=
r⊕
i=1

⊕
P

(Ki)P ⊗Ki Ai
∼=

⊕
i,P

Ai,P (12)

involving various completions, where, for given i ∈ {1, . . . , r}, P runs through all
maximal ideals of OKi dividing p and Ai,P is defined as (Ai)P. More generally,
for any OKi-submodule Li of Ai, we denote by Li,P the P-adic completion of Li.
Using the above isomorphism, we will often write elements of J(A), resp. Ap, as
tuples (ai,P)i,P, where P ranges over all maximal ideals of OKi , resp. over those
that contain p. Similarly we denote by J(C) the group of idèles of C. Again one
has a canonical isomorphism

Cp
∼=

⊕
i,P

Ki,P (13)

and we will write elements in J(C), resp. Cp, often in the form (αi,P)i,P.
Although the torsion subgroup DT(A) of K0(A,K) is its most interesting part,

we need to be able to deal with the whole of K0(A,K) ∼= ∐
pK0(Ap,Kp) for most

applications. In the following proposition we give the way in which we will represent
K0(Ap,Kp) in the case where A is a group ring. (This will do in any case where
δAp is surjective but, in general, the more varied possibilities for local projectives
will need to be taken into account.) We put gi,p for the p-part, (gi)p ∩Ki, of gi and
we will use the decomposition:

(OC,p/gp)
× �

r⊕
i=1

(OKi/gi,p)
× (14)

Proposition 2.7. Let A = OK [G] for some finite group G. For each pair (i,P)
as in (13) we choose an element πi,P ∈ OKi which has valuation 1 at P and is
congruent to 1 modulo gP′ for each other prime P′ above p in Ki/K. Then (with
μp as in (7)) we have isomorphisms

K0(Ap,Kp)
nAp−→ C×

p /nr(A×
p )

ϕ̄−→ I(Cp) × cok(μp), (15)

where nAp is the natural isomorphism of Theorem 2.2(ii) and ϕ̄ is induced by

ϕ : C×
p −→ I(Cp) × (OC,p/gp)

×
,

ν = (ν1, . . . , νr) 
→
((∏

P PvP(νi)
)
i
, (ū1, . . . , ūr)

)
,

(16)
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with ui := νi
∏

P π
−vP(νi)
i,P (using the localisation of the decomposition (11) on the

left and the decomposition (14) on the right).

Proof. From the diagram (6), by implementing the conclusions of Theorems 2.4(iii),
2.3(i) and 2.6(ii), we have a diagram with exact rows (and canonical maps):

0 −→ DT(Ap) −→ K0(Ap,Kp)
[M⊗]−→ K0(Mp,Kp) −→ 0⏐⏐
 (nAp)

⏐⏐
 nAp

⏐⏐
 (nMp)

0 −→ cok(μp) −→ C×/nr(Ap
×) I−→ I(Cp) −→ 0

(17)

The rows split, since the right hand groups are torsion free, and any splitting of
the map I will give an isomorphism between C×

p /nr(A×
p ) and I(Cp)× cok(μp). Our

isomorphism, ϕ̄, is given by the splitting which sends the ideal corresponding to
the pair (j,P) to (a1, . . . , ar) ∈ ⊕iKi, where ai = 1 except aj = πj,P.

Remark 2.8. Since I(C) ∼= ∐
p I(Cp), isomorphisms from (15), (2) and (8) show

that if A = OK [G] then K0(A,K) ∼= DT(A) ⊕ I(C) ∼= cok(μ) ⊕ I(C).

3. An algorithm for the computation of K0(A,K)

We keep the notation of Section 2 but from here until Section 8, we take K to be
an algebraic number field and A = OK [G] for some finite group G. In this section
we present an algorithm which computes K0(Ap,Kp). By (2) it is straightforward to
combine this algorithm for various p to obtain K0(A,K). The algorithm presented
here has been implemented in Magma, cf. [14], however only forK = Q. We expect
it to be straightforward to extend it to arbitrary K.

Input: We assume that we are given a number field K, its ring of integers
R := OK and a finite group G. We let A denote the R-order R[G].

3.1. Computation of (OC,p/gp)×

In [2, Sec. 3.2] it is explained how one can compute the character fields Ki,
i = 1, . . . , r, and the two-sided ideal f. From this the ideals g of OC and gi of OKi

are easily deduced.
We note in passing that we can always take take f = |G|M by [8, Th. (27.1)],

but algorithmically it is much better to compute the conductor of A in M (see also
[2, Rem. 3.3]).

We use Algorithm 4.8.17 of [10] to compute the p-part gi,p of gi and then we can
use the decomposition (14) and Algorithm 4.2.21 of [11] component-wise in order
to compute (OC,p/gp)

×.

3.2. Computation of K1(Ap/fp)
The computation of K1(Ap/fp) is completely analogous to the computation of

K1(A/f) which is described in [2, Sec. 3.7]. The only difference is that we have to
start with the prime ideal decomposition of gp in [2, Sec. 3.4], i.e. we only consider
prime ideals P of OC lying over the prime ideal p of OK .

3.3. Computation of reduced norms
The definition and computation of reduced norms is described in [3, Sec. 3.2],

however, we sketch below an alternative algorithm to compute reduced norms based
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on the computation of reduced traces and Newton’s formulae.
We need to calculate the reduced norm nr(M) of a matrix M ∈ Mats(F [G]),

where F is a field of characteristic zero. Let E be an extension of F containing
|G|th roots of 1 and let X be the set of irreducible characters of G over E. (These
can, of course, be calculated from the characters of G over C.) For each χ ∈ X ,
let eχ and Aχ = eχE[G] be the idempotent and irreducible component of E[G]
corresponding to χ. Put dχ = χ(1G) for the degree of χ. Then

nr(M) =
∑
χ∈X

nrAχ(eχM).

If we choose an E-isomorphism ρχ : Aχ ∼= Matdχ(E) then the reduced norm of a
matrix N = (nij) ∈ Aχ is given by

nrAχ(N) = det(ρχ(N)),

where ρχ(N) ∈ Matsdχ(E) is defined by

ρχ(N) = (ρχ(nij))1�i,j�s .

As in [3, Sec. 3.2], we want to calculate this without calculating a matrix represen-
tation ρχ. We can do this by using the fact that we can easily calculate the trace of
ρχ(b) for an element b ∈ E[G]. In fact for g ∈ G, χ(g) = Tr(ρχ(g)). So, extending
χ linearly to E[G] we obtain Tr(ρχ(c)) = χ(c) for all c ∈ E[G] and therefore

Tr(ρχ(N)) =
s∑
i=1

χ(nii),

or, more generally for a natural number k,

Tr(ρχ(N)k) =
s∑
i=1

χ(n(k)
ii ), (18)

where
(
n

(k)
ij

)
is the matrix Nk. Of course, in (18) we have the sum of the kth pow-

ers of the eigenvalues of ρχ(N) and from these sums we can recover the elementary
symmetric functions in the eigenvalues, including det(ρχ(N)), by recursively ap-
plying Newton’s formulae. More explicitly, let λ1, . . . , λsdχ denote the eigenvalues
of ρχ(N). We set sk :=

∑
λki and write σk for the elementary symmetric functions

(so σsdχ =
∏
λi is the reduced norm which we aim to compute). Then

sk − sk−1σ1 + sk−2σ2 − · · · + (−1)k−1s1σk−1 + (−1)kkσk = 0

for k � sdχ.

3.4. Computation of cok(μp)
Recall the definition of μp given in (7). In Subsection 3.2 we computed a set of

generators of K1(Ap/fp) of the form (u) with u ∈ (Ap/fp)×. Each such element
we lift to an element in a ∈ A ∩ A×. By one of the methods of Subsection 3.3 we
compute nr(a) ∈ OC � ⊕ri=1OKi and a representative of nr(a) by componentwise
application of [11, Algorithm 4.2.24]. Using the Hermite Normal Form techniques
of [11, 4.1] we compute cok(μp).

This concludes the algorithm for the computation of DT(Ap).
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3.5. Computation of uniformizing elements
We must choose uniformizing elements as in Proposition 2.7. For each i ∈

{1, . . . , r} and each prime ideal P of OKi lying above p we compute a uniformizing
element π̃i,P and solve the system of simultanous congruences

πi,P ≡ π̃i,P(mod P2),

πi,P ≡ 1(mod Qmax(1,vQ(g))), ∀Q | p, Q �= P.

This concludes the algorithm for the computation of K0(Ap,Kp).

4. The logarithm in the relative group

From the algorithm described in Section 3 we obtain K0(Ap,Kp) as the direct
product of cok(μp), which is presented as an abstract finite abelian group, and
the finitely generated free abelian group I(Cp). Recall that we identified I(Cp)
and

∏
i

∏
P πZ

i,P. Hence our representation of K0(Ap,Kp) depends on the choice of
uniformizing elements πi,P.

Let [P, θ,Q] ∈ K0(A,K). In this section we develop an algorithm which computes
a representative of [Pp, θp, Qp] in terms of the explicit presentation produced by the
algorithm of Section 3.

Before we sketch the individual steps of the algorithm, we briefly digress to
describe the presentation of our data. We always assume that torsion free OK [G]-
modules X are given by a OK-pseudo-basis as described, for example, in [11, Def-
inition 1.4.1]. To be more precise, we assume that V := K ⊗OK X is given by an
K-basis v1, . . . , vd together with matrices A(σ) ∈ GLd(K) for each σ ∈ G describing
the action of G,

(σ(v1), . . . , σ(vd)) = (v1, . . . , vd)A(σ).

Then X = a1x1 ⊕ . . . ⊕ adxd, where each ai is a fractional ideal of OK and each
xi ∈ V .

If [P, θ,Q] ∈ K0(A,K), then we assume that V := K⊗OKP , resp.W := K⊗OKQ
is given by a K-basis v1, . . . , vd, resp. w1, . . . , wd, and with respect to these bases
θ is represented by a matrix A(θ) ∈ GLd(K),

(θ(v1), . . . , θ(vd)) = (v1, . . . , vd)A(θ).

4.1. Outline of the algorithm
We first note that by a fundamental result of Swan (see [8, Th. (32.11)]) every

finitely generated projective A-module P is locally free. The algorithm in Section
4.2 produces such a local basis which is contained in P .

The algorithm for the logarithm problem essentially consists of the following four
steps.
Step 1 Compute Ap-bases ν1, . . . , νm ∈ P and ω1, . . . , ωm ∈ Q of Pp and Qp.
Step 2 Compute the matrix S ∈ Glm(A) ⊆ Glm(Ap) such that

(θ(ν1), . . . , θ(νm)) = (ω1, . . . , ωm)S.

Step 3 Compute the reduced norm nr(S) = (λ1, . . . , λr) ∈ Z(A) ⊆ Z(Ap).
Step 4 Calculate ϕ̄(nr(S) mod nr(A×

p )) ∈ I(Cp) × cok(μp), with ϕ̄ as in Propo-
sition 2.7.
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We briefly explain Steps 2 to 4. Step 2 is basically linear algebra and needs
no further explanations. For Step 3 we can apply one of the two algorithms of
Subsection 3.3 and Step 4 is completely explained by Proposition 2.7.

In the next subsection we focus on Step 1, the computation of the local bases.

4.2. Computation of a local basis
Let P be a locally free A-module and p a non-zero prime ideal of OK . Let

F = OK/p denote the residue class field. Then B := A/pA is a finitely generated
F -algebra and P/pP is a free B-module. Let J = J(B) denote the Jacobson radical
of B. We set B̄ := B/J and P̄ := (P/pP )/J(P/pP ). If ω̄1, . . . , ω̄m ∈ P̄ is a B̄-basis
of P̄ , then Nakajama’s lemma (applied twice) implies that any lift ω1, . . . , ωm ∈ P
of ω̄1, . . . , ω̄m is an Ap-basis of Pp.

Algorithms for the computation of Jacobson radicals of associative algebras over
finite fields are, for example, discussed in [12, Sec. 2.3] or [13].

The algebra B̄ is semisimple and thus isomorphic to a direct product of matrix
rings Ms(E), where E is a finite field extension of F . The field E and the matrix
rings Ms(E) can be computed by combining the algorithms in [12, Sec. 2.4 and
2.5]. The B̄-module P̄ decomposes according to the decomposition of B̄. We are
therefore left with the following problem: Given a matrix algebra M = Mats(E)
over a (finite) field E and a free M -module X , compute an M -basis of X .

We let ekl denote the matrix (αij) ∈ M with αij = 0 for (i, j) �= (k, l) and
αkl = 1. Using basic linear algebra we compute an E-basis ν1, . . . , νms of e11X ,
where here m is the M -rank of X . We set

wk = e11ν(k−1)s+1 + . . .+ es1νks, k = 1, . . . ,m.

Lemma 4.1. The elements w1, . . . , wm form an M -basis of X.

Proof. Clearly Mw1 + . . .+Mwm ⊆ X . For the inverse inclusion we note that X =
e11X ⊕ . . .⊕ essX . Since eiiX = ei1e11e1iX ⊆ ei1e11X it suffices to prove e11X ⊆
Mw1 + . . .+Mwm. This is immediate from e1jwk = e11ν(k−1)s+j = ν(k−1)s+j .

5. The logarithm in the class group

We first briefly recall the main results of [2]. The sequence [2, 1.7a] gives an
explicit description of cl(A) as a quotient of a certain ray class group and in [2,
Section 3] this is used to construct an algorithm to compute cl(A) as an abstract
abelian group. In this section we describe an approach how to solve the logarithm
problem in cl(A) algorithmically. For a locally free A-module P we develop an
algorithm which computes a representative of [P ] − rk(P )[A] ∈ cl(A) in terms of
the explicit presentation produced by the algorithm of [2].

We denote by Ig = Ig(C) the group of fractional OC-ideals of C that are coprime
to g and have

Ig(C) = Ig1(K1) × · · · × Igr (Kr) .

For each i ∈ {1, . . . , r} we write ∞i for the formal product over real archimedian
places τ : Ki → R such that A ⊗Ki,τ R is a full matrix ring over the quaternions,
and we define the ‘ray modulo g∞’ by

P+
g = P+

g (C) := {(αiOKi)i ∈ Ig | αi ≡ 1 mod× gi∞i, for all i = 1, . . . , r} .
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Note that P+
g is a subgroup of Ig. The main result of [2] shows that

cl(A) � cok
(
K1(A/f)

ν−→ Ig/P
+
g

)
, (19)

where ν is induced by the reduced norm.
Let P be a finitely generated locally free A-module of rank d. We want to compute

(P ) = [P ]−d[A] ∈ cl(A) as an element of the right hand side in (19). We assume that
we can compute an A-basis of P⊗RK, which in many applications is easy (compared
to the problem of computing integral basis). Equivalently, we may assume that
P ⊆ Ad.

Since we already know how to solve the discrete logarithm problem in the relative
groups K0(Ap,Kp), the strategy is clear: we consider the element ω = [P, id,Ad] ∈
K0(A,K). Then ∂0(ω) = (P ) and it suffices for us to solve the discrete logarithm
problems for ωp = [Pp, id,Ad

p] in K0(Ap,Kp) for each p. In fact, we only need to
consider the finite set of prime ideals p such that vp([Ad : P ]OK ) �= 0, since ωp = 0
for any other prime ideal. It remains to provide, for a prime ideal p, an explicit
description of the map

∂0
p : I(Cp) × cok(μp) −→ cok

(
K1(A/f)

ν→ Ig(C)/P+
g

)
,

which is induced by the composite map K0(Ap,Kp) ⊆ K0(A,K) ∂0−→ cl(A). The
map ∂0 is just the (finite) sum over the ∂0

p .
Let ωp ∈ K0(Ap,Kp) be represented by (a, ξ̄) ∈ I(Cp)×cok(μp). Recall that this

representation depends on the choice of uniformizing elements πi,P for the primes
P of OKi lying above p. The conventions fixed in Proposition 2.7 are crucial for the
validity of the following algorithm.

Let

a =
∏
i,P

Pei,P , ξ = (ξ1, . . . , ξr),

with elements ξi ∈ (OKi,p/gi,p
)×, i = 1, . . . , r. We choose lifts ηi ∈ OKi of the

elements ξi and consider

γi := ηi
∏
P

π
ei,P

i,P ,

where the product extends over all primes P of OKi above p. Let now αi = (αi,q)q ∈
J(Ki) denote the idèle with αi,q = γi if q = p, and αi,q = 1 if q �= p. It follows from
the proof of [2, Th. 1.5] that the image of αi in Igi(Ki)/P+

gi
can be computed by

the following recipe:

Step 1 Compute β ∈ K×+
i such that

vP(αPβ − 1) � vP(gi) for all P with P | gi.

Step 1 Compute the ideal bi =
∏

P PvP(αi,Pβi).

Then ∂0
p(ωp) =

(
biP

+
gi

)
i
∈ ⊕iIgi(Ki)/P+

gi
(Ki) � Ig(C)/P+

g (C), which can be
computed by applying [11, Alg. 4.3.2] componentwise. Step 1 can be performed by
combining the Chinese Remainder Theorem with [11, Alg. 4.2.20].
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6. Induction, restriction and quotient map

For the moment we let R be an integral domain with quotient field K. Let E/K
be a field extension and S a subgroup of the finite group G.

We recall that we have canonical homomorphisms

resGS : K0(R[G], E) −→ K0(R[S], E),
indGS : K0(R[S], E) −→ K0(R[G], E).

If S is a normal subgroup we put Σ := G/S. In this case we also have

quotGΣ : K0(R[G], E) −→ K0(R[Σ], E).

We resume the notation of the previous sections, so K denotes a number field
as before. The aim of this section is to compute res, ind and quot in terms of given
explicit descriptions of the relative groups as products as in Proposition 2.7. For
a fixed subgroup S we let C′, f′, g′ etc. denote the data with respect to the order
OK [S]. We write Irr(S) for the set of absolutely irreducible characters of S. We fix a
Galois extension E of K which is a splitting field for both S and G. Then Gal(E/K)
acts on Irr(S) and we write IrrK(S) for a fixed set of orbit representatives. For
χ ∈ Irr(S) we let Kχ denote the field generated over K by the values of χ. With
these notations one has

K1(K[S])
⊆ ��

nr
��

K1(E[S])

nr
��∏

χ∈IrrK(S)

Kχ ��
∏

χ∈IrrK(S)

∏
τ
E =

∏
χ∈Irr(S)

E,

where the product over τ extends over all embedings τ : Kχ ↪→ E, respectively, and
the bottom map is given by

(αχ)χ∈IrrK(S) 
→ (τ(αχ))χ,τ . (20)

If G denotes a finite group and ψ and χ are two (virtual) characters of G, then
〈ψ, χ〉G denotes the standard scalar product. For a subgroup S of G and a character
ψ of S we write indGS (ψ) for the induced character. If χ is a character of G, then
resGS (χ) denotes the restriction of χ. Finally, if S is normal and Σ := G/S, then
infGΣ is the inflated character.

6.1. Restriction
We recall that resGS : K1(E[G]) −→ K1(E[S]) induces the map

resGS :
∏

χ∈Irr(G)

E −→
∏

ψ∈Irr(S)

E,

(αχ)χ∈Irr(G) 
→
⎛⎝ ∏
χ∈Irr(G)

α
〈χ,indG

S (ψ)〉G
χ

⎞⎠
ψ∈Irr(S)

. (21)

Let now ω ∈ K0(OKp [G],Kp) be an element which is represented by (a, ξ̄) ∈
I(Cp) × cok(μp), as in Proposition 2.7. Recall that this representation depends on
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the choice of uniformizing elements πi,P for the primes P of OKi lying above p. We
want to construct resGS (ω) as an element of

I(C′
p) × cok

(
μ′

p : K1(OKp [S]/f′p) −→
(OC′,p/g

′
p

)×)
,

where C′, μ′
p, f′ and g′ are chosen or defined with respect to OK [S] as C, μp, f and

g have been for A = OK [G]. Let

a =
∏
i,P

Pei,P , ξ = (ξ1, . . . , ξr),

with elements ξi ∈
(OKi,p/gi,p

)×, i = 1, . . . , r. From the explicit description of the
map ϕ in Proposition 2.7 we derive the following recipe. We choose lifts ηi ∈ OKi

which are coprime to P for all P | p and consider the elements

βi := ηiαi, where αi =
∏

P|p in Ki/K

π
ei,P

i,P .

We now map (β1, . . . , βr) to
∏
χ∈Irr(G)E using (20) and call the image (αχ)χ∈Irr(G).

Applying the map resGS as in (21) we obtain an element (γψ)ψ∈Irr(S). By general
theory (γψ)ψ∈Irr(S) is an element (γ1, . . . , γr′) of the subgroup

∏
ψ∈IrrK(S)Kψ.

Again by the recipe of Proposition 2.7 we now interpret (γ1, . . . , γr′) as an ele-
ment of Ip(C′) × cok(μ′

p).

6.2. Induction
We recall that indGS : K1(E[S]) −→ K1(E[G]) induces the map

indGS :
∏

ψ∈Irr(S)

E −→
∏

χ∈Irr(G)

E, (22)

(αψ)ψ∈Irr(S) 
→
⎛⎝ ∏
ψ∈Irr(S)

α
〈resG

S χ,ψ〉S

ψ

⎞⎠
χ∈Irr(G)

. (23)

The computation of the induction map is now completely analogous to the com-
putation of the restriction map.

6.3. Quotient
In this subsection the subgroup S is assumed to be normal and we let C′, f′, g′,

etc., denote the data with respect to the order OK [Σ].
The map quotGΣ : K1(E[G]) −→ K1(E[Σ]) induces the map

quotGS :
∏

χ∈Irr(G)

E −→
∏

ψ∈Irr(Σ)

E, (24)

(αχ)χ∈Irr(G) 
→
(
αinfG

Σ ψ

)
ψ∈Irr(Σ)

. (25)

Again, given this explicit description, the computation of the quotient map is
completely analogous to the computation of the restriction map.
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7. Computational results

In this section we briefly recount some of the machine computations which we
performed in order to check the correctness of our implementation. The interested
reader is referred to

http://www.mathematik.uni-kassel.de/~bley/pub.html,
where he can find a batch file which shows how to reproduce these computations.

Our implementation performs well as long as the the groups are of moderate
size, say |G| < 200. For example, the computation of K0(Z2[S5],Q2) takes about
5 minutes on a 2.2 GHz Dual Core AMD Opteron Processor 275, the computation
of K0(Z3[A6],Q3) took about 1 hour. In addition, for computations in the locally
free class group one also has to make sure that the character fields Ki, i = 1, . . . , r,
are small, say [Ki : Q] < 20. This is explained by the fact, that the algorithm for
computing the locally free class group requires the computation of certain ray class
groups which is computationally a very hard problem.

For cyclic groups G = Cp of prime order p, one has that DT(Zp[G]) (i.e.
K0(Zp[G],Qp)tors) is cyclic of order p− 1. We checked this for p < 100.

Let Dn denote the dihedral group of order 2n. For odd n it is known that
DT(Z2[Dn]) is trivial. This was confirmed by our implementation for n < 100. For
primes p one has DT(Zp[Dp]) � Cp−1, which we also checked for p < 100.

We computed DT(Zp[Q4n]) for n � 25 and p dividing 4n, where Q4n denotes
the generalized quaternion group of order 4n. In all cases where we have theoretical
results by Theorem 1.1 our machine computations gave the correct result.

For G = A4, the alternating group, we computed

DT(Z2[A4]) � C2, DT(Z3[A4]) � C2,

obtaining the correct results (see Theorem 1.2).
We used the results of Breuning [5, Lemma 6.7 and Theorem 6.8] to test our

implementations of induction and restriction.
In order to verify the correctness of the implementation of the discrete logarithm

algorithm in both the relative group and the locally free class group we computed
the discrete logarithm of certain Swan modules. Concretely, we computed the Swan
subgroup of the locally free classgroup in the situations of [8, Theorems (53.13),
(53.14), (53.16), (53.19)] for a list of small groups, each time obtaining the correct
result.

8. Some theoretical computations

In this section, to keep the number of brackets to a minimum we write RG,
rather than R[G] for a group ring.

If A is an order in a semi-simple p-adic algebra A, we will take the isomorphism
nA of Theorem 2.4(i) as an identification so that

DT(A) := O×
C/nrA(A×).

We denote by πA the canonical epimorphism from O×
C to DT(A). As usual we write

SK1(A) for the kernel of the reduced norm nrA : K1(A) −→ C×.
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Theorem 8.1. Let p be a prime and let

B
π1→ A1

↓ π2 ↓ ρ1
A2

ρ2→ T

(26)

be a cartesian square of rings (with at least one of ρ1 and ρ2 surjective) where B,
A1 and A2 are Zp-orders in semisimple Qp-algebras B, A1 and A2, respectively,
and T is finite.

(i) Then we have an exact sequence

SK1(B) π∗→ SK1(A1) ⊕ SK1(A2)
ρ∗→ K1(T ) ∂→ DT(B) → DT(A1) ⊕ DT(A2) → 0,

where π∗(x) = (k1(π1)(x), k1(π2)(x)) and ρ∗(x, y) = (k1(ρ1)(x)/k1(ρ2)(y)).

Assume that B = A1 ⊕A2 (with π1 and π2 the projections so that B ⊆ A1 ⊕A2)
and, for i = 1, 2, let σi : (OZ(Ai))

× → (OZ(B))× be given by σ1(x) = (x, 1),
σ2(x) = (1, 1/x). Then

(ii) ∂ ◦ k1(ρi) = πB ◦ σi ◦ nrAi : K1(Ai) → DT(B).

Proof. (i) We have a commutative diagram with exact rows and columns:

0 0 0
↓ ↓ ↓

SK1(B) → SK1(A1) ⊕ SK1(A2) → K1(T )
↓ ↓ ↓

K1(B) π∗→ K1(A1) ⊕K1(A2)
ρ∗→ K1(T ) → 0

↓ nrB nrA1 ↓ nrA2 ↓
0 → O×

Z(B) == O×
Z(A1)

×O×
Z(A2) → 0

↓ πB πA1
↓ πA2

DT(B) → DT(A1) ⊕ DT(A2) → 0
↓ ↓
0 0

where the second row is the Mayer–Vietoris sequence for the square, c.f. [1, VII
4.3]. It is truncated at K1(T ) since the succeeding groups are torsion free by [1, IX
1.4]. This gives us our result since (by, for instance, the snake lemma) the cokernel
at the top right is isomorphic to the kernel at the bottom left.
(ii) This is clear from the above diagram and follows from the explicit construction
of the connecting homomorphism ∂.

We note the immediate corollary:

Corollary 8.2. Let p be a prime and Δ be a finite abelian group of order prime
to p. Then DT(ZpΔCp) ∼= (FpΔ)×.

Proof. Consider the cartesian square:

ZpΔCp
π1−→ Zp[ζ]Δ

↓ π2 ↓ ρ1
ZpΔ

ρ2−→ FpΔ
(27)
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where ζ is a pth root of 1, π1 is induced by an isomorphism Cp ∼= 〈ζ〉 and π2 by the
trivial character on Cp.

Since Zp[ζ]Δ and ZpΔ are commutative and semilocal, their SK1’s vanish by [1,
IX 1.4]. Their DT’s vanish (Theorem 2.4 (ii)) because these orders are maximal.
FinallyK1(FpΔ) = FpΔ× again by [1, IX 1.4], so that the result follows by Theorem
8.1.

It can be quite difficult to determine the structure of DT(B) from the sequence
of Theorem 8.1(i) when both the image and the cokernel of ∂ are non-trivial. An
easy case is the following.

Lemma 8.3. With the data and notation of Theorem 8.1, suppose that DT(A1) =
{1} and that the canonical epimorphism πA2 : O×

Z(A2)
� DT(A2) is split. Then

the ring extension map η : DT(B) � DT(A2) is split and therefore DT(B) ∼=
∂(K1(T )) × DT(A2).

Proof. We have a commutative diagram with exact second row

O×
Z(A1) ×O×

Z(A2)

τ� O×
Z(A2)

↓ πB ↓ πA2

∂(K1(T )) → DT(B)
η
� DT(A2)

where τ is the natural projection. Since τ and πA2 are split πA2τ is split and hence
so is η.

We continue our analysis of Theorem 8.1 a little further to expose an easy case
where the canonical epimorphism πB : (OZ(B))× � DT(B) splits. Consider the
map ∂ ◦k1(ρi) : K1(Ai) → DT(B), for i = 1 or 2. Since its kernel contains SK1(Ai),
it factors through K1(Ai)

nr→ nr(A×
1 ),

K1(Ai)
∂◦k1(ρi) ��

nr

��

DT(B)

nr(A×
i )

ρ̂i

��������������

where we have put ρ̂i for the induced map.

Lemma 8.4. If ρ̂i is split surjective then πB : O×
Z(B) → DT(B) splits.

Proof. (We may assume i = 1.) Suppose that γ : DT(B) → nr(A×
1 ) splits ρ̂1.

Choose x ∈ DT(B) and y ∈ K1(A1) such that nrA1(y) = γ(x). Then

πB(σ1(γ(x))) = πB(σ1(nrA1(y))) = ∂(k1(ρ1)(y)) = ρ̂1(nr(y)) = ρ̂1(γ(x)) = x.

So σ1 ◦ γ splits πB.

Of course, if ρ̂i is surjective then DT(A1) = {1} = DT(A2).

The following lemma is useful in applying Theorem 8.1 when the SK1’s do not
vanish. What we would like is some easy-to-handle homomorphism ν : K1(T ) → U
whose kernel is the image of the SK1’s. . .
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Lemma 8.5. Let A be an order in a semisimple Qp-algebra A and let ρ : A → T
be a ring epimorphism where T is finite. Suppose that we have a group U and
homomorphisms ν and ρ′ making a commutative square:

K1(A) nrA−→ nrA(A×)
↓ k1(ρ) ↓ ρ′

K1(T ) ν−→ U

(i) We have an exact sequence

0 → ker(ρ′)
nr(ker(k1(ρ)))

−→ K1(T )
k1(ρ)(SK1(A))

(ν)−→ ρ′(nrA(A×)) → 0

where the first map is induced by k1(ρ) ◦ nr−1
A and the second by ν.

(ii) So if ker(ρ′) = nr(ker(k1(ρ))) we have an exact sequence

SK1(A)
k1(ρ)−→ K1(T ) ν−→ ρ′(nrA(A×)) → 0. (28)

(iii) In particular, this will hold if T is semisimple and the kernel of ρ′ is a pro-p-
group.

Proof. (i) and (ii). We may complete the square to a commutative diagram with
exact rows:

0 → SK1(A) ↪→ K1(A) nrA−→ nrA(A×) → 0
↓ ρ′′ ↓ k1(ρ) ↓ ρ′

0 → ker(ν) ↪→ K1(T ) ν−→ U

k1(ρ) is surjective since ρ is surjective and A is semilocal ([1, IX 1.4(1)]). So
img(ν) = ρ′(nrA(A×)) and, by the snake lemma, coker(ρ′′) ∼= ker(ρ′)/nr(ker(k1(ρ))).

(iii) If T is semisimple, then Z(T ) will be a sum of finite fields of characteristic p.
Thus K1(T ) ∼= Z(T )×, and hence the middle group in the sequence of (i) will
be of order prime to p. So the first group in the sequence, which is a p-group by
assumption, must be trivial.

To help construct and use a suitable homomorphism ν, as above, we develop
further machinery based on the relationship between certain determinant maps
and the corresponding reduced norms.

Definition 8.6. Let A be a ring which is finitely generated and projective as a
module over a commutative (but not necessarily central) subring R. We denote by
detR (= detA,R) the composite

detR : K1(A) −→ K1(R) −→ R×

of restriction and determinant homomorphisms.

Lemma 8.7. Suppose that R and A, as in the above definition, are Zp-orders in
semisimple algebras E and A, respectively (with E ⊂ A). Let x ∈ K1(A) with
image x̄ in K1(A). Then one has

(i) detR(x) = detE(x̄).
(ii) detR(x) = 1 for x ∈ SK1(A).
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Proof. (i) is clear since the ring extensions ⊗RE and ⊗AA are both given by
extension of scalars functor ⊗ZQ.

(ii) If x ∈ SK1(A), then nrA(x̄) = 1. Since nrA is injective this implies x̄ = 1. So
detR(x) = detE(x̄) = 1.

Let Γ be a finite group. We recall that a Γ-Galois algebra, L, is a direct sum
of fields on which Γ acts by ring automorphisms, so that Γ permutes the field
summands of L transitively and the stabilizer of each summand acts faithfully on
that summand. The fixed ring LΓ is then a field (essentially a “diagonal” embedding
of the fixed field of a summand) and dimLΓ(L) = |Γ|. It is convenient to note that
if K is one of the field summands and Δ is its stabilizer then L is isomorphic, as
a Γ-ring, to the co-induced ring MapΔ(Γ,K) of Δ-equivariant maps (Δ acting on
the left) from Γ to K with Γ action defined by γ(f) : γ′ 
→ f(γ′γ).

If the group Γ acts on the ring S by ring automorphisms and ψ is a 2-cocycle
in Z2(Γ, S×) then the twisted group ring (also known as a crossed product algebra)
S �ψ Γ is the free S-module

S �ψ Γ :=

{∑
γ∈Γ

rγ γ̂

∣∣∣∣∣ rγ ∈ S

}
,

on the symbols {γ̂ : γ ∈ G} with multiplication defined by the rules

γ̂δ̂ = ψ(γ, δ)γ̂δ, γ̂r = γ(r)γ̂

for γ, δ ∈ Γ and r ∈ S. If the cocycle is trivial then we may omit it from the
notation.

If S is co-induced from a subgroup of Γ, as with a Galois algebra, then this
construction produces a ring isomorphic to a matrix ring over a twisted group ring
formed with the subgroup:

Lemma 8.8. Let Γ be a finite group with subgroup Δ, of index n. Suppose that Δ
acts on a commutative ring R by ring automorphisms and put S for the co-induced
ring MapΔ(Γ, R). Choose ψ ∈ Z2(Γ, S×). Then

S �ψ Γ ∼= Matn(R�ψ! Δ),

where ψ! ∈ Z2(Δ, R×) is defined by ψ!(δ, δ′) = ψ(δ, δ′)(1R).

Proof. Take a left transversal T = {τ1, . . . , τn} of Δ in Γ. Let e ∈ S be the chac-
teristic function of Δ (so e(γ) is 1 if γ ∈ Δ and is 0 otherwise). Then ei := τi(e)
is the characteristic function of Δτ−1

i . Moreover, the ei are mutually orthogonal
idempotents and add up to 1. Thus, putting Φ = S �ψ Γ, for brevity, we have

Φ = ⊕
i,j
eiΦej = ⊕

i,j
τ̂ieτ̂

−1
i Φτ̂jeτ̂−1

j = ⊕
i,j
τ̂ieΦeτ̂−1

j = ⊕
i,j
τ̂iΛτ̂−1

j ,

where Λ = eΦe. Now Matn(Λ) = ⊕i,jΛEi j , where the Ei j are the (additive)
elementary matrices. So we have a group isomorphism ρ : Matn(Λ) −→ Φ given by
ρ(λEi,j) = τ̂iλτ̂

−1
j . Moreover, for λ, λ′ ∈ Λ = eΦe,

(τ̂iλτ̂−1
j )(τ̂kλ′τ̂−1

l ) =

{
τ̂iλλ

′τ̂−1
l if j = k

τ̂iλτ̂
−1
j ejek τ̂kλ

′τ̂−1
l = 0 otherwise,
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replicating the behaviour of the λEi j . So ρ is a ring isomorphism, also.
Now

Λ = ⊕
i

⊕
δ∈Δ

eSδ̂τ̂−1
i e = ⊕

i
⊕
δ∈Δ

Sδ̂eeiτ̂
−1
i = ⊕

δ∈Δ
(Se)δ̂ = (Se) �eψ Δ,

since, for γ, δ ∈ Δ, we have eγ̂δ̂ = eψ(γ, δ)γ̂δ. Moreover, evaluation at 1Γ gives a
Δ-isomorphism from Se to R. So Λ ∼= R �ψ! Δ.

(Of course, in the situation of the lemma, the map from H2(Γ, S×) to H2(Δ, R×)
induced by “!” is an isomorphism, since S× is induced from R×.)

Corollary 8.9. Assume the situation and notation of Lemma 8.8.
a) S �ψ Γ is simple, a maximal order or hereditary if and only if R�ψ! Δ is.
b) Suppose that R is a field and that Δ acts faithfully on R. Then S �ψ Γ is

simple.
c) Suppose that R is a Dedekind domain and that Δ acts faithfully on R. Put

R′ = RΔ and suppose that R is an R′-order. Then S �ψ Γ is a hereditary or a
maximal R′-order according as R is tamely ramified or unramified over R′.

Proof. Assertion a) is immediate from Lemma 8.8 because the properties of being
simple, maximal or hereditary hold for a ring Λ if and only if they hold for Matn(Λ).

b) That R �ψ! Δ is a simple algebra is a standard result (see e.g. [16, 29.6]
where R �ψ! Δ would be denoted (R/RΔ, ψ!)). The simplicity of S �ψ Γ follows
from part a).

In the same way we candeduce part c) from [8, (28.5) and (28.7)].

Lemma 8.10. Suppose that A = L �ψ Γ is a twisted group ring where L is a finite
direct sum of Γ-Galois algebras and ψ is a 2-cocycle of Γ with coefficients in L×.

(i) For x ∈ K1(A),
nrA(x) = detL(x)

(ii) Suppose A is a subring of A which is projective over R = A∩L and such that
the product map L⊗R A → A is bijective. Then, for x ∈ K1(A),

nrA(x) = detR(x).

(iii) If a is an ideal of R such that aA = Aa then we have a commutative square

K1(A) nrA−→ R×

↓ k1(ρ) ↓ σ
K1(A′)

detR′−→ (R′)×

where R′ = R/a, A′ = A/aA, ρ : A → A′ is the reduction map and σ is its
restriction.

(iv) If R is a Γ-invariant subring of L such that ψ has coefficients in R×, A =
R�ψ Γ and a is a Γ-invariant ideal of R, then the conditions of (ii) and (iii)
hold.

Proof. (i) We may assume that L is a single Galois algebra, since the general case
follows easily. So L is isomorphic as a ring to Kn for some field K and we may
assume that L = MapΔ(Γ,K) where Δ ⊆ Γ acts on K as a Galois group.
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Suppose first that Δ = {1}. With R = K and S = L, we adopt the notation of
the proof of Lemma 8.8. Then we may identify Λ with K and A = Φ � Matn(K).
Put eij = τ̂ieτ̂

−1
j (so ei = eii). Then, with fj =

∑
i eij , we find that A is free on

f = {f1, . . . , fn} over L = ⊕iKei.
Choose μ ∈ A× and let μ̂ ∈ AutA(A) be right multiplication by μ. With ρ as in

Lemma 8.8, let ρ−1(μ) = M = (mij) ∈ Matn(K), so that μ =
∑

ijmijEij . Then
fkμ =

∑
jmkjfj. Thus the matrix (with respect to f) of μ̂ ∈ AutL(A) is M and

detL(μ) = det(M) = nr(μ).
In the general case put F = LΓ, identified naturally with KΔ. Let N be a field

extension of F containing a copy of K. Then L⊗F N ∼= (K⊗F N)|Γ/Δ| ∼= N |Γ| and
(L ⊗F N)Γ ∼= N . So L ⊗F N is a Γ-Galois algebra which is “completely split” as
above and we can apply the above work to A⊗F N = (L⊗F N) �ψ Γ. Thus, with
μ̂ ∈ AutA(A), as above,

detL(μ̂) ⊗ 1 = detL⊗N(μ̂⊗ 1) = nrA⊗N (μ⊗ 1) = nrA(μ) ⊗ 1

Thus detL(μ) = nr(μ), as required.
Parts (ii), (iii) and (iv) are immediate.

Corollary 8.11. Suppose that we have L, A, R, A, a, R′ and A′ as in Lemma
8.10(i)-(iii) and such that L is finite dimensional over Qp and A′ is finite.

(i) Then we have an exact sequence

0 → ker(ρ) ∩ nr(A×)
nr(ker(k1(ρ))

−→ K1(A′)
k1(ρ)(SK1(A))

(detR′)−→ ρ(nr(A×)) → 0,

where (detR′) is induced by detR′

(ii) Suppose, further, that we have a cartesian square as in Theorem 8.1 such that
ρ1 : A1 → T is ρ : A → A′ as above and that

(a) ker(ρ) ∩ nr(A×) = nr(ker(k1(ρ)) and
(b) A2 is projective over a commutative subring R2 such that ρ2(R2) ⊆ R′

and A′ ∼= R′ ⊗R2 A2.

Then we have an exact sequence

0 → ρ(nr(A×))
∂ρ→ DT(B) → DT(A) ⊕ DT(A2) → 0,

where, for x ∈ nr(A×), ∂ρ(ρ(x)) = (x, 1)nr(B×).

Proof. (i) In Lemma 8.5, take ρ : A → T to be ρ : A → A′, ν = detR′ and
ρ′ : nr(A×) → (R′)× to be the restriction of σ (and hence of ρ). Then ker(ρ′) =
ker(ρ) ∩ nr(A×) and the result follows.

(ii) From A′ ∼= R′ ⊗R2 A2 we deduce

ρ2(detR2(x)) = detR′(k1(ρ2)(x))

for all x ∈ K1(A2). Hence k1(ρ2)(ker(detR2)) ⊆ ker(detR′). In addition, by Lemma
8.7 we have

k1(ρ2)(SK1(A2)) ⊆ k1(ρ2)(ker(detR2)).
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We consider the commutative diagram with exact rows

0 �� SK1(A) ��

��

K1(A)
nrA ��

k1(ρ)

��

nrA(A×) ��

ρ′

��

0

0 �� ker(detR′) �� K1(A′)
detR′ �� (R′)×

(29)

By (a) we have nrA(ker(k1(ρ))) = ker(ρ′), so that

ker(detR′) = k1(ρ)(SK1(A)) = k1(ρ)(SK1(A)) + k1(ρ2)(SK1(A2)).

By Theorem 8.1(i) we have

0 −→ K1(A′)
ker(detR′)

∂−→ DT(B) −→ DT(A) ⊕ DT(A2) −→ 0.

The exact sequence follows now since K1(A′)
ker(detR′ ) � ρ(nrA(A×)), as is implied by the

snake lemma applied to diagram (29).
Moreover if x ∈ nr(A×) and y ∈ K1(A) such that nr(y) = x then

∂ρ(ρ(x)) = ∂(k1(ρ)(y))
8.1(ii)

= (nr(y), 1)nr(B×) = (x, 1)nr(B×),

as required.

Remark 8.12. By Lemma 8.5(iii), if ker(ρ′) = ker(ρ)∩nr(A×) is a pro-p-group and
A′ is semisimple then (a) of Corollary 8.11(ii) holds. Moreover, the semisimplicity
of A′ implies that ρ(nr(A×)) is a finite group of order prime to p. Therefore the
restriction ρ′ : nr(A×) → ρ(nr(A×)) splits. By Theorem 8.1(ii) we have the following
diagram

K1(A)
∂◦k1(ρ) ��

nr

��

DT(B)

nr(A×)
ρ ��

ρ̂
������������

ρ(nr(A×))

∂̄ρ

��

Hence if the rest of the conditions in Corollary 8.11(ii) hold and ∂ρ is an isomor-
phism then, by Lemma 8.4, πB splits. �

We are now in position to prove Theorem 1.2.

Proof of Theorem 1.2. The alternating group A4 is the semidirect product V �C3

of the Klein group by a group of order 3 acting faithfully.
Correspondingly, C3 acts on QV ∼= Q ⊕ QV/(s) ∼= Q ⊕ Q(3), where s is the sum

of the elements of V and C3 permutes the factors of QV/(s) which is, therefore, a
C3-Galois algebra.

So QA4
∼= (QV )�C3

∼= QC3 ⊕
(
(Q(3)) � C3

) ∼= QC3 ⊕Mat3(Q), by Lemma 8.8.

(i) Also Z3V/(S) ∼= Z3
3. So, similarly, Z3A4

∼= Z3C3 ⊕ Mat3(Z3).
Hence DT(Z3A4) ∼= DT(Z3C3) ∼= F×

3 by Corollary 8.2.

(ii) Pushing out the projections of Z2A4 onto its images in the factors of the decom-
postion Q2A4

∼= Q2C3 ⊕ (Q2V/(s)) �C3, we obtain the following cartesian square:
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Z2A4 −→ (Z2V/(s)) � C3

↓ ↓ ρ1
Z2C3

ρ2−→ (Z/4)C3.

(30)

Put, now, A1 = (Z2V/(s))�C3 to save space. Now both DT(Z2C3) and SK1(Z2C3)
are trivial, by Theorem 2.2(iv) and (v). Therefore Theorem 8.1 gives us the exact
sequence:

SK1(A1) → K1((Z/4)C3) → DT(Z2A4) → DT(A1) → 0. (31)

Now Z(A1) = Z2 and the reduced norm (of QA1) restricted to the centre is just
cubing. But Z×

2 is a pro-2-group and so the cubing map Z×
2 → Z×

2 is an isomorphism.
Thus, simply by considering elements in the centre, we can conclude that

nr(K1(A1)) = Z×
2 = O×

Z(QA1). (32)

So DT(A1) is trivial.
Again, virtually the same argument shows that

nr(ker(k1(ρ1))) = ker(ρ1) ∩ Z×
2 . (33)

Thus, by Corollary 8.11(i) and (31), DT(Z2A4) ∼= ρ1(Z×
2 ) = (Z/4)×.

Lemma 8.13. Let R be a semisimple ring, Γ a finite group which acts on R by ring
automorphisms and ψ ∈ Z2(G,R×). Suppose that there exists an element u ∈ R
such that TrΓ(u) :=

∑
γ∈Γ γ(u) = 1. Then R�ψ Γ is semisimple.

Proof. Let f : V −→ W an epimorphism of R �ψ Γ-modules. We choose a R-
splitting s′ : W −→ V of f . Then s :=

∑
γ∈Γ γusγ

−1 is the desired R�ψ Γ-splitting
of f .

Theorem 8.14. Suppose that p is a prime, Cp = 〈σ〉 is a cyclic group of order p,
Γ is a finite group, Γ is a quotient of Γ and L is a p-adic Γ-Galois algebra which
is unramified over Qp. Let Γ act on Cp so that the total action of Γ on LCp is
faithful. Put S for the maximal order of L and B = (SCp)�εΓ, where ε is a 2-cycle
in Z2(Γ, S×). Then DT(B) ∼= (SΓ/(p))× and πB splits.

Proof. Consider the Cartesian square of ring epimorphisms:

SCp �ε Γ π1−→ S[ζ] �ε Γ
↓ ↓ ρ1

S �ε Γ
ρ2−→ (S/p) �ε Γ

(34)

where S[ζ] = S ⊗ Z[ζ] with ζ a pth root of 1 and π1 is induced by an isomorphism
Cp ∼= 〈ζ〉. Name the rings in the square B, A1, A2 and T as in the square (26).

The summands of L[ζ] are tame extensions of those of L and thus the orders
A1 and A2 are hereditary by Corollary 8.9. Therefore DT(A1) and DT(A2) are
trivial by Theorem 2.2(iv). In particular, nr(A×

1 ) = Z(A1)× = (S[ζ]Γ)×, so that
ρ1(nr(A×

1 )) = (SΓ/(p))×.
Take the square (34) to be that of Corollary 8.11(ii), with R = S[ζ], a = (1− ζ)

and, up to an obvious isomorphism, R′ = S/(p). Then condition (b) is satisfied by
taking R2 = S. Since p is unramified in S, the ring R′ is a finite sum of fields and is
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therefore semisimple. Moreover there exists u ∈ R′ such that TrΓ(u) = 1, so that by
Lemma 8.13 we conclude that T is semisimple. In addition, ker(ρ)∩R× = 1−(1−ζ)R
is a pro-p-group so, by Remark 8.12, condition (a) of Corollary 8.11 is satisfied and
the result follows by Corollary 8.11.

Theorem 8.15. Let G be the group extension (ΔCp) �ψ Γ, where p is a prime
number and

(i) Γ and Δ are finite abelian groups of order prime to p,

(ii) Γ acts by group automorphisms on Δ and Cp with the action on Cp being
faithful and

(iii) ψ is a 2-cocycle in Z2(Γ,Δ).

Then

DT (ZpG) ∼= ((ZpΔ)Γ/(p))×

(Note that alternative descriptions are ((FpΔ)Γ)× and (M/(p))×, where M is the
maximal order in (QΔ)Γ.)

Proof. We can represent QpΔ as a direct sum
⊕

ij Fij of p-adic fields where, for
each i, {Fij} is an orbit under the action of Γ. The sum Li =

⊕
j Fij of an orbit is

then a Galois algebra for some quotient Γi of Γ. Since the order of Δ is prime to p
the Galois algebras Li are unramified.

Now ZpΔ is the maximal order in QpΔ and so is the direct sum of the maximal
orders Si in each Li. Morover ψ splits up as the sum of 2-cocycles ψi in Z2(Γ, S×

i ).
Thus

ZpG = (ZpΔCp) �ψ Γ =
⊕
i

(SiCp) �ψi Γ.

Hence, by Theorem 8.14,

DT(ZpG) =
⊕
i

DT((SiCp) �ψi Γ) ∼=
⊕
i

(SΓ
i /(p))

× = ((ZpΔ)Γ/(p))×,

as required.

Taking Δ = {1} we have

Corollary 8.16. Let G = Cp � Γ, where p is a prime and Γ is a group of auto-
morphisms of Cp. Then DT(ZpG) ∼= F×

p . �

Remark 8.17. LetK be an abelian extension of Q of degree d and with conductor n
(or n∞). Let H(K) be the kernel of the natural (Artin) map (Z/n)× → Gal(K/Q).
If p is a prime not dividing n then OK/(p) ∼= (Fpr )d/r, where r is the order of
the image of p in (Z/n)×/H(K) (and hence the order of the Frobenius at p in
Gal(K/Q)).

After these preparations we are finally in position to prove Theorem 1.1.

Proof of Theorem 1.1. Let G be a dihedral or quaternion group of order 2nm with
odd m and let p be a prime such that p | m and p2 � m. Then

G = (ΔCp) �ψ Γ,
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with Δ � C2n−1m/p, Γ � C2 acting by inversion and ψ ∈ Z2(Γ, C2n−1) (for de-
tails see, for example, [8, Examples (7.39), (7.40)]). So, by Theorem 8.15, we have
DT(Zp[G]) � (M/(p))×, where M denotes the maximal order in (QΔ)Γ. Now

(QΔ)Γ �
∏
d||Δ|

Q(ζd)+,

where Q(ζd)+ denotes the maximal real subfield of the cyclotomic field Q(ζd). Part
(a) follows from Remark 8.17.

We now turn to prove part (b) and first assume that |G| = 4m with odd m.
Then Z2Cm is the maximal order in Q2Cm and is therefore isomorphic to∏

1�d|m
Sd,

where Sd = Z[ζd] ⊗ Z2. Since G = CmC2 �ψ Γ we obtain

Z2G ∼=
∏

1�d|m
(SdC2) �ψ Γ.

Now

S1C2 �ψ Γ ∼=
{

Z2V, if G is dihedral,
Z2C4, if G is quaternion,

and, therefore, in either case,

DT(S1C2 �ψ Γ) ∼= C2.

For 1 < d | m we set Ad := SdC2 �ψ Γ and Ad := Qp ⊗Zp Ad. Then Ad is a sum of
Γ-Galois algebras and so, by Theorem 8.14,

DT(Ad) ∼= (SΓ
d /(2))× ∼= (Z[ζd]Γ/(2))×. (35)

and
πAd

: O×
Z(Ad) −→ DT(Ad) splits. (36)

The result for n = 2 now follows from (35) combined with Remark 8.17.
Henceforth we assume n = 3, so that |G| = 8m with odd m. Then with the same

notation as before
Z2G ∼=

⊕
1�d|m

(SdC4) �ψ Γ.

Now

S1C4 �ψ Γ ∼=
{

Z2Q8, if G is quaternion,
Z2D8, if G is dihedral,

and therefore, in either case

DT(S1C4 �ψ Γ) ∼= C2
2 .

Suppose that 1 < d | m. We have a cartesian square:

SdC4 �ψ Γ −→ Sd[i] �ψ Γ
↓ ↓ ρ1

SdC2 �ψ Γ
ρ2−→ (Sd/2)C2 �ψ Γ
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where Sd[i] = Z[ζd, i] ⊗ Z2.
Since d is odd and greater than 1, Z[ζd, i] is the ring of integers in Q[ζd, i]

and Q[ζd, i] is unramified over Q[ζd, i]Γ. Thus Z[ζd, i] �ψ Γ is a maximal order
in Q[ζd, i] �ψ Γ. Localizing, therefore, DT(Sd[i] �ψ Γ) = {0}, nr((Sd[i] �ψ Γ)×) =
(Sd[i]Γ)× and nr(1 + 2Sd[i] �ψ Γ) = 1 + 2 (Sd[i])Γ, since even nr(1 + 2Sd[i]) =
1+2 (Sd[i])Γ. (On QSd[i], the reduced norm coincides with the algebra norm (com-
ponentwise the field norms) into (Sd[i])Γ. Since the extension is unramified, this
norm preserves the unit filtration.)

From the last two equations it follows immediately that

ker(ρ1) ∩ nr((Sd[i] � Γ)×) = 1 + 2 (Sd[i])Γ = nr(ker(k1(ρ1))).

We set S+
d := SΓ

d and S−
d := {a ∈ Sd | γ(a) = −a}, where Γ = 〈γ〉. It follows easily

that

ρ1(nr((Sd[i] � Γ)×)) = {ā+ b̄ ∈
(
Sd
(2)

C2

)Γ

| a ∈ S+
d , b ∈ S−

d , a+ bi ∈ Sd[i]×}.

Since Sd is unramified over SΓ
d , it is Γ-cohomologically trivial. Therefore, there

exists for each b ∈ S−
d an element c ∈ Sd such that γ(c) − c = b. It follows that

b+ 2c ∈ S+
d , so that indeed

ρ1(nr((Sd[i] � Γ)×)) = ((Sd)Γ/(2)C2)×.

Therefore, from Corollary 8.11(ii), we have an exact sequence

0 → ((Sd)Γ/(2)C2)× → DT((SdC4) �ψ Γ) → DT((SdC2) �ψ Γ) → 0.

By (36) and Lemma 8.3 this sequence is split. Moreover, we have an exact sequence

0 → 1 + (1 − σ)(Sd)Γ/(2) → ((Sd)Γ/(2)C2)× → ((Sd)Γ/(2))× → 0,

where σ generates C2. This sequence also splits since the first group is an elementary
abelian 2-group (of rank φ(d)/2) and the third has odd order (since 2 is unramified in
Sd). Using the result and work of the case n = 2, the present result now follows.

As special cases we explicitly state

Corollary 8.18. Let p be an odd prime number and let G be a quaternion or
dihedral of order 2np. Then DT(ZpG) is isomorphic,
(i) if n = 1, to F×

p ;

(ii) if n = 2, to (F×
p )(2);

(iii) if n = 3, to (F×
p )(3);

(iv) if n = 4, to (F×
p )(5) or (F×

p )(3) × F×
p2 according as p ≡ ±1 or ±3 mod 8;

(v) if n = 5, to (F×
p )(9), (F×

p )(5) × (F×
p2)

(2) or (F×
p )(3) × F×

p2 × F×
p4 , according as,

mod 16, p ∈ {±1}, {±9} or {±3,±5}.
Corollary 8.19. (i) Let G be quaternion or dihedral of order 60, then
(a) DT(Z3G) ∼= (F×

3 )(2) × (F×
9 )(2) and (b) DT(Z5G) ∼= (F×

5 )(4).
(ii) Let G be quaternion or dihedral of order 84, then
(a) DT(Z3G) ∼= (F×

3 )(2) × (F×
27)

(2) and (b) DT(Z7G) ∼= (F×
7 )(4).

192https://doi.org/10.1112/S1461157000001480 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000001480


Relative algebraic K-groups

References

1. H.Bass, Algebraic K-theory, Benjamin, New York 1968. 166, 168, 169, 170,
182, 183, 184

2. W. Bley, R. Boltje, Computation of locally free class groups, in F. Hess,

S. Pauli, M. Pohst (Eds.), Algorithmic Number Theory, Lecture Notes in
Computer Science 4076, Springer (2006), 72–86. 167, 171, 174, 177, 178

3. W. Bley, M. Breuning, Exact algorithms for p-adic fields and epsilon constant
conjectures, preprint 2006, to appear in Illinois Journal of Mathematics. 174,
175

4. W. Bley, D. Burns, Equivariant epsilon constants, discriminants and étale
cohomology, Proc. London Math. Soc. 87 (2003), 545–590. 166

5. M. Breuning, Equivariant epsilon constants for Galois extensions of number
fields and p-adic fields, Phd thesis, King’s College London, 2004. 181

6. M. Breuning, D. Burns, Leading terms of Artin L-functions at s = 0 and
s = 1, Compositio Math. 143 (2007), 1427–1464. 166

7. D. Burns, Equivariant Tamagawa numbers and Galois module theory I, Com-
positio Math. 129 (2001), 203–237. 166

8. C. Curtis, I. Reiner, Methods of representation theory, volume I and II.
Wiley, 1981 and 1987. 170, 174, 176, 181, 186, 191

9. T. Chinburg, Exact sequences and Galois module structure, Ann. of Math.
121 (1985), 351–376. 166

10. H. Cohen, A course in computational algebraic number theory, Springer Ver-
lag (1993). 174

11. H. Cohen, Advanced topics in computational number theory, Springer Verlag
(2000). 174, 175, 176, 178

12. W. Eberly, Computations for Algebras and Group Representations, Phd
thesis, University of Toronto, 1989. 177

13. K. Friedl, L. Rónyai, Polynomial time solutions for some problems in compu-
tational algebra, in Proceedings, 17th ACM Symposium on Theory of Com-
puting, Providence, 1985, 153–162. 177

14. Magma, Version V2.14-9, Sydney. 174
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