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Abstract

In 1974, Erdős posed the following problem. Given an oriented graph H, determine or
estimate the maximum possible number of H-free orientations of an n-vertex graph. When
H is a tournament, the answer was determined precisely for sufficiently large n by Alon and
Yuster. In general, when the underlying undirected graph of H contains a cycle, one can
obtain accurate bounds by combining an observation of Kozma and Moran with celebrated
results on the number of F-free graphs. As the main contribution of the paper, we resolve all
remaining cases in an asymptotic sense, thereby giving a rather complete answer to Erdős’s
question. Moreover, we determine the answer exactly when H is an odd cycle and n is
sufficiently large, answering a question of Araújo, Botler and Mota.

2020 Mathematics Subject Classification: 05C20 (Primary); 05C35 (Secondary)

1. Introduction

Given a fixed graph H, over all n-vertex graphs G what is the maximum number of 2-edge
colourings of G which contain no monochromatic copy of H? This very natural question was
first asked by Erdős and Rothschild [11] in 1974 for the special case of H = K3. This case
was resolved by Yuster [26] who in turn asked what happens for H = Kk. This problem, for
large n, was solved by Alon, Balogh, Keevash and Sudakov [2] who in addition solved it
for H being any edge-colour critical graph (defined as graphs in which the removal of some
edge decreases the chromatic number). The question has attracted a lot of attention over the
years and has been generalised in a number of ways; we point the interested reader to the
numerous papers citing [2], e.g. [5, 20, 23, 24].
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In the same paper from 1974, Erdős [11] also raised the following closely related problem.
Given an oriented graph H, what is the maximum possible number of H-free orientations of
an n-vertex graph? Let D(n, H) denote the answer to this question. Erdős asked to determine
or estimate D(n, H). For an undirected graph F, let ex(n, F) be the maximum number of
edges in an n-vertex F-free graph. Writing F for the underlying undirected graph of H,
we have a trivial lower bound D(n, H) ≥ 2ex(n, F) since if G is an F-free graph, then any
orientation of G is H-free. Alon and Yuster [3] showed that when H is a tournament, this
simple lower bound gives the correct answer. That is, if T is a tournament on k vertices, then
D(n, T) = 2tk−1(n) holds for sufficiently large n, where tk−1(n) denotes the number of edges
in the (k − 1)-partite Turán graph on n vertices. Their general argument, which follows the
approach used in [2], relies on a regularity lemma and hence results in a requirement for
n to be extremely large. For the special case of 3-vertex tournaments they give a different
approach which solves the problem for the transitive tournament on three vertices for all n
and only requires n to be larger than about 10000 for the directed 3-cycle C3 (here and below,
Ck denotes the directed k-cycle with the standard orientation). As an aside, we remark that
the number of H-free orientations of a random graph G = G(n, p) has also been studied for
various choices of H, e.g. for H = Ck (see [1, 10]). Recently, Araújo, Botler and Mota [4]
determined D(n, C3) for all values of n and asked what happens if H is a directed cycle of
arbitrary length, even if we are only interested in the case of large n. Our first result is an
exact answer to their question for odd cycles.

THEOREM 1·1 For any k ≥ 1 there exists n0 = n0(k) such that if n ≥ n0, then

D(n, C2k+1) = 2�n2/4�.

In fact, our argument, which follows closely the ideas of both [2] and [3], applies for any
H which is an orientation of an edge-colour critical graph, showing that D(n, H) = 2ex(n, F)

for large enough n in such cases.
A natural next question is what happens for other graphs. As suggested by Erdős, obtain-

ing an approximate understanding of the answer is already interesting. Using a short and
beautiful argument involving a version of the classical Sauer–Shelah lemma on VC dimen-
sion of sets, Kozma and Moran [19] proved that the number of orientations of a fixed graph
G without H is always at most the number of F-free subgraphs of G, where as usual F is
the underlying graph of H. Hence, one can obtain upper bounds for D(n, H) from known
results on the number of n-vertex F-free graphs, which is an extensively studied subject on
its own.

In the following result we trade precision for generality. It is obtained by combining the
result of Kozma and Moran with that of Erdős, Frankl and Rödl [13].

PROPOSITION 1·2. Given an oriented graph H with underlying graph F, then

D(n, H) = 2ex(n, F)+o(n2).

This result establishes the answer up to lower order terms for any oriented graph whose
underlying graph is non-bipartite, since ex(n, F) = �(n2) for any non-bipartite F. The case
of bipartite underlying graphs turns out to be more difficult, mostly due to the fact that their
Turán numbers are much less well understood. The next proposition relies on a result of
Ferber, McKinley and Samotij [15].
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PROPOSITION 1·3. Let F be a graph containing a cycle, and assume that there exists a real
number α such that ex(n, F) = �(nα). Then for any orientation H of F, we have

D(n, H) = 2�(nα).

Although it is generally believed that such an α exists for every bipartite graph F, this is
still a wide open conjecture. For a survey of the vast literature about the extremal number of
bipartite graphs, see [16].

The above results provide us with good understanding of D(n, H) whenever the underlying
graph of H contains a cycle. This leads to the natural question of what happens in the remain-
ing case, namely when H is an orientation of a forest F. Since in this case ex(n, F) = �(n)
(provided that F has at least two edges), we have D(n, H) = 2�(n). On the other hand,
the approach of bounding D(n, H) with the number of n-vertex F-free graphs only gives
D(n, H) = 2O(n log n). Up to this point, all the results are consistent with D(n, H) = 2�(ex(n, F)),
which might suggest that in the remaining cases, when H is an orientation of a forest F, the
same should hold.

As a natural starting point one might ask what happens with perhaps the simplest example
of an oriented forest, namely the directed path on k edges, which we denote by Pk. We show
that in this case the trivial lower bound is indeed tight up to a multiplicative absolute constant
in the exponent.

THEOREM 1·4. For any k ≥ 2 and any n ∈N,

D(n, Pk) ≤ 23kn.

This result also suggests that D(n, H) should always be 2�(ex(n, F)). However, perhaps
surprisingly, it turns out that this is not the case. As we will see in a moment, there are
even orientations of a path for which the answer is 2�(n log n). We completely resolve the
remaining cases by showing that for every oriented forest H with at least two edges, either
D(n, H) = 2�(n) or D(n, H) = 2�(n log n). We also provide a precise characterisation for when
each case occurs.

An oriented graph H is said to be antidirected if there exists a bipartition V(H) = A ∪ B
of the vertex set such that every u ∈ A has 0 incoming edges and every v ∈ B has 0 outgoing
edges. It is not too hard to see that antidirected forests are exactly those oriented forests H
with the property that any n-vertex directed graph with at least Cn edges, for sufficiently
large C, contains H. So in particular, D(n, H) = 2�(n) for any antidirected forest H. Despite
this it turns out that there are many more oriented forests for which the answer is also 2�(n).
The following definition precisely captures all such oriented forests.

Definition. We call an oriented graph H 1-almost antidirected if there exists a biparti-
tion V(H) = A ∪ B of the vertex set such that there are no edges inside H[A] and H[B],
every u ∈ A has at most one incoming edge and every v ∈ B has at most one outgoing
edge.

For example, the path with the usual orientation is 1-almost antidirected, but there
are orientations which are not. See Figure 1 for an orientation of the path with 5 ver-
tices which is not 1-almost antidirected (the second and the fourth vertex must be on
the same side in a bipartition, but the former has two out-edges and the latter has two
in-edges).

We are now ready to state the value of D(n, H) for oriented forests.
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Fig. 1. Q is an example of an oriented path which is not 1-almost antidirected.

THEOREM 1·5. Let H be an oriented forest with at least two edges. Then

D(n, H) =
{

2�(n) if H is 1-almost antidirected,

2�(n log n) otherwise.

Notation. In this paper, no loops, multiple edges or bidirected edges are allowed in our ori-
ented graphs. The underlying (undirected) graph of an oriented graph is the graph obtained
by removing the orientations from all edges. An in-neighbour u of a vertex v is a vertex
for which uv is an edge. An in-leaf in an oriented tree is a leaf whose only edge is directed
towards the leaf. We define out-neighbours and out-leaves analogously.

2. Counting H-free orientations of graphs
2·1. General oriented graphs

In this section, we show how to deduce Proposition 1·2 and Proposition 1·3 from known
results.

Let H be an arbitrary oriented graph. As before, let us write F for the underlying undi-
rected graph of H. For a graph G, write D(G, H) for the number of H-free orientations of
G and denote by N(G, F) the number of F-free spanning subgraphs of G. Moreover, write
N(n, F) for the number of F-free graphs with vertex set [n]. Kozma and Moran [19] proved
that N(G, F) is an upper bound for D(G, H).

THEOREM 2·1 (Kozma–Moran [19]). Let F be an undirected graph and let H be an
orientation of F. Then for any undirected graph G,

D(G, H) ≤ N(G, F).

In particular, for any n ∈N,

D(n, H) ≤ N(n, F).

Perhaps surprisingly, the proof uses an inequality about set systems. Given a set system
A on ground set X, we say that S ⊂ X is shattered by A if for every T ⊂ S, there exists
some A ∈A with A ∩ S = T . Let us write str(A) for the collection of subsets of X which are
shattered by A. A general version of the celebrated Sauer–Shelah lemma [22] states that
|A| ≤ |str(A)|.

To see that this inequality implies Theorem 2·1, fix an orientation Q of G. Identify the
power set of E(G) with the set of orientations of G by identifying A ⊂ E(G) with the ori-
entation of G which differs from Q precisely on the edge set A. Let A be the collection of
subsets of E(G) which are identified with H-free orientations of G. Clearly, |A| = D(G, H).
On the other hand, assume that some S ⊂ E(G) is shattered by A. Then the graph formed
by the edges in S is F-free. Indeed, if it did contain F as a subgraph, then there would exist
an orientation of the edges in S which contains a copy of H. This means that S could not be
shattered by A. Thus, |str(A)| ≤ N(G, F) and Theorem 2·1 follows.
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The function N(n, F) has been extensively studied. Similarly to D(n, H), we have the
trivial lower bound N(n, F) ≥ 2ex(n, F) since if G is an F-free graph, then any subgraph
of G is also F-free. This has been shown to be almost tight first for complete graphs by
Erdős, Kleitman and Rothschild [14] and then for general non-bipartite graphs by Erdős,
Frankl and Rödl [13], who proved that N(n, F) = 2ex(n, F)+o(n2) (see [6] for an improved error
term). Combined with Theorem 2·1 and the trivial lower bound for D(n, H), this implies
Proposition 1·2.

However, this gives an unsatisfactory answer for bipartite graphs F as in that case
ex(n, F) = O(n2−εF ) for some εF > 0. Since any F-free graph on vertex set [n] has at most
ex(n, F) edges, we get a straightforward upper bound

N(n, F) ≤
ex(n, F)∑

k=0

((n
2

)
k

)
,

which implies that N(n, F) ≤ 2Cex(n, F) log n for some constant C. The logarithmic factor is
necessary when F is acyclic with maximum degree at least 2. Indeed, in this case ex(n, F) =
O(n), but it is easy to see that there are 2�(n log n) graphs on vertex set [n] with maximum
degree 1. On the other hand, it is not known in general whether the logarithmic factor is
necessary for graphs that contain a cycle. In this direction, settling a classical conjecture of
Erdős it was shown by Morris and Saxton [21] that N(n, C2k) = 2Ok(n1+1/k), generalising a
previous result of Kleitman and Winston [17], and complementing the classical Bondy–
Simonovits bound ex(n, C2k) = Ok(n1+1/k) [9]. Balogh and Samotij [7, 8] established a
similar result for complete bipartite graphs in place of even cycles. These results were gen-
eralised greatly by Ferber, McKinley and Samotij [15]. They showed that if F is a graph
containing a cycle and there are positive constants α and A such that ex(n, F) ≤ Anα , then
there exists a constant C depending only on α, A and F such that for all n, N(n, F) ≤ 2Cnα

.
This result, combined with Theorem 2·1 and D(n, H) ≥ 2ex(n, F), implies Proposition 1·3.

2·2. Directed path

In this subsection we will prove Theorem 1·4. Let G be an n-vertex graph. Our task is
to show that there are at most 23kn orientations of G which do not contain Pk. Let us fix a
canonical ordering of the vertices of G. We will count the number of orientations with the
help of the following algorithm. It takes as input an orientation of G. In each step, it processes
a vertex and updates the current “state” for every vertex that has not been processed yet. We
will show that, provided the orientation is Pk-free, the potential states are severely restricted.
We then use this to bound the number of possible orientations.

Algorithm: Initially, we assign to every vertex v a state (av, bv) = (0, 0). At step i we have
a sequence of already processed vertices v1, . . . , vi−1 and possibly the next vertex to be
processed vi.

(i) If vi is not specified, it is chosen as a vertex in V(G) \ {v1, . . . , vi−1} with largest avi ,
breaking ties by choosing such a vi first in the canonical ordering.

(ii) We now proceed to process vi. We consider all edges between vi and not already
processed vertices.

(i) If all these edges are oriented towards vi, we do not specify vi+1 and continue to the
next step.
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(ii) Otherwise we choose vi+1 to be the out-neighbour v of vi with largest value of bv

(breaking ties by choosing such a v first in the canonical ordering) and

(a) we increase au by one for any (non-processed) out-neighbour u of vi and
(b) we increase bu by one for any (non-processed) in-neighbour u of vi which had

bu ≤ bvi+1 .

Let us first look at what is going on here. The algorithm reveals the orientation of the
edges of G bit by bit; specifically at step i it will reveal the orientation of all (not already
revealed) edges incident to vi, the vertex we are currently processing. In particular, by the
end of step i the algorithm has revealed the orientation of all edges incident to v1, . . . , vi.
Note that the orientation of these edges determines uniquely the first i steps of the algorithm,
regardless of how the remaining edges are oriented (in other words, the algorithm is by this
point completely independent of the orientation of the remaining edges). Roughly speaking,
we think of the states av and bv as the length of a directed path ending and starting at v,
respectively, only using the already revealed edges, or in other words using only already
processed vertices (apart from v itself). This is captured more precisely in the following
lemma.

LEMMA 2·2. If the algorithm assigned state (av, bv) to v (at any time) then the orientation
contains a directed path of length av ending in v and a path of length bv − 1 starting with v.

Proof. Let v1, . . . , vn be the order in which the vertices are processed. Observe that both
av and bv are non-decreasing throughout the process and are never updated once we process
v. Let at, bt denote the final value of avt , bvt so in particular at the point when we process vt.

We are first going to show by induction on t that there is a path of length at least at ending
in vt which only uses previously processed vertices. For the base case t = 1, we know that
a1 = 0 so the claim trivially holds. Now given vt, let i < t be the last step at which point avt

was updated (if avt was never updated, then at = 0 and our claim is trivial). Take the smallest
j such that vj, vj+1, . . . , vi form a directed path oriented towards vi. In particular, this means
that vj was not an out-neighbour of vj−1 and it was chosen as a vertex with maximum av

among all yet unprocessed vertices. As vt was not yet processed at this stage, it follows that
we had avt ≤ avj at step j. Since after this point avt could only have been incremented when
processing vj, . . . , vi, we know that at ≤ aj + i − j + 1. In addition, we know by induction
that there is a path of length aj ending at vj and using vertices only from {v1, . . . , vj} to which
we can append vj . . . vivt to obtain the desired path of length aj + i − j + 1 ≥ at.

Turning now to the bv’s, we are going to show by induction on t that there is a path of
length at least bt − 1 starting with vt, which otherwise only uses vertices in {v1, . . . , vt−2}.
The base case t = 1 is trivial. Also, observe that if bvt got incremented at most once, i.e.
bt ≤ 1, the claim also holds trivially. Let us now consider the penultimate (second to last)
step i at which point bvt was updated. Observe that by definition, our algorithm will only
increment bvt when processing vj if vtvj is an edge and vjvj+1 is an edge. In particular, this
implies that we did not update bvt at step t − 1, and hence i ≤ t − 3, since we chose i to be
the penultimate step which updated bvt . The fact that we incremented bvt when processing
vi means that at that time bvt was at most bvi+1 . Since this was the penultimate time bvt

was incremented, we know that bt ≤ bi+1 + 2. By induction we can find a path of length
bi+1 − 1 starting with vi+1 which otherwise only uses vertices from the set {v1, . . . , vi−1}.
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This means that we can prepend vtvivi+1 to this path to obtain a new one of length bi+1 − 1 +
2 ≥ bt − 1 which only uses vertices from the set {v1, . . . , vi+1} (apart from vt). But i ≤ t − 3,
so {v1, . . . , vi+1} is a subset of {v1, . . . , vt−2}, as desired.

The above lemma tells us that if our orientation was Pk-free, then av, bv ≤ k throughout
the process. Keeping this in mind, the following lemma considers the part of the orientation
revealed before step i of our algorithm and gives a bound on the number of ways in which
one can complete this partial orientation into a Pk-free one.

LEMMA 2·3. Assume that up to step i our algorithm processed vertices v1, . . . , vi−1 and
assigned the state (av, bv) to any remaining vertex v. We fix the orientation of edges incident
to vertices v1, . . . , vi−1 which leads to this state. There are at most∏

v∈V(G)\{v1,...,vi−1}
(k + 2) · 22k−av−bv

ways to orient the remaining edges to complete the orientation without creating a Pk.

Before turning to the proof, note that for i = 1 no part of the orientation was specified and
av, bv = 0 for every v, so the lemma tells us there are at most (k + 2)n22kn ≤ 23kn orientations
of G without a Pk, establishing Theorem 1·4.

Proof. Observe first that Lemma 2·2 guarantees that av, bv ≤ k as otherwise any orientation
we produce would contain a Pk.

We will prove this by reverse induction on i. For the base case of i = n there are no
remaining edges to orient so the claim holds trivially, since avn , bvn ≤ k.

Let us assume that it holds if we start from step i + 1 and any state. Given the orientation
of the edges incident to v1, . . . , vi−1, we can determine which vertex will be vi. We will
now consider all the ways in which we can extend our partial orientation to include the
orientation of all edges incident to vi. That is, we consider all the ways we can orient the
edges between vi and W := V(G) \ {v1 . . . , vi}. For each extended partial orientation, we
will use the induction hypothesis to bound the number of ways it can be completed into a
Pk-free orientation. Summing over all choices for the orientation of the edges between vi

and W, we will get the desired bound.
If vi has all its unspecified edges (i.e. edges to W) oriented towards vi then the state of

every remaining vertex remains unchanged and the induction hypothesis tells us that there
are

∏
v∈W (k + 2) · 22k−av−bv ways to complete it into a Pk-free orientation.

Otherwise our algorithm will choose vi+1 to maximise bv among out-neighbours v ∈ W
of vi. Assume this maximum is equal to b. Let us denote by d the number of neighbours
v ∈ W of vi (in the underlying undirected graph G) which have bv at most b. We know
that any other neighbour of vi in W must be an in-neighbour of vi (by maximality of b).
In particular, there are at most 2d orientations of the edges incident to vi which result
in this choice of b. For any such orientation, we claim that our algorithm increased the
sum

∑
v∈W (av + bv) by d. Indeed, any out-neighbour of vi had its av incremented and any

in-neighbour among the d neighbours with bv ≤ b had their bv incremented. This means that
regardless of how we orient, by the induction hypothesis the number of ways to complete
any of these orientations is at most 1/2d ∏

v∈W (k + 2) · 22k−av−bv . Since there are 2d pos-
sible orientations of the edges incident to vi (given this choice of b) and k + 1 choices for
0 ≤ b ≤ k, this gives at most (k + 1)

∏
v∈W (k + 2) · 22k−av−bv different ways to complete our
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Fig. 2. H1,2.

Fig. 3. H−
1,2.

initial orientation. Adding this to the contribution of the case without any out-neighbours of
vi and using avi , bvi ≤ k we obtain the claimed bound.

2·3. General trees

In this section we will complete the proof of Theorem 1·5. As already discussed in
Section 2.1, we always have D(n, H) ≤ 2O(n log n) when H is an orientation of a forest. Let
us now take G = K�n/2�,�n/2� (with an extra isolated vertex if n is odd), and orient all its
edges from one part of the bipartition to the other (say from left to right), except for a sin-
gle perfect matching which we orient in the other direction. Observe first that there are
�n/2�! = 2�(n log n) such orientations, since this is the number of choices for the match-
ing that we have. As any such orientation of G is 1-almost antidirected, this shows that
if H is not 1-almost antidirected then D(n, H) = 2�(n log n), as claimed in the second part of
Theorem 1·5.

To establish the first part, we need to show that for any 1-almost antidirected forest H there
are at most 2O(n) H-free orientations of any n-vertex graph. We will actually show that this
holds for a certain universal oriented tree H which contains all k-vertex 1-almost antidirected
oriented forests. We define this universal oriented tree recursively, layer by layer.

The starting point is the tree H1,t, which is defined as follows. It has a root v which has
one in-neighbour v0 and t out-neighbours v1, . . . , vt. Furthermore, v0 has t in-neighbours
and each of v1, . . . , vt has a single out-neighbour and t in-neighbours in addition to v. See
Figure 2 for an illustration. In our recursive definition it will be convenient to have another
building block which we call H−

1,t and which is obtained from H1,t by deleting the subtree
rooted at v0. See Figure 3 for an illustration. Hs,t is now defined by taking Hs−1,t and append-
ing a copy of H1,t to every out-leaf

1
and a copy of H−

1,t to every in-leaf. See Figure 4 for an
illustration.

Observe first that Hk,k contains any 1-almost antidirected tree on k vertices. This is due
to the fact that in Hk,k every non-leaf vertex at even depth has one in-neighbour and at
least k out-neighbours and every vertex at odd depth has one out-neighbour and at least k

1 Recall that an out-leaf is a leaf whose only edge is oriented away from the leaf.
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Fig. 4. Part of H2,2.

Fig. 5. Illustration of how we find C5.

in-neighbours, which allows one to simply greedily embed any 1-almost antidirected tree
(starting from the root of Hk,k to ensure that a leaf of Hk,k is not encountered). Observe also
that Hk+1,k contains any 1-almost antidirected forest on k vertices. This follows since if we
remove the root and its neighbours, the remaining oriented graph contains many (at least
k) pairwise vertex-disjoint subtrees which are isomorphic to Hk,k, and we can embed the
1-almost antidirected trees making up our 1-almost antidirected forest into separate ones.
With this in mind, the following theorem is the key result we need to prove in order to
establish the remaining case of Theorem 1·5.

THEOREM 2·4. Let k,s,t be positive integers. Let G = (X, Y) be a bipartite graph on n
vertices. Then there are at most 2Ok,s,t(n) orientations of G which contain no Hs,t with the
root in X and in which there are at most k out-edges from each y ∈ Y.

Here and below, the notation Ok,s,t means that the implied constant can depend on k, s
and t. We will prove this theorem by induction on s. We will prove the case s = 1 separately,
as it will both serve as the base case and be useful in the induction step.

LEMMA 2·5. Let k, t be positive integers. Let G = (X, Y) be a bipartite graph on n ver-
tices. Then there are at most 2Ok,t(n) orientations of G which contain no H1, t with the root in
X and in which there are at most k out-edges from each y ∈ Y.

Proof. Set T := max (|V(H1,t)|, kt) = Ok,t(1).

Let D be an orientation of G which contains no H1, t with the root in X and in which there
are at most k out-edges from each y ∈ Y . Let Y1 = Y and let X1 be the set of vertices in X
which have at least one in-edge in D. Note that there are at most 2n possibilities for X1. Let

https://doi.org/10.1017/S0305004122000147 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004122000147
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Y2 ⊆ Y1 be the set of vertices in Y1 which have at least T + k neighbours in X1. There are at
most 2(T+k)(|Y1|−|Y2|) ways to orient the edges incident to Y1 \ Y2. Consider the subset X2 ⊆
X1 consisting of vertices which have an in-neighbour in Y2. Since every vertex y ∈ Y1 \ Y2

has at most T + k neighbours in X1, there are at most (T + k)(|Y1| − |Y2|) vertices in X1

which have a neighbour in Y1 \ Y2, and we can specify the subset of them which got removed
from X1 to obtain X2 in at most 2(T+k)(|Y1|−|Y2|) many ways. We repeat as long as we can,
i.e. until we obtain subsets X� ⊂ X1 and Y� ⊂ Y1 which have the following properties: every
vertex of X� has an in-neighbour in Y� and every vertex in Y� has at least T + k neighbours
inside X�. By the above counting, the number of possibilities for X�, Y� and the orientations
of the edges incident to (X \ X�) ∪ (Y \ Y�) is at most 2n · 22(T+k)|Y1| ≤ 2n+2(T+k)n.

If Y� = ∅, then we have already revealed the entire orientation of G, so there are at most
2n+2(T+k)n such suitable orientations. Assume that Y� = ∅. We claim that this, together with
the assumption that any vertex in Y� ⊆ Y has at most k out-neighbours in X, guarantees that
we can find a copy of H1,t in D[X� ∪ Y�] with the root in X�, which is a contradiction. Indeed,
fix one edge incoming from Y� at every vertex in X�. These edges span vertex disjoint out-
directed stars of size at most k with centres in Y�. In particular, there are at least |X�|/k
centres. Since each centre has at least T + k neighbours in X�, at most k of which can be
out-neighbours, there are at least T in-neighbours. Since T ≥ tk, this means that some vertex
v ∈ X� is an in-neighbour of at least t distinct centres v1, . . . , vt of our out-stars. Picking one
out-edge per star gives us an out-directed tree consisting of root v and t vertex-disjoint paths
of length 2. Note also that it is guaranteed that there is an in-neighbour v0 ∈ Y� of v (which
is distinct from v1, . . . , vt since they are its out-neighbours). What remains to be done is to
find t in-neighbours for each of v0, . . . , vt which we can do greedily since each of them has
at least T ≥ |V(H1,t)| in-neighbours in X�. So we found a copy of H1,t as claimed, and are
done.

Let us now define the oriented tree H∗
s,t,t′ by modifying Hs,t so that every vertex in the

penultimate layer has t′ instead of t out-leaves attached to it. Note that if t′ ≥ t, then Hs,t′
contains H∗

s,t,t′ as a subgraph.

In the induction step, we will use the following key lemma.

LEMMA 2·6. For every k,s,t there exists t′ = t′(k, s, t) as follows. Let D = (X, Y) be a
bipartite oriented graph such that there are at most k out-edges from each y ∈ Y. Assume
that D contains a copy of H∗

s,t,t′ with the root in X and assume that each leaf in this copy is

the root of an H1,t′ . Then D contains Hs+1,t with the root in X.

Proof. Throughout the proof, we assume that t′ is sufficiently large.

Take a subgraph K in D which is isomorphic to H∗
s,t,t′ with the root in X and in which

every leaf is the root of an H1,t′ . Choose also a subgraph L(w) isomorphic to H1,t′ with root
w for every leaf w in K. Observe that for every leaf w of K, w has a unique in-neighbour in
L(w), call this vertex f (w) and note that f (w) ∈ Y .

Claim. K has a subgraph K′ isomorphic to Hs,t with the same root as K such that for every
out-leaf w in K′, the vertex f (w) is not in V(K′), and all these f (w)’s are distinct.

Proof of Claim. To get a subgraph of H∗
s,t,t′ isomorphic to Hs,t, we need to keep t of the t′

out-leaves for every vertex of the penultimate layer. We can do this one by one in an arbitrary
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order. We just need to pay attention that for each out-leaf w that we keep, the vertex f (w)
should be different from every vertex that is already in K′, and moreover all the f (w)’s for
different w’s should be different. This can be done; indeed, every f (w) is in Y and every
y ∈ Y has at most k out-edges in D, so at any point the number of forbidden choices for w is
at most 2|V(Hs,t)| · k, hence t′ > 2|V(Hs,t)| · k suffices.

It remains to extend K′ to a copy of Hs+1,t. For this, we need to “attach” a copy of H1,t to
each out-leaf in K′, and we need to attach a copy of H−

1,t to each in-leaf in K′ in a way that
all new vertices are distinct from each other and from the vertices of K′.

We begin by extending K′ by joining f (w) to w for each out-leaf w of K′. By the above
claim, all of these f (w)’s are distinct and disjoint from K′. Next for every leaf w of K′ we
want to append t vertex disjoint (apart from sharing the start vertex w) paths of length 2
directed away from w. This can be done since L(w) gives us t′ > |V(Hs+1,t)| vertex disjoint
paths of length 2 starting at w, so no matter how many vertices we already embedded we
still have one of these paths available.

It remains to attach t in-neighbours to each vertex in the penultimate layer of our partial
Hs+1,t. Since the vertices in the penultimate layer are in the middle layer of some L(w), we
know that each of these vertices has at least t′ in-neighbours in D so once again we will
always have enough of them available.

Proof of Theorem 2·4. We will use induction on s. The case s = 1 is Lemma 2·5. Assume
now that we have verified the statement for s − 1. Let k, s, t be positive integers and let
t′ = t′(k, s − 1, t) from Lemma 2·6.

Let D be an Hs,t-free orientation of G with the property that there are at most k out-
edges from every y ∈ Y . Let X1 be the set of vertices in X which are roots of a copy of
H1,t′ in D and let X2 = X \ X1. Clearly there are at most 2n possibilities for X1. The oriented
graph D[X2 ∪ Y] contains no H1,t′ with the root in X2, so the number of possibilities for the

orientation of G[X2 ∪ Y] is at most 2
O

k,t
′ (n)

by Lemma 2·5. Moreover, since D is Hs,t-free,
Lemma 2·6 implies that D[X1 ∪ Y] contains no copy of H∗

s−1,t,t′ , and hence also no copy of

Hs−1,t′ , with the root in X1. Then by induction there are at most 2
O

k,s−1,t
′ (n)

possibilities for
the orientation of G[X1 ∪ Y]. Combining all three upper bounds, the result follows.

Finally let us deduce the first part of Theorem 1·5.

COROLLARY 2·7. Let k ≥ 1, let G be an n-vertex graph and let H be a k-vertex 1-almost
antidirected forest. There are at most 2Ok(n) different H-free orientations of G.

Proof. The proof is by induction on k. For the base case note that the k ≤ 2 case is trivial.
Let us now assume that the statement holds for forests with k − 1 vertices. We may w.l.o.g.
assume that H has an in-leaf. Let H′ denote the oriented forest obtained from H with this
leaf removed. Given an orientation D of G, let X be the subset of V(G) consisting of vertices
with out-degree at least k. There are 2n different options for X. Let Y = V(G) \ X. Observe
first that if we could find H′ inside X then we could extend it to a copy of H in D since every
vertex of X has out-degree at least k. This means that by induction there are at most 2Ok−1(n)

many ways to orient the edges inside X. There are at most |Y|k ≤ kn edges inside Y , so the
edges inside Y can be oriented in at most 2kn many ways. Finally, the number of ways to
orient the edges between X, Y in a way that any vertex in Y has at most k out-edges and
without creating a copy of Hk+1,k is at most 2Ok(n) by Theorem 2·4. Since H ⊆ Hk+1,k, this
completes the proof.
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2·4. Odd cycles

We will assume some familiarity with the basic directed regularity lemma, the specific
details needed are given in Section 2 of [3]. Since the use of regularity in our argument is
essentially the same as in both [2, 3], we will not go into more technical details of these
parts and will refer the reader to either of these papers, with the goal of making the key part
of the argument easier to follow.

The following lemma says that if there are many orientations of G which are C2k+1-free
then G is not far from being bipartite. It is analogous to [3, Lemma 2·1] which replaces
C2k+1 with an arbitrary tournament.

LEMMA 2·8. Let k ≥ 1 and δ > 0 there exists n0 = n0(δ, k) such that if G is a graph
of order n ≥ n0 which has at least 2�n2/4� distinct C2k+1-free orientations then there is a
bipartition of V(G) with at most δn2 edges inside parts.

Proof. Let us fix 0 < ε � η � β � α � δ as needed for various points of the upcoming
argument.

Let
−→
G be a C2k+1-free orientation of G. We apply the directed regularity lemma to

−→
G to

obtain an ε-regular partition V(
−→
G ) = V1 ∪ · · · ∪ Vm (all Vi’s should have sizes as equal as

possible, and all but εm2 pairs (Vi, Vj) should satisfy that linear sized subsets have about the
same density of edges in each direction as the density of edges between Vi, Vj in the same
direction). We then consider a cluster (di)graph C of density η (its vertices are the parts of
our partition and two parts are joined by a directed edge if they are ε-regular and the density
of edges in the corresponding direction is at least η). Note that C can have bidirected edges.

We first want to show that there exists some orientation
−→
G for which the resulting cluster

graph has at least m2/4 − βm2 edges directed both ways. We claim that if this is not the
case, then there would be too few (less than 2�n2/4�) orientations possible. Since the regu-
larity lemma guarantees that m ≤ M = M(ε), there are at most Mn choices for the ε-regular

partition P , at most 2(M
2 ) choices for which pairs are ε-regular and 4(M

2 ) choices for C. In
total there are at most Mn23M2/2 choices for P , regular pairs and C. Let us now bound how
many orientations could give rise to a fixed choice. There are few edges inside parts of our
fixed P and between non-ε-regular pairs (at most εn2 in both cases) and each edge may be
oriented in two ways, so the total contribution of these edges to the number of orientations
is at most a factor of 22εn2

. For any ε-regular pair (Vi, Vj) which is not an edge of C in one
of the directions, there are at most about ηn2/m2 directed edges in that direction. An easy
estimate tells us that the edges between Vi and Vj can be oriented like this in at most 2cηn2/m2

many ways where cη → 0 as η → 0 and cη only depends on η. Since there are at most m2

such pairs (Vi, Vj), orienting edges between them contributes at most a factor of 2cηn2
to the

total number of orientations. Finally, for any edge of C directed both ways, there are at most
2(n/m)2

orientations of the edges between the corresponding pair of parts, but since we are
assuming that C has at most m2/4 − βm2 such edges, they contribute at most a factor of
2n2/4−βn2

to the total number of orientations. Putting it all together we get at most

Mn23M2/2 · 22εn2 · 2cηn2 · 2n2/4−βn2

orientations. Choosing η to be small enough compared to β gives us a contradiction to having
at least 2�n2/4� orientations.
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Let now
−→
G be an orientation for which the resulting cluster graph C has at least m2/4 −

βm2 edges directed both ways. We claim that C can not contain a bidirected triangle missing

only a single directed edge
2

as otherwise
−→
G would contain a C2k+1. This is a consequence

of a standard embedding lemma. One can easily deduce it from the classical (undirected)
embedding lemma (see e.g. [18, Lemma 2·1]) by first refining the partition (splitting each
part into k parts of size as equal as possible, which preserves the regularity while density
drops to at worst η − ε ≥ η/2) then only keeping edges in the desired direction, and applying
the usual embedding lemma; see Figure 5 for an illustration.

In particular, this tells us that the graph consisting only of the bidirected edges of C is
both triangle-free and has at least m2/4 − βm2 edges. The stability theorem of Simonovits
[25] shows that there is a bipartition V(C) = W1 ∪ W2 with at most αm2 bidirected edges
within a part (using that α � β). Hence, the bipartite subgraph consisting of the bidirected
edges of C between W1 and W2 has at least m2/4 − (β + α)m2 edges. If C had in addition
more than 8(α + β)m2 directed edges inside parts, we would find a bidirected triangle with
one directed edge removed in C. Indeed, more than 4(α + β)m2 of these additional edges
must be inside a single part, say W1, and we can pass to a bipartite subgraph of size more
than 2(α + β)m2 within W1. Taking into account these edges might also be bidirected there
are more than (α + β)m2 distinct pairs spanning a directed edge. These edges together with
the bidirected edges between W1 and W2 make a subgraph of C with more than m2/4 edges,
so by Mantel’s theorem they give a triangle. This triangle has at most one edge inside W1

(since the edges we used inside W1 form a bipartite graph), so it has at least two bidirected
edges, as desired.

It follows from the above that there are at most αm2 + 8(α + β)m2 edges of C inside W1

and W2. Remove all edges of G which correspond to such edges of C. Moreover, remove all
edges within Vi’s and between pairs (Vi, Vj) corresponding to non-edges in C. The remaining
subgraph of G is bipartite (with the parts being the union of Vi’s corresponding to W1 and to
W2). Since there are at most εn2 edges within Vi’s, at most εn2 edges between non-ε-regular
pairs and at most 2ηn2 edges between ε-regular pairs which are non-edges in C, we have in
total removed at most (α + 8(α + β))n2 + εn2 + εn2 + 2ηn2 ≤ δn2 edges, as desired.

The following lemma replaces the embedding [3, Lemma 3·1]. Let us introduce some
notation for convenience. Given an oriented graph D and an integer k, we say that a pair of
disjoint subsets W1, W2 ⊆ V(D) with |Wi| ≥ 2k is k-rich if for any Xi ⊆ Wi, |Xi| ≥ |Wi|/20,
D has at least 1

10 |X1||X2| edges from X1 to X2, as well as at least 1/10|X1||X2| edges from
X2 to X1.

LEMMA 2·9. Let D be an oriented graph and let W1, W2 ⊆ V(D) be a k-rich pair. Then
one can find a directed path of length 2k in the bipartite oriented graph D[W1, W2] starting
and ending in W1.

Proof. We iteratively find our directed path. Assume that for some i ≤ k, we have found
a path v1v2 · · · v2i−1 and a subset V2i−1 ⊆ W2 \ {v2, v4, . . . , v2i−2} of at least |W2|/20 out-
neighbours of v2i−1. Then since D has at least 1/10|V2i−1||W1 \ {v1, v3, . . . , v2i−1}| edges
oriented from V2i−1 to W1 \ {v1, v3, . . . , v2i−1}, there must be a vertex v2i in V2i−1 with
a set V2i of at least (|W1| − k)/10 ≥ |W1|/20 out-neighbours in W1 \ {v1, v3, . . . , v2i−1}.
2 In fact even having an oriented triangle with one bidirected edge would suffice, but this does not seem to
be more useful.
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Repeating from the other side completes the iteration. After k iterations, we find the desired
path.

We now turn to the proof of the main result in this section.

Proof of Theorem 1·1. Let n0 = n0(δ2, k) be given by Lemma 2·8 applied with δ2 in place
of δ, for some sufficiently small δ.

Let us take a graph G on n > n2
0 + n0 vertices which has at least 2�n2/4�+m C2k+1-free

orientations for some m ≥ 0. We will show that if G is not the Turán graph, then either we
can find a vertex v such that G \ v has at least 2�(n−1)2/4�+m+1 C2k+1-free orientations or we
can find distinct vertices u and v such that G \ {u, v} has at least 2�(n−2)2/4�+m+2 C2k+1-free
orientations. We then iterate (note that no subgraph we consider can any longer be a Turán
graph since it has too many orientations, so also edges) as long as our graph has at least n0

vertices. When we stop, we obtain a graph with less than n0 vertices which has at least 2n2
0

orientations, which is impossible, since it has at most n2
0/2 edges.

Let us assume that G is not the Turán graph on n ≥ n0 vertices and proceed to find a
suitable vertex v.

Every vertex needs to have degree at least �n/2� as otherwise its edges contribute at most
a factor of 2�n/2�−1 to the number of orientations so it would immediately work as our vertex
v above.

Let V1, V2 form a bipartition of V(G) which minimises the number of edges within
parts. Since n ≥ n0, by Lemma 2·8 we have at most δ2n2 edges within parts. This implies
|V1|, |V2| ≤ (1/2 + δ)n as otherwise G would have less than n2/4 edges, so too few
orientations. Similarly, there can be at most δ2n2 edges missing between parts.

We first claim that there can be only few orientations for which there exists a pair of
disjoint subsets X1 ⊆ V1, X2 ⊆ V2, both of size at least 2δn, which have at most |X1||X2|/10
edges directed from X1 to X2. The number of such orientations of edges between X1, X2 is
at most

|X1||X2|/10∑
i=0

(
e(X1, X2)

i

)
≤

|X1||X2|/10∑
i=0

(|X1||X2|
i

)
≤ 2|X1||X2|/2,

where e(X1, X2) stands for the number of edges between X1 and X2. Since the total number
of edges is at most n2/4 + δ2n2, there are at most 2n2/4+δ2n2−|X1||X2|/2 ≤ 2n2/4−δ2n2

such
orientations of the whole graph. Since we can choose X1 and X2 in at most 22n many ways,
there can be at most 22n · 2n2/4−δ2n2 ≤ 2�n2/4�−1 orientations for which such a pair X1, X2

exists.
Let us now consider only C2k+1-free orientations such that for any pair of disjoint subsets

X1, X2 of size at least 2δn, there are at least |X1||X2|/10 edges oriented from X1 to X2 and
also from X2 to X1. Then any pair of subsets, both of size at least 40δn, is k-rich. We call
such an orientation relevant and by the above counting and our assumption on the number of
C2k+1-free orientations of G, there are at least 2�n2/4�+m − 2�n2/4�−1 ≥ 2�n2/4�+m−1 relevant
orientations.

Case 1. Some vertex v has at least 800δn neighbours in its own part, say V1.
Note that v must have at least 800δn neighbours in V2 as well, by maximality of the num-

ber of edges between V1 and V2. If in a relevant orientation v has at least 40δn out-neighbours
and at least 40δn in-neighbours belonging to different parts, then since these sets make a
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k-rich pair we can use Lemma 2·9 to find a path of length 2k − 1 and join it with v to give a
C2k+1, a contradiction. This means that at least 2 out of the 4 sets: out-neighbours of v in V1,
in-neighbours of v in V1, out-neighbours of v in V2 and in-neighbours of v in V2 need to have
size at most 40δn. These two parts can not belong to the same Vi or be of different types in
different parts. The only remaining option is for v to have at most 80δn in-neighbours or at
most 80δn out-neighbours. In particular, its edges may be oriented in such a way in at most

2
80δn∑
i=0

(
d(v)

i

)
≤ 2

d(v)/10∑
i=0

(
d(v)

i

)
≤ 20.49d(v) ≤ 20.49n

many ways, where d(v) ≤ n denotes the degree of v in G. In other words G \ {v} must have
at least

2�n2/4�+m−1−0.49n ≥ 2�(n−1)2/4�+m+1

C2k+1-free orientations, as desired.

Case 2. Every vertex of G has at most 800δn neighbours in its own part.
Since G is not the Turán graph there must exist an edge uv inside a part, say in V2.

Both u and v have at least �n/2� − 800δn ≥ n/3 neighbours in V1, in particular they have
d(u, v) ≥ n/8 common neighbours in V1 since parts have size at most n/2 + δn. If in a rele-
vant orientation uv is an edge, then the set W1 of out-neighbours of v in V1 which are also
in-neighbours of u has size at most 40δn. This is due to Lemma 2·9 (applied with W1 and
W2 = V2 \ {u, v}) which allows us to find a path of length 2k − 2 starting and ending in W1,
which in turn can be completed into a C2k+1 using uv. This will severely reduce the number
of possible orientations of edges incident to u or v. More precisely, the edges from u and v
to their common neighbours can be oriented in at most

40δn∑
i=0

(
d(u, v)

i

)
· 4i · 3d(u,v)−i ≤ 41δn ·

(
d(u, v)

40δn

)
· 440δn · 3d(u,v)−40δn ≤ 40.99d(u,v).

The same bound analogously holds if vu is the edge instead. In particular, there are
at most

2d(u)+d(v)−0.02d(u,v) ≤ 2n−n/1000

possible orientations of edges incident to u or v (we are using that both u and v have degree
at most n/2 + δn + 800δn and that δ is small). In particular, the total number of orientations
of G \ {u, v} is at least

2�n2/4�+m−1/2n−n/1000 ≥ 2�(n−2)2/4�+m+2

and we are done.

3. Concluding remarks and open problems

A classical result of Erdős and Gallai [12] states that ex(n, Pk) ≤ (k − 1)n/2 and this is
tight when k divides n. (With a slight abuse of notation, here Pk refers to the unoriented path

of length k.) The tightness of this bound implies that D(n, Pk) ≥ 2
(k−1)n

2 when k divides n,
showing that our Theorem 1·4 is tight up to an absolute constant factor in the exponent. Our
bound coming from Lemma 2·3 is actually slightly better than 23kn, namely 2(1+ok(1))2kn,
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where ok(1) → 0 as k → ∞. It seems not too hard to improve the constant further. We pose
the following question.

Question 3.1. Let k be a positive integer. Does there exist n0 = n0(k) such that for every

n ≥ n0, we have D(n, Pk) ≤ 2
(k−1)n

2 ?

We were able to answer the question in the affirmative for k ≤ 3. For general k, proving
an upper bound of the form 2(1+ok(1))kn/2 would already be interesting.

Turning to general oriented forests H, we have seen that D(n, H) = 2�(ex(n, F) log n) when
H is not 1-almost antidirected (as before, F is the underlying undirected graph). We also
proved that the logarithmic factor is not present when H is 1-almost antidirected. However,
even in that case, D(n, H) need not be very close to 2ex(n, F) as the following example shows.
Let H be the oriented star on k + 1 vertices whose edges are all oriented out from the centre.
The underlying undirected graph has Turán number about (k − 1)n/2. On the other hand,
we claim that for every ε > 0 there exists k such that for all sufficiently large n, we have
D(n, H) ≥ 2(1−ε)kn. Indeed, given ε > 0, let k be large and take a (1 − ε/2)2k-regular graph
G0 on 2k vertices. If k is large enough, using standard Chernoff estimates we can show that
in a random orientation of G0 the out-degree of every vertex is at most (1 − ε/4)k and in
particular the orientation is H-free, with probability at least 1/2. Hence, there are at least
(1/2)2(1− ε

2 )2k2 ≥ 2(1−ε)k|V(G0)| H-free orientations of G0. So for large n we can take G to be
the union of n/2k vertex-disjoint copies of G0, and then D(G, H) ≥ 2(1−ε)kn.

However, it remains possible that there exists an absolute constant C such that for every
1-almost antidirected oriented tree H there exists n0 = n0(H) such that for all n ≥ n0, we
have D(n, H) ≤ 2Cex(n, F).

Turning to non-bipartite underlying graphs, Proposition 1·2 shows that log2 D(n, H) is
asymptotically ex(n, F) in this case. On the other hand, one can construct non-bipartite
examples for which D(n, H) > 2ex(n, F) even for arbitrarily large n. For example, let F be the
complete bipartite graph K5,5 with a path of length 4 placed in one of the parts. Moreover,
let H be an orientation of F in which every vertex has at least two out-neighbours and at
least two in-neighbours in the other part and in which the path of length 4 is oriented in a not
1-almost antidirected way (see Figure 1 for such an orientation of the path). Then ex(n, F) =
n2/4 + O(n), but if G is the complete tripartite graph with parts of size n/2, n/4, n/4, then
D(G, H) ≥ 2n2/4 · (n/4)!, which shows that D(n, H) > 2ex(n, F).

One might also try to determine D(n, H) more precisely when H is a forest which is not
1-almost antidirected. Here it was observed by Alon that if the maximum degree of the forest
H is d, then log D(n, H) = O(nd log n) (now the implied constant does not depend on H). On
the other hand, by an obvious modification of our lower bound construction, one can show
that there are oriented trees with maximum degree d such that log D(n, H) = �(nd log n).
This determines log D(n, H) up to an absolute constant factor for many, but not for all, non
1-almost antidirected forests H.
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