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Plane ice-sheet flow with evolving and recrystallizing fabric

Ryszarp STAROSZCZYK'
School of Mathematics, Universily of East Anglia, Norwich NR4 7T}, England
E-mail: r.staroszezpk@uea.ac.uk

ABSTRACT. A plane, gravity-driven, steady flow of a polar ice sheet over a horizontal
bedrock, with no-slip basal conditions, is considered. The ice is modelled as a linearly
viscous, incompressible and anisotropic fluid, with evolving orthotropic fabric depending
on local strain rates and deformations. For prescribed free-surface elevation and non-uni-
form temperature field, the ice velocities required to maintain the assumed geometry are
calculated by using the finite-element method. The focus is on the mechanism of dynamic
(migration) recrystallization occurring near the base of an ice sheet and leading to signif-
icant weakening, and ultimately to the complete loss, of the anisotropic fabric developed
in the upper part of the ice cap. The weakening of the fabric with increasing strain rate
and temperature is modelled by means of a scaling function depending continuously on a
single effective strain-rate invariant. The results of numerical calculations demonstrate
the effect of the recrystallization process on the overall flow rate of the ice sheet, and nor-
malized velocity and strain-rate depth profiles are compared for flows with and without
recrystallization involved to illustrate the effect of this mechanism on the large-scale

behaviour of polar ice sheets.

1. INTRODUCTION

As initially isotropic ice formed at the free surface of a large
polar ice sheet moves downwards, it undergoes varying
stress and deformation conditions, in response to which its
internal polycrystalline structure evolves, giving rise to the
development of directional properties of the material. Such
a process, known as induced anisotropy, in which oriented
fabrics in ice are created due to the crystal lattice rotation in
the upper part of an ice sheet, and are subsequently slightly
modified as a result of rotation recrystallization (polygoniz-
ation) occurring in the middle part of an ice sheet, leads to
the progressive strengthening of the anisotropic properties of
the material. Evidence of this is provided by ice cores drilled
in Greenland and Antarctica, showing, at large depths,
strong fabrics with the majority of crystal ¢ axes clustered
around the vertical (Gow and others, 1997, Thorsteinsson
and others, 1997). Near the base of an ice sheet, however, the
above regular pattern changes dramatically, and ice fabrics
with very coarse and interlocking grains develop. In these
near-bottom fabrics, crystal ¢ axes are usually broadly scat-
tered in an irregular manner around the vertical (Gow and
others, 1997), or multi-maxima fabrics resembling those
observed in temperate glaciers are formed (Duval, 1981), with
macroscopic properties of such fabrics close to isotropy
(Lliboutry, 1993). The transition from strong single-max-
imum fabrics to open fabrics may be quite abrupt, for it
usually takes place over depths not exceeding the lowest
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100 m of the ice sheet, compared to a typical ice-sheet thick-
ness of 3—4 km. Such a rapid change in ice properties is due to
the mechanism of dynamic recrystallization (also referred to
as migration or discontinuous recrystallization) caused by
migration of grain boundaries between dislocation-free and
deformed ice crystals. As a result, under certain conditions,
such as near-melting temperatures, high strains, strain rates
and stresses, new grains are nucleated at the expense of old
ones that ultimately disappear (Lliboutry and Duval, 1985;
De La Chapelle and others, 1998).

Very few attempts have been made so far to model the
process of dynamic recrystallization. Van der Veen and
Whillans (1994), in their multi-grain model, have described
the onset of this process by relating it to the total macroscopic
strain in the polycrystalline aggregate. Recently, Morland
(2002) has proposed a model in which the onset of dynamic
recrystallization mechanism is described by means of a tem-
perature-dependent critical lattice distortion parameter,
equivalent to a condition on a stored mechanical energy of
dislocations. In another approach, Faria and others (2003)
construct a general theory of recrystallization processes in
polycrystalline ice by applying the fundamental principles of
thermodynamics. In this paper, we follow the approach formu-
lated by Staroszczyk and Morland (2001), based on the
assumption that the onset of the migration recrystallization
is controlled by strain rates and temperature. In this theory,
fabric weakening at increasing strain rates is captured by
introducing a scalar fabric-strength factor depending con-
tinuously on a single, temperature-dependent, -effective
strain-rate invariant, and it is supposed that the full strength
of fabric anisotropy is retained below a lower critical value of
this invariant, whereas above a higher critical value the fabric
becomes isotropic. In Staroszczyk and Morland (2001) the
development of anisotropic fabric due to lattice rotation and
its subsequent weakening due to migration recrystallization,
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and the effect of both processes on the viscous properties of
ice, were illustrated for simple flow configurations encoun-
tered in laboratory conditions. Here, the theory is applied to
investigate the influence of migration recrystallization on the
large-scale behaviour of a polar ice sheet. To this end, a plane,
gravity-driven, steady flow of an ice sheet on a horizontal bed
with no-slip basal conditions, with fixed geometry and pre-
scribed non-uniform temperature field, is analyzed. The
results of numerical simulations, performed by a finite-
element method, are compared with those for flows with no
recrystallization involved (Staroszczyk and Morland, 2000)
to illustrate the effect of dynamic recrystallization on depth
profiles of velocities and deformation rates.

2. PROBLEM FORMULATION

We consider a plane-strain, steady flow of an ice sheet taking
place in rectangular Cartesian coordinates Oz z, with the
axis lying on the horizontal flat bed, and the z axis directed
upwards and passing through the ice divide. For simplicity,
the sheet profile is assumed symmetric about the plane z = 0.
Let o be the Cauchy stress tensor, with components 0,
0., and 0y, in the plane of flow, and v be the ice velocity
vector, with the horizontal and vertical components v and
w, respectively. The deviatoric stress o' is defined in terms
of o and the mean pressure p by
o' =0 +pl, pz—%tra, tro’ =0, (2.1)
where Iis the unit tensor and tr denotes the trace operator.
In the absence of inertia forces, the momentum-balance
equations are the equilibrium relations

9o’ od’ @ _ o’ od’ @

TT Tz — Tz 2z
oz 0z Oz T Oz 0z 0z
where p is the ice density and g is the gravitational accelera-
tion. The mass-balance equation is here the incompressibility

=pg, (2.2)

condition divv = 0 given by
ou i ow
oxr 0z

It is supposed that the ice temperature is significantly below

0. (2.3)

the melting point at the bed so that there is no melt and no
basal sliding at the interface, and at the ice divide we have
the symmetry conditions. Hence, the boundary conditions
at z = 0 and x = 0 are expressed, respectively, by

ow

=0, —=0.
Y ox

The stationary ice-sheet surface z = h(x) is assumed to be

z=0: u=w=0; x=0:

traction-free, and is subject to a net ice flux g(x) (positive
for accumulation). The zero traction condition, and the
kinematic condition prescribing the surface mass flux, are
then given by
z=h(z):

on, =0 and uy —— ws =q,

oxr

where ng is a unit outward vector normal to the free surface,
and ug and wg are the free-surface horizontal and vertical
velocities, respectively.

In a manner typical for ice-sheet modelling, we elim-
inate physical dimensions from Equations (2.2) and (2.3) by
adopting characteristic magnitudes: h*, a typical ice depth,
used as a length scale; v*, a typical accumulation rate, used
as a velocity unit; and 7" = pgh”, used as a stress unit. In
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terms of these scaling parameters, we introduce dimension-
less variables defined by

(2.4)

Further, we apply coordinate stretching in the horizontal
direction by adopting a small aspect ratio € = h*/L* < 1,
where L* is the characteristic lateral dimension of the
glacier, and introduce differentially scaled variables

I=€¢x, 2=2, U=¢€¢u, W=Ww. (2.5)
As a result, both £ and Z coordinates, and both % and w
velocity components, become order unity, and the maximum
spatial derivatives in both directions have the same status.
With the normalizations (2.4) and (2.5), the momentum and

mass-balance equations (2.2) and (2.3) become

80;1, op 80;2_ 80;2 &7;2 8}5_
6(83} _%>+az_0’ o5 oz oz b
8 O
ou ow_ . 2.
5z oz 0 )

The deviatoric stresses in Equations (2.6) are prescribed in
terms of the velocity components by the viscous constitutive
relation described in section 3, while the pressure, which is
not determined by the deformation due to the ice incom-
pressibility, is a workless constraint stress. Therefore, the
problem reduces to solving the system of three equations
with three unknown functions 4(Z, z), w(Z, 2) and p(Z, 2).

3. CONSTITUTIVE RELATION

The mechanism of induced anisotropy of ice, involving the
strengthening of ice fabric due to lattice rotation, and weak-
ening of fabric due to migration recrystallization, is described
by an orthotropic constitutive theory formulated by Starosz-
czyk and Morland (2001), which is now summarized.

The adopted viscous flow law expresses the deviatoric stress
o’ in terms of the current strain rate D, the left Cauchy—Green
deformation tensor B, and three structure tensors M) (s=1,
2, 3) defined by the current (evolving) directions of principal
stretches. Let the physical particle reference coordinates be OX;
(1 =1, 3), with the equivalence X; = X and X3 = Z, and apply
to them the scaling analogous to that described by Equations
(24) and (2.5) for spatial coordinates x and z. Then, with similar
notations for spatial coordinates and velocity components, that is
] =, X3 = 2, v] = wand v3 = w, the deformation gradient F,
and the normalized velocity gradient L = L/ D* and the strain
rate D =D/D*, with D* =v*/h*, have the following com-
ponents expressed in the stretched coordinates:

o0z o0z 07 0z
Fii=—=, Fa=¢'—=, Fi=c—= 33 ==
11 aX: 13 € aZy 31 6(9X7 33 aZy
(3.1)
O SN S R
11 8@7 13 857 31—6(9%17 33_857
(3.2)
_ on 1 o Ow _ 0w
J = ) N P e R ek D e
11 9%’ 13 2( 93 68~>’ 33 9%
(3.3)
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In terms of Equation (3.1), the components of Cauchy—
Green deformation tensor B = FFT are

By =F,+Fj;, By=Fj+Fj,

(3.4)
B3 = B3; = Fi1F31 + Fi3F3ss3.

Following Staroszczyk and Morland (2001), the constitu-
tive law is expressed in an additive form consisting of two
parts: the isotropic response of ice with no fabric, Hj, and
the additional anisotropic response depending on the evolv-
ing fabric, Hp, with the latter vanishing in an initial isotro-
pic state B =1 Hence, in terms of the scaled variables
defined by Equations (2.4) and (2.5), the normalized devia-
toric stress &' is prescribed by

o' = H;(D) + Ha(D,B,M"Y), H,(D,I,M"¥) =0,

(3.5)

where the structure tensors M), describing orthotropic
symmetries in the material, are defined by the tensor prod-
ucts

with e(®) being the unit vectors in the directions ofprmmpal
stretches (determined by the eigenvectors of the current
deformation tensor B), and e® = (0, 1, 0) in the reference
frame adopted here. The isotropic and anisotropic terms in
Equations (3.5) are given by

H; = 2¢%i, D,
2
Hy = { Zf [ D + DM —gtr(M(”D)I}

+ K 'G(K) [DB +BD - %tr(DB)I} } . (3.7)

and involve two fabric response functions f(by) and G(K),
each depending on a single deformation invariant argument:
bs (s =1, 2, 3), being the squared principal stretches equal to
the eigenvalues of B, and K =trB = b; + by + b3. The
vanishing of the anisotropic part Hy in the initial isotropic
state B = I provides the normalization condition

3f(1)+ G(3) =0. (3.8)

In Equations (3.7), fiy is a dimensionless viscosity of order
unity, defined by €2 fiy, = o v*/(T*h*), where yq is the physi-
cal viscosity of isotropic ice, commonly assumed to be a func-
tion of temperature 7 and the strain-rate invariant tr D%
The temperature dependence of i is usually described by
an Arrhenius-type relation. We, however, use the representa-
tion proposed by Smith and Morland (1981), expressed by

10(T) = 10(Tin) /[0.68 exp(12T) + 0.32exp(3T) ], (3.9)

with T a dimensionless temperature defined by T =
(T — Tw)/[20K], Ty, = 27315 K, which seems to describe
better the ice behaviour at high homologous temperatures.
In this study we assume that fi is independent of tr D?, that
1s suppose linearly viscous (Newtonian) behaviour of ice, a
simplification which is justified forlow ( <0.1 MPa) deviatoric
stresses (Lliboutry and Duval, 1985).

"To account for the dynamic recrystallization process lead-
ing to the fabric weakening with increasing strain rate, we
extend the law given by Equations (3.5) and (3.7) by introdu-
cing a fabric-strength scaling function r and applying it to the
anisotropic term Hy, which replaces Equation (3.5), by

o' = H(D) +rH,(D,B,M"). (3.10)
The scaling factor 7 is supposed to depend only on a single
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strain-rate invariant trD? and temperature through an
effective strain-rate invariant I (Staroszczyk and Morland,
2001). We further introduce a critical strain-rate invariant I,
at the centre of the range over which the fabric-strength
reduction occurs. This range is defined by means of the lower
and upper critical values Iy = I(1 — ) and I, = I(1 +6),
where 6, a relative half-span of the critical range of I, is a free
parameter of the model. The function r(I) is chosen to leave
the viscous response unchanged when I < I, to restore the
isotropic viscous response when I> 1., andto vary continu-
ously and monotonically between these two levels. Accord-
ingly, r(I) is defined by

TZliffocl, T/SOiffclng cus

r=0if I>1I,.

Now, in view of the relations (3.1), (3.3) and (3.4), the con-
stitutive law defined by (3.10) with (3.7) gives the normalized
stresses expressed in terms of the velocities by

(3.11)

%o = e [(2 ) gt + 0 (G2 @20 ) |
ol = efiy |2+ m) e %~+a3(%+e %)}, (3.12)
.= i1+ a)(e+ @52,
where
a1=§ ()[f (1+M11)+ (1+M{1>)
+KG(K (2Bn+B33)},

a2=§ (I )[f (1+M33)+fb3 (1+M§§>)
FKGK (Bn+2B33)},

as =5 r(D[Fo)ME) + Fe) ) + K G(K) By,

ar =5 r(D)[Fon) + F(bs) + KGE) (B + Byg) |

We note that in the initial undeformed state, when B = I, that
isby = by = by =1land K = 3, inview of Equation (3.8), all the
coefficients a; (¢ =1,. . .;4) become zero, regardless of the value
of the factor 7. And obviously, they are also zero for r = 0, that
is for the effective strain-rate invariant I exceeding its upper
critical level Iy, after the migration recrystallization process
has been completed. In either case, the formulae (3.12) reduce
to the isotropic viscous fluid relations.

The model response functions f and G can be determined
by correlation with the experimental data in the way described
in detail in Staroszczyk and Morland (2001) and Morland and
Staroszczyk (2003). Typical behaviour of ice under uniaxial
compression and simple shear, with dynamic recrystallization
involved, is illustrated in Staroszczyk and Morland (2001).
Here we use the constitutive theory to see how recrystalliza-
tion affects the overall flow of a large polar ice sheet.

4. NUMERICAL RESULTS

The problem given by Equations (2.6) and (3.12), defined in
terms of the velocities & and W and the pressure p, is solved
by applying the finite-element method. Triangular elements
with six nodes are used, with the velocity field approxi-
mated by quadratic interpolation functions and the pressure
field approximated by linear interpolation functions. In
total, 6414 elements, with 29376 degrees of freedom, are
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Horizontal velocity

Vertical velocity

Iig. 1. Free-surface horizontal and vertical velocities for the en-
hancement factors E, = 1 and E5 = 5 _for different values of
the critical strain-rate invariant I, at which recrystallization
occurs (solid lines). The dashed lines show the results for
E, = 15 and Es = ), and the dashed-dotted lines show the
results for isotropic ice, both with no recrystallization involved.

used to discretize the ice-sheet domain. To find a steady
solution, the flow problem is treated as time-dependent,
starting from the isotropic state of ice throughout the
glacier, that is assuming that F = I everywhere at the start
of computation. Then an iterative procedure is followed, in
which, successively, the velocities and pressures are first
calculated from Equations (2.6), and these are used to calcu-

late the changes in the deformation gradient components by
solving the equation

_OF;

: OF;

Uy y—L = D* [ F;
o¢ | Uk 2, kg

where ¢ denotes time, the superposed dot denotes the material
derivative, and the summation convention for repeated
indices applies. The changed components of F' are then used
to update the fabric described in terms of the current deform-
ation tensor B = FF’, determining thus new values of @,
and p, and the whole iteration process is repeated until steady
flow is reached.

The results presented below have been obtained for a
simple free-surface geometry defined by a parabola (h/H)
+ (JC/L)2 = 1, where H is the ice-sheet thickness at the
divide x = 0 and L is the lateral extent of the glacier. The
simulations have been carried out for the aspect ratio
e=H/L=10" The temperature depth variation is
assumed to be that determined for the GRIP ice core in
central Greenland (Gundestrup and others, 1993), for which
the isotropic viscosity ratio ug (2 = H)/ o (2 =0), given by
Equation (3.9), is about 33.4. The magnitudes of the critical
effective strain-rate invariant I, defining the onset of the
recrystallization, have been chosen in such a way that the
maximum thicknesses (occurring at x/L ~ 06 for the
adopted glacier geometry) of the recrystallized ice are equal,
respectively, to about 0.025, 0.05 and 0.075 of the sheet thick-
ness h(z). In subsequent plots, the results corresponding to
the latter values are labelled (2), (3) and (4), respectively, and
label (1) indicates the results without recrystallization
involved. The other free parameter of the model, 6, which
determines the rate of the recrystallization process, has been
assumed (arbitrarily due to the lack of any empirical indica-
tions) to be equal to 0.2.

x/L=0.2 xL=0.4 x/L=0.6 x/L=0.8
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Fig. 2. Depth profiles of the normalized horizontal and vertical velocities at different locations x| L for different values of the
critical strain-rate invariant I.. The dotted lines show the resulls for isotropic ice with no recrystallization.
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Fig. 3. Depth profiles of the normalized shear strain rate at
two locations x| L for different values of the critical strain-
rate invariant I, ( solid lines). The dashed-dotted lines show
the results for isotropic ice with no recrystallization.

Figure 1 illustrates the variation of the horizontal and ver-
tical velocities, 1 and ws, at the glacier free surface for differ-
ent levels of the critical strain-rate invariant I, (solid lines).
The results have been obtained for the ice enhancement fac-
tors: B, =1 for compression, and Ey; = 5 for shear. For com-
parison, the results for E, = 1/3 and Ey; = 5 (dashed lines)
and F, = E; =1 (isotropic ice, dashed-dotted lines) are also
plotted. It turns out that the global velocity field, for flows
with and without dynamic recrystallization involved, is little
sensitive to the value of E,, and is very sensitive to the value of
E, the shear enhancement factor. We note that the significant
influence of recrystallization on the free-surface velocities is,
essentially, confined to the part of the ice sheet where the thin
bottom layer of recrystallized ice occurs. For instance, the
presence of a layer of such ice of a relative maximum thickness
5% reduces the maximum free-surface horizontal velocity by
about 18%; in the case of the vertical velocities, this effect is
even more pronounced. In the near-divide or near-margin
regions, where dynamic recrystallization is absent due to
small shear strain rates there, the velocities are practically
unaffected by the process.

In Figure 2 we show, for different locations & = /L, the
depth profiles of both velocity components, @ and w, normal-
ized by the respective free-surface values us and ws, and
plotted against the normalized elevation z/h. Again, we note
that the flow patterns are little changed by the recrystalliza-
tion process both in the vicinity of the divide (plots for
/L = 0.2) and near the margin (plots for /L = 0.8). In
particular, this applies to the horizontal velocities whose
profiles, even in the middle part of the ice sheet (/L ~0.5),
are found to be little sensitive to the recrystallization process
(though the absolute velocity magnitudes differ from each
other; recall Fig. 1). On the contrary, the normalized vertical
velocity profiles in the middle part of the glacier are strongly
affected by the presence of underlying isotropic ice near the
base. Specifically, significant changes in the flow pattern are
observed in the lower part of the ice sheet.

Finally, Figure 3 illustrates the variation of the shear
strain rates for different flow regimes at two locations z/L
in the middle part of the glacier, and shows €D, as a func-
tion of the relative elevation z/h. We see that the magnitudes
of the strain rates undergo abrupt changes in the thin trans-
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ition layer separating the recrystallized “hard” ice from the
overlying strongly anisotropic “soft” ice. We also note that
with the increasing thickness of the bottom layer of “hard”
ice, the shear strain rates in this layer decrease and approach
the values for the isotropic ice flow with no recrystallization
(dashed-dotted lines in the plots).

5. CONCLUSIONS

The results of numerical simulations of a plane, steady flow of
an ice sheet have shown that the process of dynamic recrys-
tallization significantly affects the global flow pattern of the
glacier. However, the results obtained should be treated with
some caution due to the restrictiveness of the constitutive
model which, at this stage, describes the mechanism of
dynamic recrystallization in terms of only temperature and
strain rate. It seems that other factors are also important, of
which the total deformation experienced by ice is likely to be
the most crucial (personal communication from S. H. Faria,
2002). Therefore, future work should concentrate on appro-
priate extension of the constitutive theory, accompanied, if
possible, by relevant experimental work.
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