
15

Programming Unreliable Hardware
Michael Carbin

Massachusetts Institute of Technology
Sasa Misailovic

University of Illinois

Abstract: Emerging high-performance architectures are anticipated to contain
unreliable components that may exhibit soft errors, which silently corrupt the
results of computations. Full detection and masking of soft errors is challenging,
expensive, and, for some applications, unnecessary. For example, approximate
computing applications (such as multimedia processing, machine learning, and big
data analytics) can often naturally tolerate soft errors.
We present Rely, a programming language that enables developers to reason about

the quantitative reliability of an application – namely, the probability that it produces
the correct result when executed on unreliable hardware. Rely allows developers to
specify the reliability requirements for each value that a function produces.
We present a static quantitative reliability analysis that verifies quantitative

requirements on the reliability of an application, enabling a developer to perform
sound and verified reliability engineering. The analysis takes a Rely program with a
reliability specification and a hardware specification that characterizes the reliability
of the underlying hardware components and verifies that the program satisfies
its reliability specification when executed on the underlying unreliable hardware
platform. We demonstrate the application of quantitative reliability analysis on six
computations implemented in Rely.

15.1 Introduction

Reliability is a major concern in the design of computer systems. The current goal of
delivering systems with negligible error rates restricts the available design space and
imposes significant engineering costs. And as other goals such as energy efficiency,
circuit scaling, and new features and functionality continue to grow in importance,
maintaining even current error rates will become increasingly difficult.
a From Foundations of Probabilistic Programming, edited by Gilles Barthe, Joost-Pieter Katoen and Alexandra
Silva published 2020 by Cambridge University Press.

533

https://doi.org/10.1017/9781108770750.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.016

534 Carbin and Misailovic: Programming Unreliable Hardware

In response to this situation, researchers have developed numerous techniques for
detecting and masking errors in both hardware (Ernst et al., 2003) and software (Reis
et al., 2005; Perry et al., 2007; de Kruijf et al., 2010). Because these techniques
typically come at the price of increased execution time, increased energy consumption,
or both, they can substantially hinder or even cripple overall system performance.
Many computations, however, can easily tolerate occasional errors. An approxi-

mate computation (including many multimedia, financial, machine learning, and big
data analytics applications) can tolerate occasional errors in its execution and/or the
data that it manipulates (Rinard, 2006; Misailovic et al., 2010; Carbin and Rinard,
2010). A checkable computation can be augmented with an efficient checker that
verifies either the exact correctness (Blum and Kanna, 1989; Leveson et al., 1990)
or the approximate acceptability of the results that the computation produces. If the
checker does detect an error, it can reexecute the computation to obtain an acceptable
result.
For both approximate and checkable computations, operating without (or with

at most selectively applied) mechanisms that detect and mask errors can produce
(1) faster and more energy efficient execution that (2) delivers acceptably accurate
results often enough to satisfy the needs of their users.

15.1.1 Background

Approximate computations have emerged as a major component of many computing
environments. Motivated in part by the observation that approximate computations
can often acceptably tolerate occasional computation and/or data errors (Rinard, 2006;
Misailovic et al., 2010; Carbin and Rinard, 2010), researchers have developed a range
of new mechanisms that forgo exact correctness to optimize other objectives. Typical
goals include maximizing program performance subject to an accuracy constraint
and altering program execution to recover from otherwise fatal errors (Rinard et al.,
2004).

Software Techniques Most software techniques deploy unsound transformations –
transformations that change the semantics of an original exact program. Proposed
mechanisms include skipping tasks (Rinard, 2006), loop perforation (skipping
iterations of time-consuming loops) (Misailovic et al., 2010; Sidiroglou et al., 2011),
sampling reduction inputs (Zhu et al., 2012), multiple selectable implementations of
a given component or components (Baek and Chilimbi, 2010; Ansel et al., 2011;
Hoffman et al., 2011; Zhu et al., 2012), dynamic knobs (configuration parameters that
can be changed as the program executes) (Hoffman et al., 2011) and synchronization
elimination (forgoing synchronization not required to produce an acceptably accurate
result) (Misailovic et al., 2013). The results show that aggressive techniques such

https://doi.org/10.1017/9781108770750.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.016

15.1 Introduction 535

as loop perforation can deliver up to a four-fold performance improvement with
acceptable changes in the quality of the results that the application delivers.

Hardware Techniques The computer architecture community has begun to investi-
gate new designs that improve performance by breaking the traditional fully reliable
digital abstraction that computer hardware has traditionally sought to provide. The
goal is to reduce the cost of implementing a reliable abstraction on top of physical
materials and manufacturing methods that are inherently unreliable. For example,
researchers are investigating designs that incorporate aggressive device and voltage
scaling techniques to provide low-power ALUs and memories. A key aspect of these
components is that they forgo traditional correctness checks and instead expose
timing errors and bitflips with some non-negligible probability (de Kruijf et al.,
2010; Esmaeilzadeh et al., 2012; Leem et al., 2010; Liu et al., 2011; Narayanan
et al., 2010; Palem, 2005; Sampson et al., 2011).
In this work, we focus on hardware techniques that manifest as soft errors – errors

that occur in the system nondeterministically. They may affect the values computed
by individual instruction executions or data stored in individual memory locations.
We can associate the probability of soft-error occurrence with each (unprotected)
instruction. However, soft errors do not last over multiple instruction executions or
permanently damage the hardware.

15.1.2 Reasoning About Approximate Programs

Approximate computing violates the traditional contract that the programming
system must preserve the standard semantics of the program. It therefore invalidates
standard paradigms and motivates new, more general, approaches to reasoning about
program correctness, and acceptability.
One key aspect of approximate applications is that they typically contain critical

regions (which must execute without error) and approximate regions (which can
execute acceptably even in the presence of occasional errors) (Rinard, 2006; Carbin
and Rinard, 2010). Existing systems, tools, and type systems have focused on helping
developers identify, separate, and reason about the binary distinction between
critical and approximate regions (Rinard, 2006; Carbin and Rinard, 2010; Liu
et al., 2011; Sampson et al., 2011; Esmaeilzadeh et al., 2012). However, in practice,
no computation can tolerate an unbounded accumulation of errors – to execute
acceptably, executions of even approximate regions must satisfy some minimal
requirements.
Approximate computing therefore raises a number of fundamental new research

questions. For example, what is the probability that an approximate program will
produce the same result as a corresponding original exact program? How much do

https://doi.org/10.1017/9781108770750.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.016

536 Carbin and Misailovic: Programming Unreliable Hardware

the results differ from those produced by the original program? And is the resulting
program safe and secure?
Because traditional correctness properties do not provide an appropriate conceptual

framework for addressing these kinds of questions, we insteadworkwith acceptability
properties – the minimal requirements that a program must satisfy for acceptable
use in its designated context. We identify three kinds of acceptability properties
and use the following program (which computes the minimum element min in an
N-element array) to illustrate these properties:

int min = INT_MAX;

for (int i = 0; i < N; ++i)

if (a[i] < min) min = a[i];

Integrity Properties: Integrity properties are properties that the computation
must satisfy to produce a successful result. Examples include both computation-
independent properties (no out of bounds accesses, null dereferences, divide by
zero errors, or other actions that would crash the computation) and computation-
dependent properties (for example, the computation must return a result within a
given range). One integrity property for our example is that accesses to the array a
must always be within bounds.
Reliability Properties: Reliability properties characterize the probability that the
produced result is correct. Reliability properties are often appropriate for approximate
computations executing on unreliable hardware platforms that exhibit occasional
nondeterministic errors. A potential reliability property for our example program is
that min must be the minimum element in a[0]–a[N-1] with probability at least
95%.
Accuracy Properties: Accuracy properties characterize how accurate the produced
result must be. For example, an accuracy property might state that the transformed
program must produce a result that differs by at most a specified percentage from the
result that a corresponding original program produces (Misailovic et al., 2011; Zhu
et al., 2012). Alternatively, a potential accuracy property for our example program
might require the min to be within the smallest N/2 elements a[0]–a[N-1].
Such an accuracy property might be satisfied by, for example, a loop perforation
transformation that skips N/2-1 of the loop iterations.
In other research, we have developed techniques for reasoning about integrity

properties (Carbin et al., 2012, 2013a) and both worst-case and probabilistic accuracy
properties (Misailovic et al., 2011; Zhu et al., 2012; Carbin et al., 2012). We have
extended the research presented in this chapter to include combinations of reliability
and accuracy properties (Misailovic et al., 2014), and more recently to reason about
message-passing parallel programs with approximate communication (Fernando
et al., 2019).

https://doi.org/10.1017/9781108770750.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.016

15.2 Example 537

15.1.3 Verifying Reliability (Contributions)

To meet the challenge of reasoning about reliability, we present a programming
language, Rely, and an associated program analysis that computes the quantitative
reliability of the computation – i.e., the probability with which the computation
produces a correct result when parts of the computation execute on unreliable
hardware. Specifically, given a hardware specification and a Rely program, the
analysis computes, for each value that the computation produces, a conservative
probability that the value is computed correctly despite the possibility of soft errors.
Rely supports and is specifically designed to enable partitioning a program into

critical regions (which must execute without error) and approximate regions (which
can execute acceptably even in the presence of occasional errors) (Rinard, 2006;
Carbin and Rinard, 2010). In contrast to previous approaches, which support only a
binary distinction between critical and approximate regions, quantitative reliability
can provide precise static probabilistic acceptability guarantees for computations
that execute on unreliable hardware platforms. This chapter describes the following
contributions we initially presented in Carbin et al. (2013b).

Quantitative Reliability Specifications We present quantitative reliability specifi-
cations, which characterize the probability that a program executed on unreliable
hardware produces the correct result, as a constructive method for developing
applications. Quantitative reliability specifications enable developers who build
applications for unreliable hardware architectures to perform sound and verified
reliability engineering.

Language We present Rely, a language that enables developers to specify reliability
requirements for programs that allocate data in unreliable memory regions and use
unreliable arithmetic/logical operations.

Quantitative Reliability Analysis We present a program analysis that verifies
that the dynamic semantics of a Rely program satisfies its quantitative reliability
specifications. For each function, the analysis computes a symbolic reliability
precondition that characterizes the set of valid specifications for the function.
The analysis then verifies that the developer-provided specifications are valid
according to the reliability precondition.

15.2 Example

Figure 15.1 presents the syntax of the Rely language. Rely is an imperative language
for computations over integers, floats (not presented), and multidimensional arrays.

https://doi.org/10.1017/9781108770750.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.016

538 Carbin and Misailovic: Programming Unreliable Hardware

n ∈ IntM
r ∈ Q

x, � ∈ Var
a ∈ ArrVar

e ∈ Exp → n | x | (Exp) | Exp iop Exp
b ∈ BExp → true | false | Exp cmp Exp | (BExp) |

BExp lop BExp | !BExp | !.BExp
CExp → e | a

m ∈ MVar
V → x | a | V, x | V,a

RSpec → r | R(V) | r * R(V)
T → int | int<RSpec>

F → (T | void) ID (P∗) { S }
P → P0 [in m]

P0 → int x | T a(n)
S → D∗ Ss S?r

D → D0 [in m]
D0 → int x [= Exp] | int a[n+]
Ss → skip | x = Exp | x = a[Exp+] | a[Exp+] = Exp |

ID(CExp∗) | x = ID(CExp∗) | if� BExp S S | S ; S
while� BExp [: n] S | repeat� n S

Sr → return Exp

Figure 15.1 Rely’s Language Syntax

To illustrate how a developer can use Rely, Figure 15.2 presents a Rely-based
implementation of a pixel block search algorithm derived from that in the x264
video encoder (x264, 2013).
The function search_ref searches a region (pblocks) of a previously encoded

video frame to find the block of pixels that is most similar to a given block of pixels
(cblock) in the current frame. The motion estimation algorithm uses the results
of search_ref to encode cblock as a function of the identified block. This is an
approximate computation that can trade correctness for more efficient execution
by approximating the search to find a block. If search_ref returns a block that
is not the most similar, then the encoder may require more bits to encode cblock,
potentially decreasing the video’s peak signal-to-noise ratio or increasing its size.
However, previous studies on soft error injection (de Kruijf et al., 2010) and more
aggressive transformations like loop perforation (Misailovic et al., 2010; Sidiroglou
et al., 2011) have demonstrated that the quality of x264’s final result is only slightly
affected by perturbations of this computation.

15.2.1 Reliability Specifications

The function declaration onLine 6 specifies the types and reliabilities ofsearch_ref’s
parameters and return value. The parameters of the function are pblocks(3), a
three-dimensional array of pixels, and cblock(2), a two-dimensional array of pix-
els. In addition to the standard signature, the function declaration contains reliability
specifications for each result that the function produces.
Rely’s reliability specifications express the reliability of a function’s results –

when executed on an unreliable hardware platform – as a function of the reliabil-

https://doi.org/10.1017/9781108770750.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.016

15.2 Example 539

i

1 #define nblocks 20
2 #define height 16
3 #define width 16
4
5 int<0.99*R(pblocks, cblock)>
6 search_ref (
7 int<R(pblocks)> pblocks(3) in urel,
8 int<R(cblock)> cblock(2) in urel)
9 {
10 int minssd = INT_MAX,
11 minblock = -1 in urel;
12 int ssd, t, t1, t2 in urel;
13 int i = 0, j, k;
14
15 repeat nblocks {
16 ssd = 0;
17 j = 0;
18 repeat height {
19 k = 0;
20 repeat width {
21 t1 = pblocks[i,j,k];
22 t2 = cblock[j,k];
23 t = t1 -. t2;
24 ssd = ssd +. t *. t;
25 k = k + 1;
26 }
27 j = j + 1;
28 }
29
30 if (ssd <. minssd) {
31 minssd = ssd;
32 minblock = i;
33 }
34
35 i = i + 1;
36 }
37 return minblock;
38 }

Figure 15.2 Rely Code for Motion Estimation

��������� 	�
���

�

��
�������� ����������

���

Figure 15.3 Machine Model.

reliability spec {
operator (+.) = 1 - 10^-7;
operator (-.) = 1 - 10^-7;
operator (*.) = 1 - 10^-7;
operator (<.) = 1 - 10^-7;
memory rel {rd = 1, wr = 1};
memory urel {rd = 1 - 10^-7, wr = 1};

}

Figure 15.4 Hardware Reliability Specification

(3) {Q0 ∧ Aret ≤ r40 · R(i, ssd, minssd)
∧ Aret ≤ r40 · R(minblock, ssd, minssd)}

if (ssd <. minssd) {
(2) {Q0 ∧ Aret ≤ r0 · R(i, �30)}

minssd = ssd;
{Q0 ∧ Aret ≤ r0 · R(i, �30)}
minblock = i;
{Q0 ∧ Aret ≤ r0 · R(minblock, �30)}

} else {
(2) {Q0 ∧ Aret ≤ r0 · R(minblock, �30)}

skip;
{Q0 ∧ Aret ≤ r0 · R(minblock, �30)}

}
(1) {Q0 ∧ Aret ≤ r0 · R(minblock, �30)}

Figure 15.5 if Statement Analysis in Last Iteration

ities of its inputs. The specification for the reliability of search_ref’s result is
int<0.99*R(pblocks,cblock)>. This states that the return value is an integer
with a reliability that is at least 99% of the joint reliability of the parameters
pblocks and cblock (denoted by R(pblocks, cblock)). The joint reliability
of a set of parameters is the probability that they all have the correct value when
passed in from the caller. The joint reliability is a key abstraction for our verification;
we will formalize it in Section 15.4.2.
The reliability specification holds for all possible values of the joint reliability

of pblocks and cblock. For instance, if the contents of the arrays pblocks and
cblock are fully reliable (correct with probability one), then the return value is
correct with probability 0.99.
In Rely, arrays are passed by reference and the execution of a function can, as

https://doi.org/10.1017/9781108770750.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.016

540 Carbin and Misailovic: Programming Unreliable Hardware

a side effect, modify an array’s contents. The reliability specification of an array
therefore allows a developer to constrain the reliability degradation of its contents.
Here pblocks has an output reliability specification of R(pblocks) (and similarly
for cblock), meaning that all of pblock’s elements are at least as reliable when
the function exits as they were on entry to the function.

15.2.2 Unreliable Computation

Rely targets hardware architectures that expose both reliable operations (which
always execute correctly) and more energy-efficient unreliable operations (which
execute correctly with only some probability). Specifically, Rely supports reasoning
about reads andwrites of unreliablememory regions and unreliable arithmetic/logical
operations.

Memory Region Specification Each parameter declaration also specifies the mem-
ory region inwhich the data of the parameter is allocated.Memory regions correspond
to the physical partitioning of memory at the hardware level into regions of varying
reliability. Here pblocks and cblock are allocated in an unreliable memory region
named urel.
Lines 10-13 declare the local variables of the function. By default, variables in

Rely are allocated in a default, fully reliable memory region. However, a developer
can also optionally specify a memory region for each local variable. For example,
the variables declared on Lines 10-12 reside in urel.

Unreliable Operations The operations on Lines 23, 24, and 30 are unreliable
arithmetic/logical operations. In Rely, every arithmetic/logical operation has an
unreliable counterpart that is denoted by suffixing a period after the operation symbol.
For example, “-.” denotes unreliable subtraction and “<.” denotes unreliable
comparison.
Using these operations, search_ref’s implementation approximately computes

the index (minblock) of the most similar block, i.e. the block with the minimum
distance from cblock. The repeat statement on line 15, iterates a constant
nblock number of times, enumerating over all previously encoded blocks. For
each encoded block, the repeat statements on lines 18 and 20 iterate over the
height*width pixels of the block and compute the sum of the squared differences
(ssd) between each pixel value and the corresponding pixel value in the current
block cblock. Finally, the computation on lines 30 through 33 selects the block
that is – approximately – the most similar to cblock.

https://doi.org/10.1017/9781108770750.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.016

15.2 Example 541

15.2.3 Hardware Semantics

Figure 15.3 illustrates the conceptual machine model behind Rely’s reliable and
unreliable operations; the model consists of a CPU and a memory.

CPU The CPU consists of (1) a register file, (2) arithmetic logical units that perform
operations on data in registers, and (3) a control unit that manages the program’s
execution.
The arithmetic-logical unit can execute reliably or unreliably. We have represented

this in Figure 15.3 by physically separate reliable and unreliable functional units,
but this distinction can be achieved through other mechanisms, such as dual-voltage
architectures (Esmaeilzadeh et al., 2012). Unreliable functional units may omit
additional checking logic, enabling the unit to execute more efficiently but also
allowing for soft errors that may occur due to, for example, power variations within
the ALU’s combinatorial circuits or particle strikes. As is provided by existing
computer architecture proposals (Sampson et al., 2011; Esmaeilzadeh et al., 2012),
the control unit of the CPU reliably fetches, decodes, and schedules instructions;
given a virtual address in the application, the control unit correctly computes a
physical address and operates only on that address.

Memory Rely supports machines with memories that consist of an arbitrary number
of memory partitions (each potentially of different reliability), but for simplicity
Figure 15.3 partitions memory into two regions: reliable and unreliable. Unreliable
memories can, for example, use decreased DRAM refresh rates to reduce power
consumption at the expense of increased soft error rates (Liu et al., 2011; Sampson
et al., 2011).

Hardware Reliability Specification
We abstract the behavior of the unreliable hardware platforms through a reliability
specification. It specifies the reliability of arithmetic/logical and memory operations.
Figure 15.4 presents a hardware reliability specification that is inspired by the results
from existing computer architecture literature (Ernst et al., 2003; Liu et al., 2011).
Each entry specifies the reliability – the probability of a correct execution – of
arithmetic operations (e.g., +.) and memory read/write operations.
For ALU operations, the presented reliability specification uses the reliability

of an unreliable multiplication operation that we selected from Ernst et al. (2003,
Figure 9). For memory operations, the specification uses the probability of a bit flip
in a memory cell that we selected from Liu et al. (2011, Figure 4) with extrapolation
to the probability of a bit flip within a 32-bit word. Note that a memory region
specification includes two reliabilities: the reliability of a read (rd) and the reliability
of a write (wr).

https://doi.org/10.1017/9781108770750.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.016

542 Carbin and Misailovic: Programming Unreliable Hardware

15.2.4 Reliability Analysis

Given a Rely program, Rely’s reliability analysis verifies that each function in the
program satisfies its reliability specification when executed on unreliable hardware.
The analysis takes as input a Rely program and a hardware reliability specification.
The analysis consists of two components: the precondition generator and the

precondition checker. For each function, the precondition generator produces a
precondition that characterizes the reliability of the function’s results given a
hardware reliability specification that characterizes the reliability of each unreliable
operation. The precondition checker then determines if the function’s specifications
satisfy the constraint. If so, then the function satisfies its reliability specification
when executed on the underlying unreliable hardware in that the reliability of its
results exceed their specifications.

Design As a key design point, the analysis generates preconditions according to
a conservative approximation of the semantics of the function. Specifically, it
characterizes the reliability of a function’s result according to the probability that
the function computes that result fully reliably.
To illustrate the intuition behind this design point, consider the evaluation of an

integer expression e. The reliability of e is the probability that it evaluates to the
same value n in an unreliable evaluation as in the fully reliable evaluation. There are
two ways that an unreliable evaluation can return n: (1) the unreliable evaluation of
e encounters no faults and (2) the unreliable evaluation possibly encounters faults,
but still returns n by chance.
Rely’s analysis conservatively approximates the reliability of a computation by

only considering the first scenario. This design point simplifies the reasoning to
the task of computing the probability that a result is reliably computed as opposed
to reasoning about a computation’s input distribution and the probabilities of all
executions that produce the correct result. As a consequence, the analysis requires as
input only a hardware reliability specification that gives the probability with which
each arithmetic/logical operation and memory operation executes correctly. The
analysis is therefore oblivious to a computation’s input distribution and does not
require a full model of how soft errors affect its result.

Precondition Generator
For each function, Rely’s analysis generates a reliability precondition that con-
servatively bounds the set of valid specifications for the function. A reliability
precondition is a conjunction of predicates of the form Aout ≤ r · R(X), where Aout
is a placeholder for a developer-provided reliability specification for an output with
name out, r is a numerical value between 0 and 1, and the term R(X) is the joint

https://doi.org/10.1017/9781108770750.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.016

15.2 Example 543

reliability of the set X of variables (including the function parameters) on entry to
the function.
The analysis starts at the end of the function from a postcondition that must be true

when the function returns and then works backward to produce a precondition such
that if the precondition holds before execution of the function, then the postcondition
holds at the end of the function.

Postcondition The postcondition for a function is the constraint that the reliability
of each array argument exceeds that given in its specification. For search_ref, the
postcondition Q0 is

Q0 = Apblocks ≤ R(pblocks) ∧ Acblock ≤ R(cblock),

which specifies that the reliability of the arrays pblocks and cblock –R(pblocks)
and R(cblock) – should be at least that specified by the developer – Apblocks and
Acblock.

Precondition Generation The analysis of the body of the search_ref function
starts at the return statement. Given the postcondition Q0, the analysis creates a
new precondition Q1 by conjoining to Q0 a predicate that states that the reliability
of the return value (r0 · R(minblock)) is at least that of its specification (Aret):

Q1 = Q0 ∧ Aret ≤ r0 · R(minblock).

The reliability of the return value is the probability of correctly reading minblock
from unreliable memory – which is r0 = 1 − 10−7 according to the hardware
reliability specification – multiplied by R(minblock), the probability that the
preceding computation correctly computed and stored minblock.

Loops The statement that precedes the return statement is the repeat statement
on Line 15. A key difficulty with reasoning about the reliability of variables
modified within a loop is that if a variable is updated unreliably and has a loop-
carried dependence then its reliability monotonically decreases as a function of the
number of loop iterations. Because the reliability of such variables can, in principle,
decrease arbitrarily in an unbounded loop, Rely provides both an unbounded loop
statement (with an associated analysis) and an alternative bounded loop statement
that lets a developer specify a compile-time bound on the maximum number of its
iterations that therefore bounds the reliability degradation of modified variables.
The loop on Line 15 iterates nblocks times and therefore decreases the reliability
of any modified variables nblocks times. Because the reliability degradation is
bounded, Rely’s analysis uses unrolling to reason about the effects of a bounded
loop.

https://doi.org/10.1017/9781108770750.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.016

544 Carbin and Misailovic: Programming Unreliable Hardware

Conditionals The analysis of the body of the loop on Line 15 encounters the if
statement on Line 30.1 This if statement uses an unreliable comparison operation
on ssd and minssd, both of which reside in unreliable memory. The reliability of
minblock when modified on Line 32 therefore also depends on the reliability of
this expression because faults may force the execution down a different path.
Figure 15.5 presents a Hoare logic style presentation of the analysis of the

conditional statement. The analysis works in three steps; the preconditions generated
by each step are numbered with the corresponding step.

Step 1 To capture the implicit dependence of a variable on an unreliable condition,
Rely’s analysis first uses latent control flow variables to make these dependencies
explicit. A control flow variable is a unique program variable (one for each statement)
that records whether the conditional evaluated to true or false. We denote the control
flow variable for the if statement on Line 30 by �30.
To make the control flow dependence explicit, the analysis adds the control flow

variable to all joint reliability terms in Q1 that contain variables modified within the
body of the if conditional (minssd and minblock).

Step 2 The analysis next recursively analyses both the “then” and “else” branches
of the conditional, producing one precondition for each branch. As in a standard pre-
condition generator (e.g., weakest-preconditions) the assignment of i to minblock
in the “then” branch replaces minblock with i in the precondition. Because reads
from i and writes to minblock are reliable (according to the specification) the
analysis does not introduce any new r0 factors.

Step 3 In the final step, the analysis leaves the scope of the conditional and conjoins
the two preconditions for its branches after transforming them to include the direct
dependence of the control flow variable on the reliability of the if statement’s
condition expression.
The reliability of the if statement’s expression is greater than or equal to the

product of (1) the reliability of the <. operator (r0), (2) the reliability of reading
both ssd and minssd from unreliable memory (r20), and (3) the reliability of
the computation that produced ssd and minssd (R(ssd,minssd)). The analysis
therefore transforms each predicate that contains the variable �30, by multiplying the
right-hand side of the inequality with r30 and replacing the variable �30 with ssd and
minssd.
This produces the precondition Q2:

Q2 = Q0 ∧ Aret ≤ r40 · R(i,ssd,minssd) ∧ Aret ≤ r40 · R(minblock,ssd,minssd).
1 This happens after encountering the increment of i on Line 35, which does not modify the current precondition
because it does not reference i.

https://doi.org/10.1017/9781108770750.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.016

15.2 Example 545

Simplification After unrolling a single iteration of the loop that begins at Line 15,
the analysis produces

Q0 ∧ Aret ≤ r25640 · R(pblocks,cblock,i,ssd,minssd)

as the precondition for a single iteration of the loop’s body. The constant 2564
represents the number of unreliable operations within a single loop iteration.
Note that there is one less predicate in this precondition than inQ2. As the analysis

works backwards through the program, it uses a simplification technique that identifies
that a predicate Aret ≤ r1 · R(X1) subsumes another predicate Aret ≤ r2 · R(X2).
Specifically, the analysis identifies that r1 ≤ r2 and X2 ⊆ X1, which together mean
that the second predicate is a weaker constraint on Aret than the first and can therefore
be removed. This follows from the fact that the joint reliability of a set of variables
is less than or equal to the joint reliability of any subset of the variables – regardless
of the distribution of their values.
This simplification is how Rely’s analysis achieves scalability when there are

multiple paths in the program. Specifically, the simplified precondition is a lower
bound of the reliability specification of all its program paths.

Final Precondition When the analysis reaches the beginning of the function
after fully unrolling the loop on Line 15, it has a precondition that bounds the
set of valid specifications as a function of the reliability of the parameters of the
function. For search_ref, the analysis generates the precondition Aret ≤ 0.994885 ·
R(pblocks,cblock) ∧ Apblocks ≤ R(pblocks) ∧ Acblock ≤ R(cblock).

Precondition Checker
The final precondition is a conjunction of predicates of the form Aout ≤ r · R(X),
where Aout is a placeholder for the reliability specification of an output. Because
reliability specifications are all of the form r · R(X) (Figure 15.1), each predicate
in the final precondition (where each Aout is replaced with its specification) is of
the form form r1 · R(X1) ≤ r2 · R(X2), where r1 · R(X1) is a reliability specification
and r2 · R(X2) is computed by the analysis. Similar to the analysis’s simplifier
(Section 15.2.4), the precondition checker verifies the validity of each predicate by
checking that (1) r1 is less than r2 and (2) X2 ⊆ X1.
For search_ref, the analysis computes the predicates

0.99 · R(pblocks,cblock) ≤ 0.994885 · R(pblocks,cblock),
R(pblocks) ≤ R(pblocks), and also R(cblock) ≤ R(cblock).

Because these predicates are valid according to the checking procedure,search_ref
satisfies its reliability specification when executed.

https://doi.org/10.1017/9781108770750.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.016

546 Carbin and Misailovic: Programming Unreliable Hardware

15.3 Language Semantics

Because soft errors may probabilistically change the execution path of a program,
we model the semantics of a Rely program with a probabilistic transition system.
Specifically, the dynamic semantics defines probabilistic transition rules for each
arithmetic/logical operation and each read/write on an unreliable memory region.
Over the next several sections, we develop a small-step semantics that specifies

the probability of each individual transition of an execution. In Section 15.3.4, we
provide big-step definitions that specify the probability of an entire execution.

15.3.1 Preliminaries

Rely’s semantics is given in the terms of an abstract machine that consists of a heap
and a stack. The heap is an abstraction over the physical memory of the concrete
machine, including its various reliable and unreliable memory regions. Each variable
(both scalar and array) is allocated in the heap. The stack consists of frames – one
for each function invocation – which contain references to the locations of each
allocated variable. This conceptual model of local variables does not need to be
concretized in the compilation model. For example, placing local variables in a
reliable stack can achieve competitive performance (Misailovic et al., 2014).

Hardware Reliability Specification A hardware reliability specification ψ ∈ Ψ =
(iop + cmp + lop + Mop) → Q≥0 is a finite map from arithmetic/logical opera-
tions (iop,cmp, lop) and memory region operations (Mop) to reliabilities (i.e., the
probability that the operation executes correctly).
Arithmetic/logical operations iop, cmp, and lop include both reliable and unreliable

versions of each integer, comparison, and logical operation. The reliability of each
reliable operation is 1 and the reliability of an unreliable operation is as provided by
a specification (Section 15.2.3).
The finite maps rd ∈ M → Mop and wr ∈ M → Mop define memory region

operations as reads and writes (respectively) on memory regions m ∈ M , where M
is the set of all memory regions in the reliability specification.
The hardware reliability specification 1ψ denotes the specification for fully reliable

hardware in which all arithmetic/logical and memory operations have reliability 1.

References Given a finite, contiguous address space Loc, a reference is a tuple
〈nb, 〈n1, . . . ,nk〉,m〉 ∈ Ref consisting of a base address nb ∈ Loc, a dimension
descriptor 〈n1, . . . ,nk〉, and a memory region m. Base addresses and the components
of dimension descriptors range over the finite set of bounded-width machine integers
n ∈ IntM.

https://doi.org/10.1017/9781108770750.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.016

15.3 Language Semantics 547

References describe the location, dimensions, and memory region of variables
in the heap. For scalars, the dimension descriptor is the single-dimension, single-
element descriptor 〈1〉. The projections πbase and πdim select the base address and
the dimension descriptor of a reference, respectively.

Frames, Stacks, Heaps, and Environments A frame σ ∈ Σ = Var → Ref is a
finite map from variables to references. A stack δ ∈ Δ ::= σ | σ :: Δ is a non-empty
list of frames. A heap h ∈ H = Loc → IntM is a finite map from addresses to
machine integers. An environment ε ∈ E = Δ × H is a stack and heap pair, 〈δ, h〉.

Memory Allocator The abstract memory allocator new is a partial function that
executes reliably. It takes a heap h, a memory region m, and a dimension descriptor
and returns a fresh address nb that resides in memory region m and a new heap h′

that reflects updates to the internal memory allocation data structures.

Auxiliary Probability Distributions Each nondeterministic choice in Rely’s se-
mantics must have an underlying probability distribution so that the set of possible
transitions at any given small step of an execution constitutes a probability distri-
bution – i.e., the probabilities of all possibilities sum up to one. In Rely, there are
two points at which an execution can make a nondeterministic choice: (1) the result
of an incorrect execution of an unreliable operation and (2) the result of allocating
a new variable in the heap.
The discrete probability distribution Pf (n f | op,n1, ...,nk) models the manifesta-

tion of a soft error during an incorrect execution of an operation. Specifically, it gives
the probability that an incorrect execution of an operation op on operands n1, . . . ,nk
produces a value n f that is different from the correct result of the operation. This
distribution is inherently tied to the properties of the underlying hardware.
The discrete probability distribution Pm(nb, h′ | h,m, d) models the semantics

of a nondeterministic memory allocator. It gives the probability that a memory
allocator returns a fresh address nb and an updated heap h′ given an initial heap h, a
memory region m, and a dimension descriptor d.
We define these distributions only to support a precise formalization of the

dynamic semantics of a program; they do not need to be specified for a given
hardware platform or a given memory allocator to use Rely’s analysis.

15.3.2 Semantics of Expressions

Figure 15.6 presents a selection of the rules for the dynamic semantics of integer
expressions. The labeled probabilistic small-step evaluation relation 〈e, σ, h〉

θ, p
−→ψ e′

states that from a frame σ and a heap h, an expression e evaluates in one step with

https://doi.org/10.1017/9781108770750.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.016

548 Carbin and Misailovic: Programming Unreliable Hardware

E-Var-C
〈nb , 〈1〉,m〉 = σ(x)

〈x, σ, h〉
C, ψ(rd(m))

−→ψ h(nb)

E-Var-F
〈nb , 〈1〉,m〉 = σ(x) p = (1 − ψ(rd(m))) · Pf (n f | rd(m), h(nb))

〈x, σ, h〉
〈F,nf 〉 , p
−→ψ n f

E-Iop-R1
〈e1, σ, h〉

θ , p
−→ψ e′

1

〈e1 iop e2, σ, h〉
θ , p
−→ψ e′

1 iop e2

E-Iop-R2
〈e2, σ, h〉

θ , p
−→ψ e′

2

〈n iop e2, σ, h〉
θ , p
−→ψ n iop e′

2

E-Iop-C

〈n1 iop n2, σ, h〉
C, ψ(iop)
−→ψ iop(n1, n2)

E-Iop-F
p = (1 − ψ(iop)) · Pf (n f | iop, n1, n2)

〈n1 iop n2, σ, h〉
〈F,nf 〉 , p
−→ψ n f

Figure 15.6 Dynamic Semantics of Integer Expressions

probability p to an expression e′ given a hardware reliability specification ψ. The
label θ ∈ {C, 〈C,n〉, 〈F,n f 〉} denotes whether the transition corresponds to a correct
(C or 〈C,n〉) or a faulty (〈F,n f 〉) evaluation of that step. For a correct transition
〈C,n〉, n ∈ IntM records a nondeterministic choice made for that step. For a faulty
transition 〈F,n f 〉, n f ∈ IntM represents the value that the fault introduced in the
semantics of the operation.
To illustrate the meaning of the rules, consider the rules for variable reference

expressions. A variable reference x reads the value stored in the memory address for
x. A variable reference can be evaluated in two ways:

• Correct [E-Var-C]. The variable reference evaluates correctly and successfully
returns the integer stored in x. This happens with probability ψ(rd(m)), where m
is the memory region in which x allocated. This probability is the reliability of
reading from x’s memory region.

• Faulty [E-Var-F]. The variable reference experiences a fault and returns another
integer n f . The probability that the faulty execution returns a specific integer
n f is (1 − ψ(rd(m))) · Pf (n f | rd(m), h(nb)). Pf is the distribution that gives the
probability that a failed memory read operation returns a value n f instead of the
true stored value h(nb) (Section 15.3.1).

15.3.3 Semantics of Statements

Figure 15.7 presents the semantics of the scalar and control flow fragment of Rely.
The labeled probabilistic small-step execution relation 〈s, ε〉

θ, p
−→ψ 〈s′, ε′〉 states

that execution of the statement s in the environment ε takes one step yielding a
statement s′ and an environment ε′ with probability p under the hardware reliability
specification ψ. As in the dynamic semantics for expressions, a label θ denotes

https://doi.org/10.1017/9781108770750.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.016

15.3 Language Semantics 549

E-Decl-R
〈e, σ, h〉

θ , p
−→ψ e′

〈int x = e in m, 〈σ :: δ, h〉〉
θ , p
−→ψ 〈int x = e′ in m, 〈σ :: δ, h〉〉

E-Decl
〈nb , h′ 〉 = new(h,m, 〈1〉) pm = Pm(nb , h′ | h,m, 〈1〉)

〈int x = n in m, 〈σ :: δ, h〉〉
〈C,nb 〉 , pm−→ψ 〈x = n, 〈σ[x �→ 〈nb , 〈1〉,m〉] :: δ, h′ 〉〉

E-Assign-R
〈e, σ, h〉

θ , p
−→ψ e′

〈x = e, 〈σ :: δ, h〉〉
θ , p
−→ψ 〈x = e′, 〈σ :: δ, h〉〉

E-Assign-C
〈nb , 〈1〉,m〉 = σ(x) p = ψ(wr(m))

〈x = n, 〈σ :: δ, h〉〉
C, p
−→ψ 〈skip, 〈σ :: δ, h[nb �→ n]〉〉

E-Assign-F
〈nb , 〈1〉,m〉 = σ(x) p = (1 − ψ(wr(m))) · Pf (n f | wr(m), h(nb), n)

〈x = n, 〈σ :: δ, h〉〉
〈F,nf 〉 , p
−→ψ 〈skip, 〈σ :: δ, h[nb �→ n f]〉〉

E-If
〈b, σ, h〉

θ , p
−→ψ b′

〈if� b s1 s2, 〈σ :: δ, h〉〉
θ , p
−→ψ 〈if� b′ s1 s2, 〈σ :: δ, h〉〉

E-If-True

〈if� true s1 s2, ε〉
C, 1

−→ψ 〈s1, ε〉

E-If-False

〈if� false s1 s2, ε〉
C, 1

−→ψ 〈s2, ε〉

E-Seq-R1
〈s1, ε〉

θ , p
−→ψ 〈s′1, ε

′ 〉

〈s1 ; s2, ε〉
θ , p
−→ψ 〈s′1 ; s2, ε

′ 〉

E-Seq-R2

〈skip ; s2, ε〉
C, 1

−→ψ 〈s2, ε〉

E-While

〈while� b s, ε〉
C, 1

−→ψ 〈if� b {s ; while� b s} {skip}, ε〉

E-While-Bounded

〈while� b : n s, ε〉
C, 1

−→ψ 〈if� b {s ; while� b : (n − 1) s} {skip}, ε〉

Figure 15.7 Dynamic Semantics of Statements

whether the transition evaluated correctly (C or 〈C,n〉) or experienced a fault
(〈F,n f 〉). The semantics of the statements in the language is largely similar to that
of traditional presentations except that the statements have the ability to encounter
faults during execution.
The semantics we present here is designed to allow unreliable computation at

all points in the application – subject to the constraint that the application is still
memory safe and exhibits control flow integrity.

https://doi.org/10.1017/9781108770750.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.016

550 Carbin and Misailovic: Programming Unreliable Hardware

Memory Safety To protect references that point to memory locations from cor-
ruption, the stack is allocated in a reliable memory region and stack operations
– i.e., pushing and popping frames – execute reliably. To prevent out-of-bounds
memory accesses that may occur due to an unreliable array index computation, Rely
requires that each array read and write include a bounds check. These bounds check
computations execute reliably. We presented the semantics of memory accesses
in Carbin et al. (n.d.).

Control Flow Integrity To prevent execution from taking control flow edges that
do not exist in the program’s static control flow graph, Rely assumes that (1)
instructions are stored, fetched, and decoded reliably (as supported by existing
unreliable processor architectures (Sampson et al., 2011; Esmaeilzadeh et al., 2012))
and (2) targets of control flow branches are reliably computed. These two properties
allow for the control flow transfers in the rules [E-If-True], [E-If-False], and
[E-Seq-R2] to execute reliably with probability 1.
Note that the semantics does not require a specific underlying mechanism to

achieve reliable execution and, therefore, an implementation can use any applicable
software or hardware technique (Reis et al., 2005; Perry et al., 2007; de Kruijf et al.,
2010; Feng et al., 2010; Pattabiraman et al., 2008; Schlesinger et al., 2011; Hiller
et al., 2002; Thomas and Pattabiraman, 2013).

15.3.4 Big-step Notations

We use the following big-step execution relations in this paper.

Definition 15.1 (Big-step Trace Semantics).

〈s, ε〉
τ, p
=⇒ψ ε

′ ≡ 〈s, ε〉
θ1, p1−→ψ . . .

θn , pn−→ψ 〈skip, ε′〉
where τ = θ1, . . . , θn and p = Π

i
pi

The big-step trace semantics is, conceptually, a reflexive transitive closure
of the small-step execution relation that records a trace of the execution. We
define a trace, τ ∈ T ::= · | θ :: T, as the sequence of small-step transition labels,
τ = θ1 :: ... :: θn :: ·. The probability of a trace, p, is the product of the probabilities
of each transition, p =

∏n
i=1 pi.

Definition 15.2 (Big-step Aggregate Semantics).

〈s, ε〉
p
=⇒ψ ε

′ where p =
∑

{{pτ | ∃τ ∈ T.〈s, ε〉
τ, pτ
=⇒ψ ε

′}}

The big-step aggregate semantics computes the aggregate probability (over all
finite length traces) that a statement s evaluates to an environment ε′ from an

https://doi.org/10.1017/9781108770750.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.016

15.4 Semantics of Quantitative Reliability 551

environment ε given a hardware reliability specification ψ. The big-step aggregate
semantics therefore gives the total probability that a statement s starts from an
environment ε and terminates in an environment ε′.2

Termination and Errors An unreliable execution of a statement may experience
a run-time error (due to an out-of-bounds array access) or not terminate at all.
The big-step aggregate semantics does not collect such executions. Therefore, the
sum of the probabilities of the big-step transitions from an environment ε may not
equal to 1. Specifically, let p ∈ E → R≥0 be a measure for the set of environments

reachable from ε, i.e., ∀ε′.〈s, ε〉
p(ε′)
=⇒ψ ε

′. Then p is subprobability measure, i.e.,
0 ≤

∑
ε′∈E p(ε′) ≤ 1 (Kozen, 1981).

15.4 Semantics of Quantitative Reliability

We next present definitions that give a semantic meaning to the reliability of a Rely
program.

15.4.1 Paired Execution

The paired execution semantics is the primary execution relation that enables one to
reason about the reliability of a program. Specifically, the relation pairs the semantics
of the program when executed reliably with its semantics when executed unreliably.

Definition 15.3 (Paired Execution). ϕ ∈ Φ = E → R≥0

〈s, 〈ε, ϕ〉〉 ⇓ψ 〈ε′, ϕ′〉 such that 〈s, ε〉
1
=⇒1ψ ε

′ and
ϕ′(ε′u) =

∑
{{ϕ(εu) · pu | εu ∈ E, 〈s, εu〉

pu
=⇒ψ ε

′
u}}

The relation states that from a configuration 〈ε, ϕ〉 consisting of an environment
ε and an unreliable environment distribution ϕ, the paired execution of a statement
s yields a new configuration 〈ε′, ϕ′〉.
The environments ε and ε′ are related by the fully reliable execution of s. Namely,

an execution of s from an environment ε yields ε′ under the fully reliable hardware
model 1ψ.
The unreliable environment distributions ϕ and ϕ′ are probability mass functions

that map an environment to the probability that the unreliable execution of the
program is in that environment. In particular, ϕ is a distribution on environments
before the unreliable execution of s whereas ϕ′ is the distribution on environments
2 The inductive (versus co-inductive) interpretation of T yields a countable set of finite-length traces and therefore
the sum over T is well-defined.

https://doi.org/10.1017/9781108770750.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.016

552 Carbin and Misailovic: Programming Unreliable Hardware

�P� ∈ P(E × Φ) �true� = E × Φ �false� = ∅ �P1 ∧ P2� = �P1� ∩ �P2�

�R1 ≤ R2� = { 〈ε, ϕ〉 | �R1�(ε, ϕ) ≤ �R2�(ε, ϕ)}

�R� ∈ E × Φ→ R≥0 �r�(ε, ϕ) = r �R1 · R2�(ε, ϕ) = �R1�(ε, ϕ) · �R2�(ε, ϕ)

�R(X)�(ε, ϕ) =
∑

εu ∈E(X ,ε)
ϕ(εu) E ∈ P(Var + ArrVar) × E → P(E)

E(X , ε) = {ε′ | ε′ ∈ E ∧ ∀v. v ∈ X ⇒ equiv(ε′, ε, v)})

equiv(〈σ′ :: δ′, h′ 〉, 〈σ :: δ, h〉, v) = ∀i . 0 ≤ i < len(v, σ) ⇒ h′(πbase(σ′(v)) + i) = h(πbase(σ(v)) + i)

len(v, σ) = let 〈n0, . . . , nk 〉 = πdim(σ(v)) in
∏
0≤i≤k

ni

Figure 15.8 Predicate Semantics

after executing s. These distributions specify the probability of reaching a specific
environment as a result of faults during the execution.
The unreliable environment distributions are discrete because E is a countable

set (Lemma 15.4). Therefore, ϕ′ can be defined pointwise: for any environment
ε′u ∈ E, the value of ϕ′(ε′u) is the probability that the unreliable execution of the
statement s results in the environment ε′u given the distribution on possible starting
environments, ϕ, and the aggregate probability pu of reaching ε′u from any starting
environment εu ∈ E according to the big-step aggregate semantics. In general, ϕ′ is a
subprobability measure because it is defined using the big-step aggregate semantics,
which is also a subprobability measure (Section 15.3.4).

Lemma 15.4 (Discrete Distribution). The probability space of unreliable environ-
ments (E, ϕ) is discrete.

Sketch A probability distribution is discrete if it is defined on a countable sample
space. Therefore, we need to prove that the set E is countable. We can accomplish
it by proving that both the stack and the heap are countable. We demonstrate the
former by observing that the number of variables in each stack frame is finite, and
the number of frames is countable. We demonstrate the latter by noting that the
number of locations is finite, and each is of the finite size. Full proof is available
in Carbin et al. (n.d.). �

15.4.2 Reliability Predicates and Transformers

The paired execution semantics enables a definition of the semantics of statements as
transformers on reliability predicates that bound the reliability of program variables.
A reliability predicate P is a predicate of the form:

https://doi.org/10.1017/9781108770750.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.016

15.4 Semantics of Quantitative Reliability 553

P → true | false | R ≤ R | P ∧ P
R → r | R(X) | R · R

A predicate can either be the constant true, the constant false, a comparison
between reliability factors (R), or a conjunction of predicates. A reliability factor
is real-valued quantity that is either a rational constant r in the range [0,1]; a joint
reliability factor R(X) that gives the probability that all program variables in the
set X have the same value in the unreliable execution as they have in the reliable
execution; or a product of reliability factors, R · R.
This combination of predicates and reliability factors enables a developer to specify

bounds on the reliability of variables in the program, such as 0.99999 ≤ R({x}),
which states that the probability that x has the correct value in an unreliable execution
is at least 0.99999.

Semantics of Reliability Predicates.
Figure 15.8 presents the denotational semantics of reliability predicates via the
semantic function �P�. The denotation of a reliability predicate is the set of
configurations that satisfy the predicate. A key new element in the semantics of this
predicate language is the semantics of joint reliability factors.

Joint Reliability Factor A joint reliability factor R(X) represents the probability
that an unreliable environment εu sampled from the unreliable environment distri-
bution ϕ has the same values for all variables in the set X as that in the reliable
environment ε. To define this probability, we use the function E(X, ε), which gives
the set of environments that have the same values for all variables in X as in the
environment ε. The denotation of a joint reliability factor is then the sum of the
probabilities of each of these environments according to ϕ.

Auxiliary Definitions We define predicate satisfaction and validity as:

〈ε, ϕ〉 |= P ≡ 〈ε, ϕ〉 ∈ �P�

|= P ≡ ∀ε.∀ϕ. 〈ε, ϕ〉 |= P

Reliability Transformer
Given a semantics for predicates, it is now possible to view the paired execution of a
program as a reliability transformer – namely, a transformer on reliability predicates
that is reminiscent of Dijkstra’s Predicate Transformer Semantics (Dijkstra, 1975).

Definition 15.5 (Reliability Transformer).
ψ |= {P} s {Q} ≡

∀ε.∀ϕ.∀ε′.∀ϕ′. (〈ε, ϕ〉 |= P ∧ 〈s, 〈ε, ϕ〉〉 ⇓ψ 〈ε′, ϕ′〉) ⇒ 〈ε′, ϕ′〉 |= Q

https://doi.org/10.1017/9781108770750.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.016

554 Carbin and Misailovic: Programming Unreliable Hardware

The paired execution of a statement s is a transformer on reliability predicates,
denoted ψ |= {P} s {Q}. Specifically, the paired execution of s transforms P to Q if
for all 〈ε, ϕ〉 that satisfy P and for all 〈ε′, ϕ′〉 yielded by the paired execution of s
from 〈ε, ϕ〉, 〈ε′, ϕ′〉 satisfies Q. The paired execution of s transforms P to Q for any
P and Q where this relationship holds.
Reliability predicates and reliability transformers enable Rely to use symbolic

predicates to characterize and constrain the shape of the unreliable environment
distributions before and after execution of a statement. This approach provides a
well-defined domain in which to express Rely’s reliability analysis as a generator
of constraints on the shape of the unreliable environment distributions for which a
function still satisfies its specification.

15.5 Reliability Analysis

For each function in a program, Rely’s reliability analysis generates a symbolic
reliability precondition with a precondition generator style analysis. The reliability
precondition is a reliability predicate that constrains the set of specifications that are
valid for the function. Specifically, the reliability precondition is the conjuction of the
terms of the form Ri ≤ Rj where Ri is the reliability factor for a developer-provided
specification of a function output and Rj is a reliability factor that gives a conservative
lower bound on the reliability of that output. If the reliability precondition is valid,
then the developer-provided specifications are valid for the function.

15.5.1 Preliminaries

Transformed Semantics We formalize Rely’s analysis over a transformed seman-
tics of the program that is produced via a source-to-source transformation function
T that performs two transformations:

• Conditional Flattening: Each conditional has a unique control flow variable �
associated with it that T uses to flatten a conditional of the form if� (b) {s1} {s2}
to the sequence � = b ; if� (�) {s1} {s2}. This transformation reifies the control
flow variable as an explicit program variable that records the value of the
conditional.

• SSA: The transformation function also transforms a Rely program to a SSA
renamed version of the program. The φ-nodes for a conditional include a reference
to the control flow variable for the conditional. For example, T transforms a
sequence of statements of the form

� = b ; if� (�) {x = 1} {x = 2}

to the sequence of statements

https://doi.org/10.1017/9781108770750.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.016

15.5 Reliability Analysis 555

� = b ; if� (�) {x1 = 1} {x2 = 2} ; x = φ(�, x1, x2).

We rely on standard treatments for the semantics of φ-nodes (Barthe et al., 2012)
and arrays (Knobe and Sarkar, 1998). We also note that T applies the SSA
transformation such that a reference of a parameter at any point in the body of the
function refers to its initial value on entry to the function. This property naturally
gives a function’s reliability specifications a semantics that refers to the reliability
of variables on entry to the function.

These two transformations together make explicit the dependence between the
reliability of a conditional’s control flow variable and the reliability of variables
modified within.

Auxiliary Maps The map Λ ∈ Var → M is a map from program variables to their
declared memory regions. We compute this map by inspecting the parameter and
variable declarations in the function. The map Γ ∈ Var → R is the unique map from
the outputs of a function – namely, the return value and arrays passed as parameters
– to the reliability factors (Section 15.4.2) for the developer-provided specification of
each output. We allocate a fresh variable named ret that represents the return value
of the program.

Substitution A substitution e0[e2/e1] replaces all occurrences of the expression e1
with the expression e2 within the expression e0. Multiple substitution operations are
applied from left to right. The substitution matches set patterns. For instance, the
pattern R({x} ∪ X) represents a joint reliability factor that contains the variable x,
alongside with the remaining variables in the set X . Then, the result of the substitution
r1 · R({x, z})[r2 · R({y} ∪ X)/R({x} ∪ X)] is the expression r1 · r2 · R({y, z}).

15.5.2 Precondition Generation

The analysis generates preconditions according to a conservative approximation of
the paired execution semantics. Specifically, it characterizes the reliability of a value
in a function according to the probability that the function computes that value –
including its dependencies – fully reliably given a hardware specification.
Figure 15.9 presents a selection of Rely’s reliability precondition generation rules.

The generator takes as input a statement s, a postcondition Q, and (implicitly) the
maps Λ and Γ. The generator produces as output a precondition P, such that if P
holds before the paired execution of s, then Q holds after.
We have designed the analysis so that Q is the constraint over the developer-

provided specifications that must hold at the end of execution of a function. Because
arrays are passed by reference in Rely and can therefore be modified, one property

https://doi.org/10.1017/9781108770750.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.016

556 Carbin and Misailovic: Programming Unreliable Hardware

ρ ∈ (Exp + BExp) → Q≥0 × P(Var) ρ(n) = (1,∅) ρ(x) = (ψ(rd(Λ(x))), {x })

ρ(e1 iop e2) = (ρ1(e1) · ρ1(e2) · ψ(iop) , ρ2(e1) ∪ ρ2(e2)) ρ1(e) = π1(ρ(e)) ρ2(e) = π2(ρ(e))

RPψ ∈ S × P → P
RPψ (return e,Q) = Q ∧ Γ(ret) ≤ ρ1(e) · R(ρ2(e))

RPψ (x = e,Q) = Q [(ρ1(e) · ψ(wr(Λ(x)))·
R(ρ2(e) ∪ X))/R({x } ∪ X)]

RPψ (x = a[e1, . . . , en],Q) = Q [((
∏
i
ρ1(ei)) · ψ(rd(Λ(a))) · ψ(wr(Λ(x)))·

R({a} ∪ (
⋃
i
ρ2(ei)) ∪ X))/R({x } ∪ X)]

RPψ (a[e1, . . . , en] = e,Q) = Q [(ρ1(e) · (
∏
i
ρ1(ei)) · ψ(wr(Λ(a)))·

R(ρ2(e) ∪ (
⋃
i
ρ2(ei)) ∪ {a} ∪ X))/ R({a} ∪ X)]

RPψ (skip,Q) = Q
RPψ (s1 ; s2,Q) = RPψ (s1, RPψ (s2,Q))

RPψ (if� � s1 s2,Q) = RPψ (s1,Q) ∧ RPψ (s2,Q)
RPψ (x = φ(�, x1, x2),Q) = Q [R({�, x1 } ∪ X)/R({x } ∪ X)]∧

Q[R({�, x2 } ∪ X)/R({x } ∪ X)]

RPψ (while� b : 0 s,Q) = Q
RPψ (while� b : n s,Q) = RPψ (T(if�n b {s ; while� b : (n − 1) s} skip),Q)

RPψ (int x = e in m,Q) = RPψ (x = e,Q)
RPψ (int a[n0, . . . , nk] in m,Q) = Q [R(X)/R({a} ∪ X)]

Figure 15.9 Reliability Precondition Generation

that must hold at the end of execution of a function is that each array must be at
least as reliable as implied by its specification. The analysis captures this property
by setting the initial Q for the body of a function to∧

ai

Γ(ai) ≤ R(a′
i)

where ai is the i-th array parameter of the function and a′
i is an SSA renamed

version of the array that contains the appropriate value of ai at the end of the function.
This constraint therefore states that the reliability implied by the specifications must
be less than or equal to the actual reliability of each input array at the end of the
function. As the precondition generator works backwards through the function, it
generates a new precondition that – if valid at the beginning of the function – ensures
that Q holds at the end.

Reasoning about Expressions
The topmost part of Figure 15.9 first presents the rules for reasoning about the
reliability of evaluating an expression. The reliability of evaluating an expression
depends on two factors: (1) the reliability of the operations in the expression
and (2) the reliability of the variables referenced in the expression. The function
ρ ∈ (Exp + BExp) → Q≥0 × P(Var) computes the core components of these two
factors. It returns a pair consisting of (1) the probability of correctly executing
all operations in the expression and (2) the set of variables referenced by the

https://doi.org/10.1017/9781108770750.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.016

15.5 Reliability Analysis 557

expression. The projections ρ1 and ρ2 return each component, respectively. Using
these projections, the reliability of an expression e – given any reliable environment
and unreliable environment distribution – is therefore at least ρ1(e) ·R(ρ2(e)), where
R(ρ2(e)) is the joint reliability of all the variables referenced in e. The rules for
boolean and relational operations are defined analogously.

Generation Rules for Statements
As in a precondition generator, the analysis works backwards from the end of
the program to the beginning. We have therefore structured the discussion of the
statements starting with function returns.

Function Returns When execution reaches a function return, return e, the
analysis must verify that the reliability of the return value is greater than the
reliability that the developer specified. To verify this, the analysis rule generates the
additional constraint Γ(ret) ≤ ρ1(e) · R(ρ2(e)). This constrains the reliability of the
return value, where Γ(ret) is the reliability specification for the return value.

Assignment For the program to satisfy a predicate Q after the execution of an
assignment statement x = e, then Q must hold given a substitution of the reliability
of the expression e for the reliability of x. The substitution Q[(ρ1(e) · ψ(wr(Λ(x))) ·
R(ρ2(e)∪X))/R({x}∪X)] binds each reliability factor inwhich x occurs –R({x}∪X)
– and replaces the factor with a new reliability factor R(ρ2(e) ∪ X) where ρ2(e) is
the set of variables referenced by e.
The substitution also multiplies the reliability factor by ρ1(e) ·ψ(wr(Λ(x))), which

is the probability that e evaluates fully reliably and its value is reliably written to the
memory location for x.

Array loads and stores The reliability of a load, x = a[e1, . . . , en], depends on
the reliability of the indices e1, . . . , en, the reliability of the values stored in a, and
the reliability of reading from a’s memory region. The rule’s implementation is
similar to that for assignment.
The reliability of an array store a[e1, . . . , en] = e depends on the reliability of the

source expression e, the reliability of the indices e1, . . . , en , and the reliability of
writing to a. Note that the rule preserves the presence of a within the reliability term.
By doing so, the rule ensures that it tracks the full reliability of all the elements
within a.

Conditional For the program to satisfy a predicate Q after a conditional statement
of the form if� b s1 s2, each branch must satisfy Q. The rule therefore generates a
precondition that is a conjunction of the results of the analysis of each branch.

https://doi.org/10.1017/9781108770750.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.016

558 Carbin and Misailovic: Programming Unreliable Hardware

Phi-nodes The rule for a φ-node x = φ(�, x1, x2) captures the implicit dependence
of the effects of control flow on the value of a variable x. For the merged value
x, the rule establishes Q by generating a precondition that ensures that Q holds
independently for both x1 and x2, given an appropriate substitution. Note that the
rule also includes � in the substitution; this explicitly captures x’s dependence on �.
The flattening statement inserted before a conditional (Section 15.5.1), later replaces
the reliability of � with that of its dependencies.

Bounded while and repeat Bounded while loops, while� b : n s, and repeat
loops, repeat n s, execute their bodies at most n times. Execution of such a loop
therefore satisfies Q if P holds beforehand, where P is the result of invoking the
analysis on n sequential copies of the body. The rule implements this approach via a
sequence of bounded recursive calls to transformed versions of itself.

Unbounded while We present the analysis for unbounded while loops in the
section that follows.

Function Calls The analysis for functions is modular and takes the reliability
specification from the function declaration and substitutes the reliabilities of the
function’s formal arguments with the reliabilities of the expressions that represent
the function’s actual arguments. We presented the rule for function calls in Carbin
et al. (n.d.).

Unbounded while Loops
An unbounded loop, while� b s, may execute for a number of iterations that is not
bounded statically. The reliability of a variable that is modified unreliably within
a loop and has a loop-carried dependence is a monotonically decreasing function
of the number of loop iterations. The only sound approximation of the reliability
of such a variable is therefore zero. However, unbounded loops may also update a
variable reliably. In this case, the reliability of the variable is the joint reliability
of its dependencies. We have designed an analysis for unbounded while loops to
distinguish these two cases as follows:

Dependence Graph The analysis first constructs a dependence graph for the loop.
Each node in the dependence graph corresponds to a variable that is read or written
within the condition or body of the loop. There is a directed edge from the node for
a variable x to the node for a variable y if the value of y depends on the value of x.
The analysis additionally classifies each edge as reliable or unreliable meaning that
a reliable or unreliable operation creates the dependence.
There is an edge from the node for a variable x to the node for the variable y if

one of the following holds:

https://doi.org/10.1017/9781108770750.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.016

15.5 Reliability Analysis 559

• Assignment: there is an assignment to y where x occurs in the expression
on the right hand side of the assignment; this condition captures direct data
dependencies. The analysis classifies such an edge as reliable if every opera-
tion in the assignment (i.e., the operations in the expression and the write to
memory) are reliable. Otherwise, the analysis marks the edge as unreliable. The
rules for array load and store statements are similar, and include dependencies
induced by the computation of array indices.

• Control Flow Side Effects: y is assigned within an if statement and the if
statement’s control flow variable is named x; this condition captures control
dependencies. The analysis classifies each such edge as reliable.

The analysis uses the dependence graph to identify the set of variables in the loop
that are reliably updated. A variable x is reliably updated if all simple paths (and
simple cycles) to x in the dependence graph contain only reliable edges.

Fixpoint Analysis Given a set of reliably updated variables Xr , the analysis next
splits the postcondition Q into two parts. For each predicate Ri ≤ r · R(X) in Q
(where Ri is a developer-provided specification), the analysis checks if the property
∀x ∈ X . x ∈ modset(s) ⇒ x ∈ Xr holds, where modset(s) computes the set of
variables that may be modified by s. If this holds, then all the variables in X are either
modified reliably or not modified at all within the body of the loop. The analysis
conjoins the set of predicates that satisfy this property to create the postcondition
Qr and conjoins the remaining predicates to create Qu.
The analysis next iterates the function F(A) starting from true, where F(A) =

Qr ∧ RPψ(T (if� b s skip), A), until it reaches a fixpoint. The resulting predicate
Q′

r is a translation of Qr such the joint reliability of a set of variables is replaced by
the joint reliability of its dependencies.

Lemma 15.6 (Termination). Iteration of F(A) terminates.

This follows from the monotonicity of RP and the fact that the range of F(A) is
finite (given a simplifier that removes redundant predicates and produces a canonical,
symbolic predicate representation – which we present a subsumption-based variant
in Section 15.5.3) – together, forming finite descending chains. The key intuition is
that the set of rational constants in the precondition before and after an iteration does
not change (because all variables are reliably updated) and the set of variables that
can occur in a joint reliability factor is finite. Therefore, there are a finite number of
unique preconditions in the range of F(A).

Final Precondition In the last step, the analysis produces a final precondition that
preserves the reliability of variables that are reliably updated by conjoining Q′

r

https://doi.org/10.1017/9781108770750.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.016

560 Carbin and Misailovic: Programming Unreliable Hardware

with the predicate Qu[(Ri ≤ 0)/(Ri ≤ Rj)], where Ri and Rj are joint reliability
factors. The substitution onQu sets the joint reliability factors that contain unreliably
updated variables to zero.

Properties
Rely’s analysis is sound with respect to the transformer semantics presented in
Section 15.4.

Theorem 15.7 (Soundness). ψ |= {RPψ(s,Q)} s {Q}

This theorem states that if a configuration 〈ε, ϕ〉 satisfies a generated precondition
and the paired execution of s yields a configuration 〈ε′, ϕ′〉, then 〈ε′, ϕ′〉 satisfies Q.
Alternatively, s transforms the precondition generated by the analysis to Q.
We demonstrate the basic constructions for reasoning about soundness of the

analysis via a detailed presentation of the soundness of the rule for assignment.

Lemma 15.8 (Soundness of Assignment).

ψ |= {A ≤ ρp(e) · ψ(wr(x)) · R(X/{x} ∪ ρvar(e))}
x = e

{A ≤ R(X)}

Outline By the definition of the reliability transformer, this judgment is equivalent
to proving that A ≤ �R(X)�(ε′, ϕ′) given the two premises:
(1) A ≤ �ρp(e) · ψ(wr(x)) · R(Y)�(ε, ϕ) and
(2) 〈s, ε, ϕ〉 ⇓ψ 〈ε′, ϕ′〉 where Y = (X − {x}) ∪ ρvar(e).
We establish this theorem by proving that

�ρp(e) · ψ(wr(x)) · R(Y)�(ε, ϕ) ≤ �R(X)�(ε′, ϕ′)

and then using the transitivity of ≤, namely, that A ≤ �ρp(e)·ψ(wr(x))·R(Y)�(ε, ϕ) ≤
�R(X)�(ε′, ϕ′) This follows from the following definitions and lemmas.

Lemma 15.9 (Initial Reliability).
If ins = {εu | equiv(ε, εu,Y)} then �R(Y)�(ε, ϕ) = Σ

εu ∈ins
ϕ(εu).

This lemma is a restatement of the semantics of joint reliability factors as laid out in
Section 15.4.

Lemma 15.10 (Final Reliability).
If outs ⊆ {ε′u | equiv(ε′, ε′u,X)} then Σ

εu ∈outs
ϕ′(εu) ≤ �R(X)�(ε′, ϕ′).

This lemma is also a restatement of the semantics of joint reliability factors.

https://doi.org/10.1017/9781108770750.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.016

15.5 Reliability Analysis 561

Definition 15.11 (Unreliable Execution Summary). An unreliable execution sum-
mary is a tuple (εu, τ, p, ε′u) ∈ U = {(εu, τ, p, ε′u) | 〈x = e, εu〉

τ,p
=⇒ψ ε

′
u} such that

from an environment εu , execution of the statement x = e under the reliability model
ψ proceeds following a trace τ with probability p and yields an environment ε′u.

Unreliable execution summaries enable us to construct a conservative approxima-
tion of the paired execution semantics:

Lemma 15.12 (Paired Execution Approximation).
If execs ⊆ U and 〈s, ε, ϕ〉 ⇓ψ 〈ε′, ϕ′〉 then(

Σ
ex∈execs

ϕ(πεu (ex)) · πp(ex)
)
≤ Σ

ex∈(execs)
ϕ′(πε′

u
(ex)).

This lemma states that for any set of execution summaries execs the sum – over
all summaries – of the product of the probability of each summary’s initial state
(according to ϕ) and the probability of the execution’s trace p is less than or equal to
the sum of the probability of each summary’s final state according to ϕ′.
This lemma follows from the definition of the paired execution semantics provided

in Section 15.4. According to the paired execution semantics, the probability of any
final state ε′u – i.e., ϕ′(ε′u) – is the sum over all states εu of the aggregate probability
(as defined by the aggregate big-step semantics) that the unreliable program reaches
ε′u. Additionally, the aggregatate probability is the sum over all unreliable traces
that reach ε′u from εu. This sum is therefore bounded from below by the sum over
any subset of all states and traces.

Definition 15.13 (Fully Reliable Execution Summaries). Let the set of fully reliable
execution summaries be

execsc = {(εu, τ, p, ε′u) | (εu, τ, p, ε′u) ∈ U ∧ εu ∈
{εu | equiv(ε, εu,Y)} ∧ correct(τ)},

where correct(τ) is a predicate that is true only if the trace τ is a list of the form C+

(C transition label indicates that a transition executed reliably).
The set of fully reliable execution summaries characterizes the set of pairs of

environments εu and ε′u where εu has the correct values for the set of variables Y
and execution from εu proceeds fully reliably to ε′u.

Proof Using the set of fully reliable executions, we can build our proof of the main

https://doi.org/10.1017/9781108770750.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.016

562 Carbin and Misailovic: Programming Unreliable Hardware

theorem. Via Lemma 15.9, we know that

�ρp(e) · ψ(wr(x)) · R(Y)�(ε, ϕ) = ρp(e) · ψ(wr(x)) · Σ
εu ∈ins

ϕ(εu)

= Σ
εu ∈ins

ϕ(εu) · ρp(e) · ψ(wr(x))

= Σ
ex∈execsc

ϕ(πεu (ex)) · πp(ex)

This fact is true because all initial environments εu have the same values for all
variables in Y and ρp(e) · ψ(wr(x)) is the probability that the statement executes
correctly.
Continuing on from this right-hand side, we use the paired execution approximation

and Lemma 15.10 to complete our proof:

Σ
ex∈execsc

ϕ(πεu (ex)) · πp(ex) ≤ Σ
ex∈execsc

ϕ′(πε′
u
(ex)).

≤ �R(X)�(ε′, ϕ′)

The first step follows from the fact that execsc ⊆ U. The second step fact follows from
the fact that πε′

u
(execsc) ⊆ {ε′u | equiv(ε′, ε′u,X)}. We know that πε′

u
(execsc) ⊆

{ε′u | equiv(ε′, ε′u,X)}. because if (1) all values referenced in e have the correct value
and (2) both e and the assignment to x execute reliably, then x has the correct value
(and the remaining variables in X have the same correct values as they have not been
modified). We can therefore conclude that A ≤ �ρp(e) · ψ(wr(x)) · R(Y)�(ε, ϕ) ≤
�R(X)�(ε′, ϕ′) �

15.5.3 Specification Checking

As the last step of the analysis for a function, the analysis checks the developer-
provided reliability specifications for the function’s outputs as captured by the
precondition generator’s final precondition. Because each specification has the form
r · R(X) (Figure 15.1) the precondition is a conjunction of predicates of the form
r1 · R(X1) ≤ r2 · R(X2). While these joint reliability factors represent arbitrary and
potentially complex distributions of the values of X1 and X2, there is a simple and
sound (though not complete) procedure to check the validity of each predicate in a
precondition that follows from the ordering of joint reliability factors.

Proposition 15.14 (Ordering). For two sets of variables X and Y , if X ⊆ Y then
R(Y) ≤ R(X).

The proposition states that the joint reliability of a set of variables Y is less than
or equal to the joint reliability of any subset of the variables – regardless of the
distribution of their values.

https://doi.org/10.1017/9781108770750.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.016

15.6 Related Work 563

Proof (Sketch) First, we consider the case when all variables in X andY are scalars.
Let UY be the set passed as the argument at the base case of the recursion started by
the call rel(Y, ε, ϕ,E) andUX be the set passed as the argument at the base case of the
recursion started by the call rel(X, ε, ϕ,E). Then, if X ⊆ Y , the set UY ⊆ UX , since
the variables inY\X provide additional restrictions on the states that are contained in
UY . The theorem statement follows from the inequality

∑
v∈UX

ϕ(v) ≥
∑

v∈UY
ϕ(v).

If a is an array variable, then the function rel adds a constraint for each element
of a. Then, we can apply the same argument for each such obtained sets UX and
UY . This property holds for each array element, and is not affected by the minimum
operator in the function rel. �

As a consequence of the ordering of joint reliability factors, there is a simple and
sound method to check the validity of a predicate.

Corollary 15.15 (Predicate Validity). If r1 ≤ r2 and X2 ⊆ X1 then
|= r1 · R(X1) ≤ r2 · R(X2).

The constraint r1 ≤ r2 is a comparison of two rational numbers and the constraint
X2 ⊆ X1 is an inclusion of finite sets. Note that both types of constraints are decidable
and efficiently checkable.

Checking Because the predicates in the precondition generator’s output aremutually
independent, it is possible to use Corollary 15.15 to check the validity of the full
precondition by checking the validity of each predicate.
Our implementation performs simplification transformations after each precondi-

tion generator step to simplify numerical expressions and remove predicates that are
trivially valid or subsumed by another predicate.

Proposition 15.16 (Predicate Subsumption).A predicate r1 · R(X1) ≤ r2 · R(X2)
subsumes (i.e., soundly replaces) another predicate r ′

1 · R(X ′
1) ≤ r ′

2 · R(X ′
2) if

r ′
1 · R(X ′

1) ≤ r1 · R(X1) and r2 · R(X2) ≤ r ′
2 · R(X ′

2).

This property follows directly from the ordering of joint reliability factors. We
provide the proof in Carbin et al. (n.d., Section C.3).

15.6 Related Work

Integrity Almost all approximate computations have critical regions that must
execute without error for the computation as a whole to execute acceptably. Dynamic
criticality analyses automatically change different regions of the computation or
internal data structures, and observe how the change affects the program’s output,
e.g. Rinard (2006); Carbin and Rinard (2010); Misailovic et al. (2010). In addition,

https://doi.org/10.1017/9781108770750.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.016

564 Carbin and Misailovic: Programming Unreliable Hardware

specification-based static criticality analyses let the developer identify and separate
critical and approximate program regions, e.g., Liu et al. (2011); Sampson et al.
(2011). Carbin et al. (2012) present a verification system for relaxed approximate
programs based on a relational Hoare logic. The system enables rigorous reasoning
about the integrity and worst-case accuracy properties of a program’s approximate
regions.
In contrast to the prior static analyses that focus on the binary distinction between

reliable and approximate computations, Rely allows a developer to specify and verify
that even approximate computations produce the correct result most of the time.
Overall, this additional information can help developers better understand the effects
of deploying their computations on unreliable hardware and exploit the benefits that
unreliable hardware offers.

Accuracy In addition to reasoning about how often a computation may produce a
correct result, it may also be desirable to reason about the accuracy of the result
that the computation produces. Dynamic techniques observe the accuracy impact of
program transformations, e.g., Rinard (2006), Misailovic et al. (2010), Ansel et al.
(2011), Baek and Chilimbi (2010), Sidiroglou et al. (2011), or injected soft errors,
e.g., de Kruijf et al. (2010), Liu et al. (2011), Sampson et al. (2011). Empirical
techniques like Approxilyzer (Venkatagiri et al., 2015, 2019) present systematic
exploration of the impact of soft errors on individual program instructions, including
the accuracy of the result. Researchers have developed static techniques that use
probabilistic reasoning to characterize the accuracy impact of various sources of
uncertainty (Misailovic et al., 2011; Chaudhuri et al., 2011; Zhu et al., 2012). And
of course, the accuracy impact of the floating point approximation to real arithmetic
has been extensively studied in numerical analysis.

Fault Tolerance and Resilience Researchers have developed various software,
hardware, or mixed approaches for detection and recovery from specific types of
soft errors that guarantee a reliable program execution, e.g., Reis et al. (2005),
Perry et al. (2007), de Kruijf et al. (2010). For example, Reis et al. (2005) present a
compiler that replicates a computation to detect and recover from single event upsets.
These techniques are complementary to Rely – each can provide implementations
of operations that need to be reliable (as specified by the developer or required by
Rely) to preserve memory safety and control flow integrity.

Follow up works Since publishing the original paper (Carbin et al., 2013b), we and
other researchers have extended this research in various directions. We developed
the Chisel optimization system to automate the placement of approximate operations
and data (Misailovic et al., 2014). Chisel extends the Rely reliability specifications

https://doi.org/10.1017/9781108770750.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.016

15.7 Conclusion 565

(that capture acceptable frequency of errors) with absolute error specifications (that
also capture acceptable magnitude of errors). It formulates an integer optimization
problem to automatically navigate the tradeoff space and generate an approximate
computation that provides maximum energy savings while satisfying both the
reliability and absolute error specifications.
Several static analyses studied the interactions between safety and reliability.

Decaf (Boston et al., 2015) presents a type system that incorporates reliability
specifications with EnerJ type annotations. FlexJava (Park et al., 2015) presents a
static analysis for inferring annotations on approximate variables. Leto (Boston et al.,
2018) provides a flexible interface for expressing custom hardware error models
and a verification framework that can prove various properties about programs that
execute on such hardware. Aloe (Joshi et al., 2020) adds support for analyzing
recovery blocks to Rely.
More recently, researchers also extended the reliability analysis to other kinds of

computations. Hung et al. (2019) extend the reliability analysis to quantum programs.
Fernando et al. (2019) presented an approach for analyzing message-passing parallel
programs with unreliable computation and/or communication.

15.7 Conclusion

The software and hardware communities have grown accustomed to the digital
abstraction of computing: the computing substrate is designed to either faithfully
execute an operation or detect and report that an error has occurred. This abstraction
has enabled a process whereby increased performance capability in the substrate
enables the development of increasingly larger and more complicated computing
systems that are composed of less complicated, modularly-specified components.
Emerging trends in the scalability of existing hardware design techniques, however,

jeopardize the hope that future gains in computing performance will still be
accompanied by a digital abstraction. Instead, future high-performance computing
platforms may produce uncertain results and, therefore, it may no longer be possible
to use traditional techniques to modularly compose components to execute on these
platforms.
While there is an immediate opportunity for our work to enable the reasoning

needed to reliably achieve better performance in the face of uncertainty, the true
motivation for this work is that the nature of computing itself has changed. Emerging
applications, such as machine learning, multimedia, and data analytics are inherently
uncertain computations that operate over uncertain inputs. Moreover, emerging un-
certain computational substrates, such as intermittently powered devices, biological
devices, and quantum computing, create new possibilities for where computation
can take place and even what can be computed itself.

https://doi.org/10.1017/9781108770750.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.016

566 References

Going forward, this work will enable the software and hardware communities to
discard the notion that they must rely on the digital abstraction to build computing
systems. Instead, emerging computing systems will use abstractions of acceptability
that will enable these systems to exploit not only the performance benefits of
uncertain substrates, but also the new possibilities that these platforms offer for
computation.

Acknowledgments

We thank Martin Rinard, our advisor and the co-authors of the conference version
of this chapter (Carbin et al., 2013b). We also thank Vimuth Fernando for proof-
reading the draft. This research was supported in part by the National Science
Foundation (Grants CCF-0905244, CCF-1036241, CCF-1138967, CCF-1138967,
and IIS-0835652), the United States Department of Energy (Grant DE-SC0008923),
and DARPA (Grants FA8650-11-C-7192, FA8750-12-2-0110).

References
Ansel, J., Wong, Y., Chan, C., Olszewski, M., Edelman, A., and Amarasinghe,

S. 2011. Language and compiler support for auto-tuning variable-accuracy
algorithms. CGO.

Baek, W., and Chilimbi, T. M. 2010. Green: a framework for supporting energy-
conscious programming using controlled approximation. PLDI.

Barthe, G., Demange, D., and Pichardie, D. 2012. A formally verified SSA-Based
middle-end: Static single assignment meets compcert. ESOP.

Blum, M., and Kanna, S. 1989. Designing programs that check their work. STOC.
Boston, Brett, Sampson, Adrian, Grossman, Dan, and Ceze, Luis. 2015. Probability

type inference for flexible approximate programming. In: OOPSLA.
Boston, Brett, Gong, Zoe, and Carbin, Michael. 2018. Leto: verifying application-

specific hardware fault tolerance with programmable execution models. In:
OOPSLA.

Carbin, M., and Rinard, M. 2010. Automatically Identifying Critical Input Regions
and Code in Applications. ISSTA.

Carbin, M., Misailovic, S., and Rinard, M. Verifying Quantitative Reli-
ability of Programs that Execute on Unreliable Hardware (Appendix).
http://groups.csail.mit.edu/pac/rely.

Carbin, M., Kim, D., Misailovic, S., and Rinard, M. 2012. Proving Acceptability
Properties of Relaxed Nondeterministic Approximate Programs. PLDI.

Carbin, M., Kim, D., Misailovic, S., and Rinard, M. 2013a. Verified integrity
properties for safe approximate program transformations. PEPM.

Carbin, M., Misailovic, S., and Rinard, M. 2013b. Verifying Quantitative Reliability
for Programs That Execute on Unreliable Hardware. OOPSLA.

https://doi.org/10.1017/9781108770750.016 Published online by Cambridge University Press

http://groups.csail.mit.edu/pac/rely
https://doi.org/10.1017/9781108770750.016

References 567

Chaudhuri, S., Gulwani, S., Lublinerman, R., and Navidpour, S. 2011. Proving
Programs Robust. FSE.

de Kruijf, M., Nomura, S., and Sankaralingam, K. 2010. Relax: an architectural
framework for software recovery of hardware faults. ISCA.

Dijkstra, Edsger W. 1975. Guarded commands, nondeterminacy and formal deriva-
tion of programs. Communications of the ACM, 18(August), 453–457.

Ernst, D., Kim, N. S., Das, S., Pant, S., Rao, R., Pham, T., Ziesler, C., Blaauw, D.,
Austin, T., Flautner, K., and Mudge, T. 2003. Razor: A low-power pipeline
based on circuit-level timing speculation. MICRO.

Esmaeilzadeh, H., Sampson, A., Ceze, L., and Burger, D. 2012. Architecture support
for disciplined approximate programming. ASPLOS.

Feng, S., Gupta, S., Ansari, A., and Mahlke, S. 2010. Shoestring: probabilistic soft
error reliability on the cheap. ASPLOS.

Fernando, V., Joshi, K., and Misailovic, S. 2019. Verifying Safety and Accuracy of
Approximate Parallel Programs via Canonical Sequentialization. OOPSLA.

Hiller, M., Jhumka, A., and Suri, N. 2002. On the placement of software mechanisms
for detection of data errors. DSN.

Hoffman, H., S. Sidiroglou, M.Carbin, S.Misailovic, A.Agarwal, and Rinard, M.
2011. DynamicKnobs for Responsive Power-AwareComputing. ASPLOS.

Hung, Shih-Han, Hietala, Kesha, Zhu, Shaopeng, Ying, Mingsheng, Hicks, Michael,
and Wu, Xiaodi. 2019. Quantitative robustness analysis of quantum programs.
Proceedings of the ACM on Programming Languages, 3(POPL), 31.

Joshi, Keyur, Fernando, Vimuth, and Misailovic, Sasa. 2020. Aloe: Verifying
Reliability of Approximate Programs in the Presence of Recovery Mechanisms.
CGO. ACM.

Knobe, K., and Sarkar, V. 1998. Array SSA form and its use in parallelization.
POPL.

Kozen, D. 1981. Semantics of probabilistic programs. Journal of Computer and
System Sciences.

Leem, L., Cho, H., Bau, J., Jacobson, Q., and Mitra, S. 2010. ERSA: error resilient
system architecture for probabilistic applications. DATE.

Leveson, N., Cha, S., Knight, J. C., and Shimeall, T. 1990. The use of self checks
and voting in software error detection: An empirical study. IEEE TSE.

Liu, S., Pattabiraman, K., Moscibroda, T., and Zorn, B. 2011. Flikker: Saving
DRAM refresh-power through critical data partitioning. ASPLOS.

Misailovic, S., Sidiroglou, S., Hoffmann, H., and Rinard, M. 2010. Quality of
service profiling. ICSE.

Misailovic, S., Roy, D., and Rinard, M. 2011. Probabilistically Accurate Program
Transformations. SAS.

Misailovic, S., Kim, D., and Rinard, M. 2013. Parallelizing Sequential Programs
With Statistical Accuracy Tests. ACM TECS Special Issue on Probabilistic
Embedded Computing.

https://doi.org/10.1017/9781108770750.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.016

568 References

Misailovic, S., Carbin, M., Achour, S., Qi, Z., and Rinard, M. 2014. Chisel:
Reliability- and Accuracy-aware Optimization of Approximate Computational
Kernels. OOPSLA.

Narayanan, S., Sartori, J., Kumar, R., and Jones, D. 2010. Scalable stochastic
processors. DATE.

Palem, K. 2005. Energy aware computing through probabilistic switching: A study
of limits. IEEE Transactions on Computers.

Park, Jongse, Esmaeilzadeh, Hadi, Zhang, Xin, Naik, Mayur, and Harris, William.
2015. Flexjava: Language support for safe and modular approximate program-
ming. In: FSE.

Pattabiraman, K., Grover, V., and Zorn, B. 2008. Samurai: protecting critical data in
unsafe languages. EuroSys.

Perry, F., Mackey, L., Reis, G.A., Ligatti, J., August, D.I., and Walker, D. 2007.
Fault-tolerant typed assembly language. PLDI.

Reis, G., Chang, J., Vachharajani, N., Rangan, R., and August, D. 2005. SWIFT:
Software Implemented Fault Tolerance. CGO.

Rinard, M. 2006. Probabilistic accuracy bounds for fault-tolerant computations that
discard tasks. ICS.

Rinard, M., Cadar, C., Dumitran, D., Roy, D.M., Leu, T., and Beebee Jr, W.S. 2004.
Enhancing server availability and security through failure-oblivious computing.
OSDI.

Sampson, A., Dietl, W., Fortuna, E., Gnanapragasam, D., Ceze, L., and Grossman,
D. 2011. EnerJ: approximate data types for safe and general low-power
computation. PLDI.

Schlesinger, C., Pattabiraman, K., Swamy, N., Walker, D., and Zorn, B. 2011.
YARRA: An Extension to C for Data Integrity and Partial Safety. CSF.

Sidiroglou, S., Misailovic, S., Hoffmann, H., and Rinard, M. 2011. Managing
Performance vs. Accuracy Trade-offsWith Loop Perforation. FSE.

Thomas, A., and Pattabiraman, K. 2013. Error Detector Placement for Soft
Computation. DSN.

Venkatagiri, Radha, Mahmoud, Abdulrahman, Hari, Siva Kumar Sastry, and Adve,
Sarita V. 2015. Approxilyzer: Towards a systematic framework for instruction-
level approximate computing and its application to hardware resiliency. In:
MICRO.

Venkatagiri, Radha, Ahmed, Khalique, Mahmoud, Abdulrahman, Misailovic, Sasa,
Marinov, Darko, Fletcher, Christopher W, and Adve, Sarita V. 2019. gem5-
Approxilyzer: An Open-Source Tool for Application-Level Soft Error Analysis.
In: DSN.

x264. 2013. http://www.videolan.org/x264.html.
Zhu, Z., Misailovic, S., Kelner, J., and Rinard, M. 2012. Randomized Accuracy-

Aware Program Transformations for Efficient Approximate Computations.
POPL.

https://doi.org/10.1017/9781108770750.016 Published online by Cambridge University Press

http://www.videolan.org/x264.html
https://doi.org/10.1017/9781108770750.016

