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Productively Lindelöf Spaces May All Be D

Franklin D. Tall

Abstract. We give easy proofs that (a) the Continuum Hypothesis implies that if the product of X

with every Lindelöf space is Lindelöf, then X is a D-space, and (b) Borel’s Conjecture implies every

Rothberger space is Hurewicz.

1 Introduction

Definition 1.1 A topological space is a D-space if for every assignment f from

points to open neighborhoods of them there is a closed discrete D ⊆ X such that

{ f (x) : x ∈ D} covers X.

D-spaces are currently a hot topic in set-theoretic topology (see two recent surveys

[13, 15]). For the non-specialist, observe that a T1 space is compact if and only if it

is a countably compact D-space. The primary question of interest is whether every

Lindelöf space is a D-space [12]. We shall assume all spaces are T3.

Productively Lindelöf spaces, i.e., spaces such that their product with every Lin-

delöf space is Lindelöf, have been studied in connection with two classic problems of

E. A. Michael.

Problem 1 Is the product of a Lindelöf space with the space of irrationals Lindelöf?

Problem 2 If X is productively Lindelöf, is Xω Lindelöf? (We say X is powerfully

Lindelöf, in this case.)

For an extensive list of references concerning these problems see [29]. The primary

result of note is due to Michael, being implicitly proved in [22]. It is explicitly stated

and proved in [2].

Lemma 1.2 The Continuum Hypothesis implies that productively Lindelöf metrizable

spaces are σ-compact.

Our tools include selection principles and topological games. As a byproduct, we

obtain an easy proof of the consistency of every Rothberger space being Hurewicz

(see definitions below).

Section 2 gives a self-contained easy proof of the result of the title. Sections 3 and

4 are more for specialists, varying the themes of Section 2. Section 5 contains a short

proof of (b) of the abstract. Section 6 is built around a diagram of the relationships

among the properties we have discussed.
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2 CH Implies Productively Lindelöf Spaces Are D

We shall give a short, reasonably elementary proof of the following result.

Theorem 2.1 The Continuum Hypothesis implies productively Lindelöf spaces are D.

We shall prove Theorem 2.1 by combining Lemma 1.2 with results of Aurichi [5]

and Arhangel’skiı̆[4]. Theorem 2.1 is a considerable improvement over [6, 30], in

which additional assumptions of separability, first countability, or sequentiality were

required.

We require two definitions.

Definition 2.2 ([4]) A space is projectively σ-compact if its continuous image in any

separable metrizable space is σ-compact.

Definition 2.3 A space X is Menger if whenever {Un}n<ω are open covers of X,

there are finite subsets Vn of Un, n < ω, such that {
⋃

Vn : n < ω} is an open cover.

This latter concept was introduced by Hurewicz [17] and has been studied under

various names since then. In particular, some confusion arises because Arhangel’skiı̆

calls this property Hurewicz. However, our terminology is generally accepted. A

breakthrough on the Lindelöf D-problem occurred when Aurichi [5] proved the fol-

lowing lemma.

Lemma 2.4 Menger spaces are D.

Arhangel’skiı̆ proved the following.

Lemma 2.5 Projectively σ-compact spaces are Menger.

Combining Lemmas 2.4 and 2.5, we need only establish that productively Lindelöf

spaces are projectively σ-compact. But this follows quickly from Lemma 1.2, since

continuous images of productively Lindelöf spaces are easily seen to be productively

Lindelöf.

For the convenience of the reader, we sketch the proofs of Lemmas 1.2, 2.4, and 2.5.

Proof of Lemma 1.2 Embed X in [0, 1]ℵ0 . Since [0, 1]ℵ0 has a countable base, by the

Continuum Hypothesis (CH) we can take open subsets {Uα}α<ω1
of [0, 1]ℵ0 such

that every open set about Y = [0, 1]ℵ0 − X includes some Uα. By taking countable

intersections, we can find a decreasing sequence {Gβ}β<ω1
of Gδ ’s about Y , such that

every open set about Y includes some Gβ . If X is not σ-compact, we can assume

the Gβ ’s are strictly descending. Pick pβ ∈ (Gβ+1 − Gβ) ∩ X. Put a topology on

Z = Y ∪ {pβ : β < ω1} by strengthening the subspace topology to make each {pβ}
open. Then Z is Lindelöf, but X × Z is not, since {〈pβ , pβ〉 : β < ω1} is closed

discrete.

Proof of Lemma 2.5 By Engelking [14, 5.1.J(e)], given a Lindelöf space X and an

open cover U, there is a continuous f : X → Y , Y separable metrizable and an open

cover V of Y such that { f −1(V ) : V ∈ V} refines U. Given a sequence {Un}n<ω of

such covers, find the corresponding fn’s, Yn’s, and Vn’s. Then the diagonal product
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of the fn’s maps X onto a subspace Ŷ of
∏

Yn. Then Ŷ is σ-compact, hence Menger.

So we can take finite subsets of the Vn’s forming a cover and then pull them back to

X to find the required finite subsets of the Un’s.

Proof of Lemma 2.4 [15] Suppose X is Menger and f is a neighborhood assignment

for X. We play a game in which ONE chooses in the n-th inning an open cover Un and

TWO chooses a finite Vn ⊆ Un. TWO wins if {
⋃

Vn : n < ω} covers X. Hurewicz

[17] proved X is Menger if and only if ONE has no winning strategy.

ONE starts by playing { f (x) : x ∈ X}. TWO responds with { f (x) : x ∈ S0}. ONE

then plays { f (x) : x ∈ S0 ∪ S : S a finite subset of X, S ∩
⋃
{ f (x) : x ∈ S0} = ∅}. If

TWO replies with { f (x) : x ∈ S0 ∪ S1}, ONE plays

{ f (x) : x ∈ S0 ∪ S1 ∪ S : S ∩
⋃
{ f (x) : x ∈ S0 ∪ S1} = ∅},

etc. This defines a strategy for ONE. Since X is Menger, this is not a winning strategy.

Let S0, . . . , Sn, . . . be the plays of TWO demonstrating this. Then
⋃

n<ω Sn is closed

and discrete, and
⋃
{ f (x) : x ∈

⋃
n<ω Sn} covers X.

3 Variations on the Theme

We now move on to more specialized results. Since finite powers of productively

Lindelöf spaces are productively Lindelöf, we have the following result.

Theorem 3.1 The Continuum Hypothesis implies that all finite powers of a produc-

tively Lindelöf space are Menger and hence D.

Definition 3.2 A γ-cover of a space is a countably infinite open cover such that each

point is in all but finitely many members of the cover. A space is Hurewicz if, given

a sequence {Un : n ∈ ω} of γ-covers, there is for each n a finite Vn ⊆ Un, such that

either {
⋃

Vn : n ∈ ω} is a γ-cover or else for some n,
⋃

Vn is a cover.

This property was also introduced in [17]. It falls strictly between “Menger” and

“σ-compact”. Our results can be improved to obtain the following theorem.

Theorem 3.3 The Continuum Hypothesis implies that finite powers of productively

Lindelöf spaces are Hurewicz.

The proof of Theorem 3.3 is a straightforward modification of what we have done

for Menger.

Problem 3 Are any of our uses of the Continuum Hypothesis necessary?

The assumption of CH in our results can be weakened somewhat. Let b be the least

cardinal of a subset B of ωω that is unbounded under eventual dominance. Then CH

implies b = ℵ1.

Theorem 3.4 b = ℵ1 implies that every productively Lindelöf space is Menger and

hence D.
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Proof Defining projectively Menger in the obvious way, what Arhangel’skiı̆ really

proved above was that Lindelöf projectively Menger spaces are Menger, which indeed

was later proved specifically in [10]. Thus our result follows, since Alas et al. [1]

proved that b = ℵ1 implies productively Lindelöf metrizable spaces are Menger.

Corollary 3.5 Every productively Lindelöf space that is the union of ≤ ℵ1 compact

sets is Menger and hence D.

Proof This was proved for spaces of countable type, hence in particular for metriz-

able spaces in [1]. Our result follows, since if a space is the union of ℵ1 compact sets,

so also is its continuous image.

We can remove CH from Theorem 2.1 by strengthening the hypothesis. In [6] we

defined a space to be indestructibly productively Lindelöf if it remained productively

Lindelöf in any countably closed forcing extension.

Theorem 3.6 Indestructibly productively Lindelöf spaces are projectively σ-compact

and hence Hurewicz, Menger, and D.

Proof Let f : X → Y , Y separable metrizable. Collapse max(w(X), |X|, 2ℵ0 ) to ℵ1 by

countably closed forcing. In the extension, X is productively Lindelöf, Y is separable

metrizable, and f is continuous. Therefore Y is σ-compact. Countably closed forcing

adds no new closed sets to separable metrizable spaces, so Y =

⋃
n<ω Fn, where the

Fn’s are in the ground model. The Fn’s are countably compact in the ground model,

and so they are in fact compact there. No new countable decompositions of Y are

added by the forcing, so indeed Y is σ-compact in the ground model.

Earlier [30] we had obtained the Hurewicz and Menger conclusions, but this new

result is stronger. Similarly, in [6] we proved that d = ℵ1 implied that productively

Lindelöf metrizable spaces are Hurewicz.

Theorem 3.7 d = ℵ1 implies productively Lindelöf spaces are Hurewicz.

Corollary 3.8 Every productively Lindelöf space that is the union of ≤ ℵ1 compact

sets is Hurewicz.

The corollary follows since it was proved from d > ℵ1 in [30].

A finer analysis leads to the following result.

Corollary 3.9 Every productively Lindelöf space that is the union of ≤ ℵ1 compact

sets is projectively σ-compact.

Proof Since every metrizable space is of countable type, the corollary follows im-

mediately from [1], which stated that every productively Lindelöf space of countable

type that is the union of ≤ ℵ1 compact sets is σ-compact.

Also in [30], we proved that Add(M) = 2ℵ0 implies productively Lindelöf metriz-

able spaces are Hurewicz. Recall Add(M) is the least κ such that there are κ many

first category subsets of R with union not of first category.

By the usual reasoning, we have the following result.
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Theorem 3.10 Add(M) = 2ℵ0 implies productively Lindelöf spaces are Hurewicz.

Definition 3.11 ([16]) A Michael space is a Lindelöf space such that its product with

P, the space of irrationals, is not Lindelöf. A space is K-analytic if it is the continuous

image of a Lindelöf Čech-complete space.

In [30] we asked whether it is consistent that every productively Lindelöf K-analy-

tic space is σ-compact. We now know this holds under CH, but we can considerably

weaken that hypothesis and still get that such spaces are projectively σ-compact (and

hence D, etc.).

Theorem 3.12 If there is a Michael space, then productively Lindelöf K-analytic spaces

are projectively σ-compact.

Proof Let X be Lindelöf Čech-complete, g map X onto Y , Y productively Lindelöf,

and f map Y onto a separable, metrizable Z. Then Z is K-analytic. Then Z is analytic,

since K-analytic subspaces of separable metrizable spaces are analytic; see [16, The-

orems 2.1(f), 3.1(d)]. But in [29] we proved that if there is a Michael space, then

productively Lindelöf analytic metrizable spaces are σ-compact.

There is a Michael space if either b = ℵ1 ([21]) or d = cov(M) ([24]).

4 Playing with Projectively σ-Compact Spaces

In this section, we assume some acquaintance with topological games, as in [27]. The

players will be ONE and TWO, the games will be of length ω, and strategies are perfect

information strategies.

Telgársky [31] proved the following lemma.

Lemma 4.1 A metrizable space is σ-compact if and only if TWO has a winning strat-

egy in the Menger game for X.

We defined the Menger game above in the process of proving Lemma 2.4. Scheep-

ers [26] provided a more accessible proof of Lemma 4.1, noting that metrizability

was only needed in the proof for the backward implication. Banakh and Zdomskyy

[7] have weakened “metrizable” to “hereditarily Lindelöf.

Problem 4 Is a Lindelöf space projectively σ-compact if and only if TWO has a win-

ning strategy in the Menger game for X?

Okunev has constructed an example of a projectively σ-compact Lindelöf space

that is not σ-compact [4]. There is also an example in [25]; see below.

We can prove one direction. Suppose X is not projectively σ-compact. Then there

is an f : X → Y separable metrizable such that Y is not σ-compact. Suppose there

were a winning strategy for TWO in the Menger game on X. We can define a strategy

for the Menger game on Y by simply playing given an open cover W of Y (and pre-

vious information) the finite subset W ′ of W such that { f −1(W ) : W ∈ W ′} is the

move of TWO for the cover { f −1(W ) : W ∈ W} (and the corresponding previous

information). Then since the ω-sequence of moves for X would yield a cover, their
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images would yield a cover of Y . Thus a winning strategy for X entails a winning

strategy for Y . But Y is not σ-compact, so there is no such winning strategy for it,

and hence none for X.

The diagram in Figure 1 shows the relationships among the properties we have

discussed in this article. A more extensive diagram with many more Lindelöf prop-

erties can be found in [6], but it does not mention projective σ-compactness, which

is our main concern here. Examples showing that implications do not reverse can be

found there and below. For projective σ-compactness, there are two relevant exam-

ples in addition to Okunev’s.

Example 4.2 A Hurewicz space that is not projectively σ-compact. Simply take a

Hurewicz set of reals that is not σ-compact [18]. One can even get an example where

finite products are Hurewicz [32].

Example 4.3 A projectively σ-compact space that is not productively Lindelöf.

J. T. Moore [25] constructed a Lindelöf space X such that some finite power of X is

not Lindelöf [33], but any continuous real-valued function on X has countable range.

It follows that any continuous function f on X into any separable metrizable space Y

has countable range. To see this, embed Y in [0, 1]ℵ0 . If f (X) has uncountable projec-

tion onto any factor of [0, 1]ℵ0 , we have a contradiction, so f (X) ⊆
∏

n<ω πn( f (X)),

where each factor is countable and hence 0-dimensional, so
∏

n<ω πn( f (X)) is 0-

dimensional and hence embeds in a Cantor set included in R, so indeed f (X) is

countable.

5 Borel’s Conjecture Implies Rothberger Spaces Are Hurewicz

As another example of the utility of projective σ-compactness, we shall prove the

following theorem.

Theorem 5.1 Assume Borel’s Conjecture. Then every Rothberger space is Hurewicz.

Rothberger is a strengthening of Menger in that picking one element from each

member of the sequence of open covers suffices to yield a cover.

Definition 5.2 A set of reals X has strong measure zero if and only if given any

sequence {εn}n<ω , ε > 0, X can be covered by {Xn : n < ω}, each Xn having

diameter less than εn.

Borel [11] conjectured that every strong measure zero set is countable. Laver [20]

proved the consistency of Borel’s Conjecture. Zdomskyy [34] proved that every para-

compact Rothberger space is Hurewicz, assuming u < g. We refer either to his paper

or to [9] for the definitions of these cardinals. Scheepers and Tall [28] observed that

paracompactness could be eased to regularity in Zdomskyy’s theorem. The hypothe-

sis of Zdomskyy’s theorem is sophisticated and the proof is non-trivial. Our proof of

Theorem 5.1 is very easy.

Proof of Theorem 5.1 Suppose X is Rothberger. Then so is every continuous image

of X. Rothberger subsets of the real line have strong measure zero (see [23]) and by
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Borel’s Conjecture are therefore countable. By the same argument as for Example 4.3,

X is projectively σ-compact. But then it is Hurewicz.

Marion Scheepers pointed out that Borel’s Conjecture does not follow from u < g,

since there is a model of Borel’s Conjecture in which b = ℵ1, which implies there is an

uncountable set of reals concentrated about a countable set. Such a set is Rothberger.

See [9] for reference to such a model.

Call a space projectively countable if its continuous image in any separable metriz-

able space is countable. We then have the following theorem.

Theorem 5.3 ([10]) Borel’s Conjecture implies a space is Rothberger if and only if it

is Lindelöf and projectively countable.

Proof That Rothberger implies Lindelöf is obvious. We have already proved that

Borel’s Conjecture implies Rothberger spaces are projectively countable. The con-

verse is proved by the usual technique; indeed Lindelöf projectively Rothberger spaces

are Rothberger [19].

6 Implications and Not

Definition 6.1 ([3, 8]) A space X is Alster if every cover G by Gδ ’s has a count-

able subcover, provided that for each compact subset K of X, some finite subset of G

covers K.

Alster spaces are important in the study of Michael’s problems, since they are both

productively Lindelöf and powerfully Lindelöf [3]. Clearly σ-compact spaces are Al-

ster, but not necessarily vice versa [3, 8]. It is not known if productively Lindelöf

spaces are Alster or even powerfully Lindelöf; see [3, 6, 30]. Alster spaces in which

compact sets are Gδ ’s are σ-compact, so powerfully Lindelöf spaces need not be Al-

ster. In addition to σ-compact spaces, Lindelöf P-spaces (Gδ ’s are open) are Alster

[3, 8]. Alster spaces are projectively σ-compact, but even projective countability is

insufficient to imply Alster. To see this, note that Moore’s L-space X is projectively

countable but not Alster, since some finite power of X is not Lindelöf.

Problem 5 Does Alster imply TWO has a winning strategy in the Menger game? Is

the converse true?

We have proved or given references already for almost all of the non-obvious im-

plications in the diagram below. That “indestructibly productively Lindelöf” implies

“powerfully Lindelöf” is in [30]. To see that Lindelöf P-spaces are projectively count-

able, observe that if X is P and Y has points Gδ and f : X → Y , then the inverse

images of points in Y form a disjoint open cover of X.

Moore’s L-space is projectively countable but not Alster nor P since closed subsets

are Gδ ’s. As mentioned, it is neither productively Lindelöf nor powerfully Lindelöf.

2ω1 is compact but it is not P and is not indestructibly productively Lindelöf [6]. A

Bernstein (totally imperfect) set of reals is powerfully Lindelöf but not productively
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Lindelöf [22]. (See [18, 32] for examples of sets of reals that are Menger, but not

Hurewicz, and Hurewicz but not (projectively) σ-compact.) The space of irrationals

is Lindelöf D but not Menger. It is consistent that there are Rothberger spaces that

are not Hurewicz. See the discussion in [28, §3].
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cardinals. Houston J. Math., to appear.

[2] K. Alster, On spaces whose product with every Lindelöf space is Lindelöf. Colloq. Math. 54(1987), no.
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