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ON THE INJECTIVITY OF THE VASSILIEV HOMOMORPHISM
OF SINGULAR ARTIN MONOH)S

NOELLE ANTONY

I prove general combinatorial properties which apply to singular Artin monoids and examine
their relationship with the Vassiliev homomorphism rj. I show that r) preserves the Intermedi-
ate Property, discovered by Corran, which holds in positive singular Artin monoids of finite
type. From this it follows that 77 is injective for a class of monoids which include singular
Artin monoids of type hip), generalising a result of East.

1. INTRODUCTION AND PRELIMINARIES

We begin with a finite indexing set / , and we let TM be a complete labelled graph with n
vertices in one-to-one correspondence with / and with edge labels from the set {3 ,4 , . . . , 00}.
For i ^ j let m^ denote the label of the edge between the vertices i and j , or set m^ = 2
if there is no such edge. Put ma = 1 for every i £ I. Such a graph is known as a Coxeter
graph of type M where M = (my)*, j € / is the associated Coxeter matrix. It is conventional to
suppress the edge label whenever m^ = 3.

Now let S - {cr{ I i e / } , and let (xy)q denote the alternating product

xyx...

q terms

of length q. The Artin group of type M, denoted GM, is the group generated by S subject to the
relations

(oio-j)"1'' = {(JjOi)mii for i, j e / and m^ ^ 00

(these are denoted by 9^! and called the braid relations). The Coxeter group of type M is the
group generated by 5 subject to the preceding relations and the relations of = 1 for every i
in / . In this way we see that Coxeter groups arise as quotient groups of Artin groups. If the
Coxeter group of type M is finite then M is said to be of finite type. For a classification of
finite Coxeter groups see, for example, [14].

The first, and arguably the most well-known, (non-Abelian) example of an Artin group is
the braid group established in [1] by Artin; thus the terminology Artin group is suggested by

Received 17th May, 2004
Supported by an Australian Postgraduate Award. The author is indebted to supervisor David Easdown for his
encouragement and for many useful discussions and would also like to recognise the referee's helpful suggestions.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/04 SA2.00+0.00.

401

https://doi.org/10.1017/S0004972700034651 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700034651


402 N. Antony [2]

Brieskorn and Saito in [4]. Observe that Bn+i, the braid group on n + 1 strings, arises from the
special case when / = { 1 , . . . , n} , m^ = 3 when \i — j \ = 1 and m^ = 2 when \i - j \ ^ 2.
Its associated Coxeter graph is referred to as type An, whilst the corresponding Coxeter group
is the symmetric group o n n + 1 letters. When the indexing set / = {1,2} and the edge label
mi2 = p for some p > 3, the Coxeter graph is said to be of type M = /2(p).

In their study of knot invariants, Baez [2] and Birman [3] extended the braid group Bn+\
by introducing the singular braid monoid onn+ 1 strings, SBn+1. Analogously Artin groups
are extended in [6] and [12] as follows: PutT = {T{ | i € / } and let S~l = {a~l | i € / } ,
the set of formal inverses of 5 . The singular Artin monoid of type M, denoted SGM, is the
monoid generated by Su S~1L)T and has as its defining relations 9ti, the free group relations
OiO~x — o~lOi — 1 and the relations 9t2 listed below:

if rriij = 2,

Tj if rriij < oo and is odd, or

Ti if rriij < oo and is even,

Tver* = OiT{ for all i in / .

REMARK. When the Coxeter graph is of type An, the special case mentioned above, the cor-
responding singular Artin monoid, <SG/in, coincides with the singular braid monoid onn + 1
strings, SBn+i. It is worth noting here that, although singular Artin monoids are defined (in
an abstract sense) by the above generators and relations, SBn+i was originally introduced geo-
metrically in [2] and [3] and was then shown (in [3, Lemma 3] and [13, a subcase of Theorem
2.1]) to admit the preceding presentation.

Let 21 be a finite set called an alphabet. Elements of 21 are referred to as letters, whilst 21*
denotes the free monoid generated by 21, elements of which are said to be words. In arguments
below we may regard a relation formally as an ordered pair of words. If X is a set of ordered
pairs of words then Xz = {(U, V) \ (U, V) or (V,U)eX}.

If A and B are words in the above generators, we write A w B if A can be transformed into
B by the use of the defining relations of SGM, and write A = B if the two words are equal letter
by letter. Whenever W = xx... xt for some xu ..., xt € S U S"1 U T, Rev(W) = xt • • • xx.

The positive Artin monoid of type M, GM, is the monoid generated by S subject to the
braid relations 9ti. We define the positive singular Artin monoid, denoted SGM, to be the
monoid generated by 5 U T and the set 9t of relations comprised of both 9ti and 9t2 listed
above. Where it does not cause confusion we denote elements of GM, GM, SGM and SGM by
words which represent them. If A and B are words in the generators from the sets S and T, we
write A ~ B if A can be transformed into B by the use of 9t. The following Theorems 1.1(1)
and (2) are proved in [16] and [6] respectively:

T H E O R E M 1 . 1 .

(1) If A, B are words overS and A a f l then A ~ B.
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(2) Let M be of finite type. If A, B are words over S U T and A ss B then A~B.

Thus GM always injects into G M , whilst SGM embeds into SGM whenever M is of finite
type.

We denote by £(A) the length of any word A. It is easy to see, by inspection of the set 5R
of denning relations, that the following property holds in SGM:

Whenever U, V are over 5 U T and U ~ V, l(U) = £{V).

We call this property, in accordance with [6, p. 258], homogeneity. Thus the length of
an element is defined to be the length of any word representing it. The reduction property is
defined as in [6, p. 258]. By [6, Lemma 15], the cancellation law and the reduction property
hold in SG^. By reduction we mean an application of the reduction property.

Let A and B be words in (5 U T ) \ We say A (left) divides B or B is a (left) multiple of A
if there exists a word X in SGM such that B ~ AX, in which case we write A ^ B.We say A
right divides B or B is a right multiple of A if there is a word X in SGM such that B ~ XA,
in which case we write B y A.

Let fi = {Ai,A2,..., Ak} be a set of words in (5 U T ) \ If Q. has a common multiple
then by [6, Corollary 13], Q has a least common multiple (unique up to equivalence under ~)
which we denote by lcm(yli, A2,..., Ak) or lcm(fi). By homogeneity, lcm(fi) when it exists
has minimal length. If fi has no common multiple then we write lcm(>li, A2,..., Ak) = oo.

In Section 2 we discover properties pertaining to fundamental elements in addition to
general results regarding divisibility in SG~lf. In Section 3 the Vassiliev homomorphism rj is
defined, we state Birman's conjecture and show that if Birman's conjecture is true for SGM,
where M is of finite type, then it is true for SGM', this is followed by some observations
regarding rj. The results of Sections 4 and 5 hold for finite type M. In Section 4 we study the
relationship between divisibility in SGM and the support of T/. In particular, we show that if U,

V £ SGM, C 6 GM and r)(U) — r)(V) then C divides U if and only if C divides V. Finally,
in Section 5 we prove that rj preserves the Intermediate Property which holds in SGM; namely,
if T](TiU) = T]{TJV) then m<j ^ 2. From this it follows that 77 is injective for a class of monoids
which include singular Artin monoids of type h(p), generalising [9, Theorem 14].

2. THE FUNDAMENTAL WORD A

The following refers to a construction developed in [6, Section 2]. For every generator a

and word W in (5 U T)*, the word Ka(W) is defined and begins with a if and only if W is
divisible by a, in which case we write Wa = (W/a) for the word obtained by removing the
letter a from Ka(W). Then the word {W/V) is defined recursively and exists precisely when
V •< W and has the property that W ~ V(W/V).

2.1. PROPERTIES OF A. Suppose in this subsection that M is of finite type. Let A = lcm(S).
We call A, in accordance with [11, Section 2], the fundamental word of SGM and write

https://doi.org/10.1017/S0004972700034651 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700034651


404 N. Antony [4]

£ = A2. In [4, Theorem 5.6] tells us that A exists precisely when M is of finite type, whilst by
[6, Section 5], the following holds:

THEOREM 2 . 1 . Let 7\ C T, and let W be a word over S U S"1 U Tt. Then there
exists an integerp and a word W over S U 7\ such that W ss APW.

In [6, Section 4], Corran showed that there exists a uniquely determined involutionary
automorphism of SGM, which we denote by U, with the following property:

1. % sends letters to letters, so that for any i 6 / , a = a or r, Ti(ai) = a^t) and
<TiA ~ A7£(CTJ). Hence TZ arises from a permutation <j> of / with <j>2 = id and

(See also [4, Lemma 5.2]). We write a[ — a? for TZ(ai). By [6, Lemma 18], we have the
ensuing property of A:

LEMMA 2 . 1 . Let W be any word in (S U T)*. Then WA ~ AK(W). In particular,
W is left divisible by A if and only ifW is right divisible by A.

The previous result tells us that A acts almost like a central element of <SG^, but not
quite, as Lemma 2.2 below shows. The first part of the lemma is a restatement of [4, Lemmas
5.2(ii) and 5.1(ii)]; the second part of the result is a combination of [6, Lemma 18] and [4,
Theorem 7.2]. All the undefined notation in Lemma 2.2(2) comes from the cited references.

LEMMA 2 . 2 .

(1) H{A) ~ A and Rev(A) ~ A.

(2) The centre of the singular Artin monoid is generated by the fundamental ele-

ment A if the associated involution "R is trivial. The involution V, is non-trivial

only for types An (when n ^ 2), D2k+i, E6 and Ii{2q + 1), in which case A2

represents the generator of the centre.

Since A is the lowest common multiple of the set 5, the word Ka{A) is defined, and so
Aa exists for every a € S. By recalling that ( = A2, we analogously obtain the existence of
the word Co for every a e S.

LEMMA 2 . 3 .

(1) For any a in S, TZ{Aa) ~ Aa-.

(2) Fora = a orr andi 6 / , aiAffj ~ A^a/. In particular, aAo ~ A ~ Aoa'

whenever a € S.

PROOF: (1) Let a be a generator in 5. By Lemma 2.2(1) and since A ~ bAb for any b

in 5, it follows that
a"Jl(Aa) ~ Tl{aAa) ~ K(A) ~ A ~ a'Aa,.

Hence H(Aa) ~ Aa/ by cancellation, as required.

(2) Let Oi be any generator in 5 , and let a* = a< or TJ. Then atai ~ a.aj, and by Lemma

2.1, ai A ~ Aeti, so

(naiAai ~ ajCTjA^ ~ a*A ~ A a / ~ a j A ^ a / .
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The result now follows by cancellation. D

The reader is referred to [5, Lemma 2.3] for variations of the preceding Lemmas 2.2

and 2.3.

2.2. DIVISIBILITY THEORY. The results of this subsection hold for positive singular Artin

monoids of any (not necessarily finite) type. The ensuing definitions are obtained from [6,

Section 2]. Let C be a non-empty word and a, b e S U T. We say C is a simple a-chain

with source a and target b if there is a (non-empty) word P and (possibly empty) word Q

such that (aP, Cb Q) is a relation in 9tE. We call C an a-chain if C — C\... Ck for simple

chains C\,...,Ck where the source of C\ is a and the source of Ct+1 is the target of C* for

i = I,.. .,k-l. In this case, the source and target of C are defined to be the source of C\ and

the target of Ck respectively.

REMARK 1. In G^,, if C is a aa-chain to ab then Rev(C) is a (76-chain to <ra. However this

does not always hold in SG^. For example, if 3 ^ mab < oo then ab is a TO-chain to <7a, but

Rev(a-(,) = CT(, is a cra-chain to aa ^ ra. Moreover, raab is a simple cr6-chain to aa, but the target

of the non-simple aa-chain Kev{raab) — abTa is aa, not equal to the source of Taab.

Lemmas 2.4, 2.5 and 2.6 below are restatements of [6, Lemmas 3, 5 and 4(2)].

LEMMA 2 . 4 . IfC is an a-chain to band W is a common multiple ofa and C then W

is also a common multiple of a and Cb. In particular, a does not divide C.

LEMMA 2 . 5 . Suppose a e S U T, and let W be a word over SuT such that a does

not divide W but lcm(a, W) exists. Then either W is empty or there is an a-chain C such that

W ~ C .

LEMMA 2 . 6 . If C is an a-chain such that a divides Cb then b is the target ofC.

The following two results are also proved in [7, Lemma 6.5].

LEMMA 2 . 7 . IfC is an a-chain to b and a is an element ofS then b also lies in S.

PROOF: Write C = C\... Ck where each d is simple, and suppose d is the target of

C\. Then (aP, C\dQ) € 9\F for some generator d and words P, Q.lid € T, inspection of the

set 5R of defining relations shows that Q = 1 (since C\ ^ 1) and a 6 T. Hence d must lie in 5.

If k = 1 then b = d, and we are done. Otherwise, Ci... Ck is a d-chain to b and d e 5, so by

induction, b must be an element of 5 as stated. D

LEMMA 2 . 8 . IfC is a aa -chain to ab then C is not right divisible by ab.

PROOF: Write C = C\... Ck where each C* is simple. Since aa clearly lies in 5, we

deduce from Lemma 2.7 that the source of Ck is ac for some c in / . Hence there exist words P ,

Q in SG^ such that (CkobP, acQ) e 9tE. Inspection of *H immediately shows that Ck is not

right divisible by its target ab. If k — 1 then C — Ck)/- ob, and we are done. So suppose that

k ^ 2, and put O = C\... Ck-i- By noting that the source of Ck, ac, is the target of Ck-i, we

see that C is a aa-chain to ac, and thus by induction, C" )/• ac. Thus

(2.1) ac £ Rev(C').
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Now put W = Rev(C) = Rev(Cfc)Rev(C"). We show that W is not divisible by ab, so that
C ^ ab as required. Recall that C* is a simple ac-chain to ab. If C* is over 5 then Rev(Cfc) is a
ab-chain to ac; so if W were divisible by ab, W would be a common multiple of Rev(C*) and
<r6, thus ac would divide Rev(C') (by Lemma 2.4 and cancellation), and this would obviously
contradict (2.1). Suppose then that Ck is not over S. Then either C* = rc or Ck = Td{acad)

q

for some non-negative integer q such that q < m^ — 2.

If C* = TC then b — c since C* is a ac chain to ob; so if crt = ac were to divide
W = TC Rev(C), reduction would show that ac -< Rev(C") which would contradict (2.1).
So assume that

Ck = Td(oced)
q for some q such that 0 ^ q ^ m ^ - 2.

Thus Ck is a crc-chain to cr6 where b = c if 9 is even and 6 — d if 9 is odd. Hence

W = Rev(Cfc)Rev(C7') ~ Rev((acad)«)rdRev(C)

(adac)
qTdRev(C) if 9 is even,

(<rc(Td)9TdRev(C') if 9 is odd.I:
Suppose that ab divides W. By recalling that q ^ m ^ — 2, reduction and cancellation yield a
word R such that

rrfRev(C) ~ {adac)
m^-"R = adac

Another application of reduction tells us that rd divides ac (adoc)
mcd~^q+2'lR, so that yet again

by reduction,
(V «-1 R'

for some word R'. Thus

rdRev(C) ~ adac(<jdac)
m«'-(q+VR~ ad

A final application of reduction now shows that ac -< Rev(C) which contradicts (2.1). This
implies that ab does not divide W — Rev(C), thus C ^ ab as required. The result now follows
by induction. D

REMARK 2. The condition in Lemma 2.8 above, for the source of C to be an element of 5,
is necessary. Let mab = 3 and put U = a\(jboa. Then U is clearly right divisible by aa.

Furthermore U ~ {aaab)(aa){ab), the latter being a non-simple r^-chain with target aa.

2.3. T H E STRUCTURE OF A. For the remainder of this section we resume our supposition
that M is of finite type. The ensuing Proposition 2.1 provides an important property of the
fundamental word. It was originally discovered for the positive braid monoid in [11, Theorem
8] and was generalised in [4, Lemma 5.3] to show that it holds for positive Artin monoids of
finite type. As a preliminary result, we deduce the following:
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LEMMA 2 . 9 . Let a e S, and let W be a non-empty word in (S U T)*. Then a -£W

if and only ifW ~ C for some a-chain C.

PROOF: It is evident that a divides A, so by Lemma 2.1, WA ~ &1Z(W) is a common
multiple of a and W; this shows that lcm(a, W) exists. Thus if a does not divide W then
Lemma 2.5 yields the existence of an a-chain C such that W ~ C. On the other hand, if
W ~ C where C is an a-chain then a -fi C ~ VF by Lemma 2.4. D

PROPOSITION 2 . 1 . L e t X a n d y b e i n ( S u T ) M f A -< X y then for every ie I

either X >- <Ji or <7j -< Y.

PROOF: Suppose there exists an i G I such that O{ does not right divide X nor does
it divide Y. We show A yi, XY by induction on £(Y) ^ 0. The result certainly is true if
i{X) = 0, whilst if e(Y) = 0 the claim holds by Lemma 2.1. So suppose that both X and y
are non-empty. Since X )/- <Ji, we infer from Lemma 2.1 that X cannot be right divisible and
so divisible by A, the lowest common multiple of the set S. Hence <jj -ft, X for some j e / . By
noting that X is non-empty, Lemma 2.9 may be applied and this yields a Oj -chain C such that
X ~ C. By Lemma 2.7, we deduce that the target of C is ak for some k e / , so by Lemma
2.8, C / CTfc. Hence

(2.2) C is a Uj-chain to at , C ~ X ^ cr* and <rfc.

If a* does not divide y then by another application of Lemma 2.9, we infer the existence of a
ok-chain C such that Y ~ C", so that CC" is a a,-chain by (2.2); this implies, by Lemma 2.4,
that <7j, and hence A, cannot divide CC ~ X 7 . So suppose that cr/t -< y . Then i ^ fc since
<7; 7̂  y . Thus there exists a largest integer q and word y ' such that

(2.3) Y ~ (ok<Ji)qY' and ad j Y'

where d = k if g is even and d — i if q is odd. Since (<7fcCTi)mi* ~ (oi(Jk)mik and a; 7̂  Y, we

have that 1 ^ q ^ m,fc - 1. Put X' - X(okOi)q- Then

XY ~ X(crjfcai)'7y' = X'Y'

and ^ ( y ) < ^(y). If <Jd were to right divide X' = X^OfcCTj)9, reduction and reversal would
yield a word X" such that X{okOi)q ~ X"{<jk<Ji)mik; so by noting that q < mik, at or ak would
right divide X (by cancellation) which would contradict (2.2). Hence X' )f 04, and by (2.3),
ad £ y . Since 1{Y') < £{Y), we deduce by an inductive hypothesis that A ^ X'Y1 ~ XY as
required. The result now follows by induction. D

COROLLARY 2 . 1 . Let a be in S and S' - S\{a}. Then lcm(S') -: Aa, so that

lcm(Aa,a) = A.

PROOF: By the previous proposition applied to A ~ aAQ, we immediately obtain that

lcm(S') -< Aa. The last statement of the corollary follows since A = lcm(5) and Aa ~< A by

Lemma 2.3(2). D
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COROLLARY 2 . 2 . Let a be a letter in S,U a word over S U T, r any integer such

that r ^ 2, and suppose A divides aTU. Then for any m such that 1 ^ m < r — 1, A also

divides ar~mU.

PROOF: Put U' = ar~mU. Then A divides arf/ = amU', so by Proposition 2.1, b -< U'
for every b in 5 such that b =fi a. But [/' = ar~mU is also divisible by a since 1 ^ m ^ r — 1,
thus lcm(S) = A -< £/' as required. D

LEMMA 2 . 1 0 . Let I and J be words in (S U T)* and a an element in S. Then the
following are equivalent:

(1) A ^ / A a A a - 7 ;

(2) A •< 7Aa or A -< Aa-7;

(3) / ^ a ora -< J.

In particular, (Aa Aa- )
m is not divisible by A for any a in S and any positive integer m.

PROOF: Suppose A -< IAaAa>J. By Proposition 2.1, either / x a or a -< AaAa>J. If
/ >- a then I ~ / : a for some word Ix in (5 U T)*, hence 7Aa ~ 7iaAa ~ IiA; thus /A a is
right divisible and so (by Lemma 2.1) is left divisible by A. If a -< AoAa< J then A -< AoAa',7
(since lcm(Aa,a) = A); by Lemma 2.3(2) and cancellation, we then obtain that a' -< Ao/ J
which gives A -< Aa>J. Hence (2) follows from (1).

Now assume that A divides IAa or Aa>J. If A -< /A o then A right divides IAa by
Lemma 2.1, hence there is a word /i in (Su T)* such that /Ao ~ /XA ~ haAa, so by
cancellation, / >- a. That A -< Aa/ J implies a x J is deduced immediately by Lemma 2.3(2)
and cancellation. Hence (3) follows from (2). That (3) implies (1) is inferred from Lemmas
2.3(2) and 2.1. Observe that (3) yields £(I) OT£(J) is at least 1; thus by a simple induction on
m, the last statement of the lemma is proved. D

3. BlRMAN'S CONJECTURE

Except when explicitly stated, we assume throughout this section that M is of any type.
The reader is reminded that SBn+i refers to the singular braid monoid onn + 1 strings, whilst
Bn+X denotes the braid group o n n + 1 strings. Moreover, SBn+l is precisely the singular Artin
monoid of type An mentioned in the introduction. The map r] from SBn+i to the group algebra
ZBn+i, induced by

of1 H+ af1, Tit-+Gi- a'1 for i € / ,

is easily proved to be a monoid homomorphism; r\ is sometimes referred to as the Vassiliev

homomorphism [18] or desingularisation map [17]. In [3, Remark 1], Birman conjectured
that 77 is faithful, so that the singular braid monoid embeds into the group algebra of the braid
group. In 1996, Fenn, Rolfsen and Zhu [10] showed that the above map is injective on the
set comprised of singular braids with up to two singularities (where a singularity is denoted
by a Ti)\ the following year, Zhu [19] extended this result by showing that it holds for up to
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three singular points. Dasbach and Gemein [8], simultaneously but independently of Jarai [15],
discovered that the conjecture holds for the singular braid monoid on three strings. The con-
jecture was proved in its entirety by Paris [17], whilst East [9] demonstrated that it holds for all
singular Artin monoids of type I2 (p) • Godelle and Paris later proved the truth of the conjecture
for right-angled singular Artin monoids in [12]. In effect, Birman's conjecture generalises to
arbitrary Artin monoids since the Vassiliev homomorphism, 77, from any singular Artin monoid
to the group algebra of the corresponding Artin group is well denned by the above rule. This
fact was observed in [6, Remark 25]. Thus we may conjecture the following.

CONJECTURE 1. The Vassiliev homomorphism 77 : SGM —)• ZGM is faithful, so that the
singular Artin monoid embeds into the group algebra of the Artin group.

We write X = Y if X and Y are equal elements of Im(7j), in which case the context of
the equality signs should be made clear.

Analogously the map, also denoted by 77, from SG^ to ZGM, induced by CTJ 1-4 ait

Ti H-> O{ - aCx, is a monoid homomorphism, again referred to as the Vassiliev homomorphism.

CONJECTURE 2. The Vassiliev homomorphism : SG%, -> ZGM is injective.

Indeed for finite type M, Conjecture 2 implies Conjecture 1, as the following result

demonstrates:

OBSERVATION 1. Whenever M is of finite type, Conjecture 2 implies Conjecture 1.

PROOF: Suppose Conjecture 2 holds and that r}(U) = r](V) for some words U and V
in SGM where, without causing confusion, we denote the equivalence class of a word by the
word itself. By Theorem 2.1, there are integers p{U), p(V) and words U, V in SG^ such that
U « Ap(t/) U and V « Ap ( v ) V. Then there exist positive integers fcl; k2 and k such that

(3.1) AkU&Ak*U and AkV«A*2 V.

By recalling that A is over 5 , we thus deduce that

77(Afcl U) = 7?(A* U) = 77(AfcV) = 77(A*2 V).

But ky and k2 are positive integers, whilst U and V are over 5 U T, so that A*1 U and A*2 V

also represent elements of SG^, and their images under 77 are the same, in either interpretation
of TJ. Hence since Conjecture 2 holds, A*1 U ~ A*2F. By (3.1) we infer that AhU w AkV.

The result now follows by cancellation. D

Observation 1 thus shows that, when M is of finite type, it is sufficient to prove Birman's
conjecture in the positive singular Artin monoid. Many properties hold only in SG^ and
not in SGM\ the most obvious such property is preservation of word length, which allows
for inductive arguments. In what follows we make some elementary observations about the
Vassiliev homomorphism and its relationship with SG^.

Define monoid homomorphisms e and M from SGM to (Z, +) by

£ : of1 *-> ±1, n •-> 0, M : of1 .-> 0, T{ M- 1

https://doi.org/10.1017/S0004972700034651 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700034651


410 N. Antony [10]

and a map + from (5 U T)* to 5* by + : at >-> CTJ, where a = a or r. So e(A) is the exponent
sum of sigmas in any word A in SGM', N(A) counts the number of singularities (taus) of
any word in SGM', and + turns every letter from T into a corresponding one in 5 . Moreover,
+ induces a homomorphism : SGM —»• GM, and for any word A in SGM, e{A+) = e(A)
+Af(A). In [15, Lemma 1], Jirai showed that we can replace rj with a simpler homomorphism
ip introduced below and that the group algebra ZS n + 1 contains no zero divisors. Lemma 3.1
below is obtained by replacing SBn+1 with SGM in [15, proof of Lemma 1].

LEMMA 3 . 1 . Define the homomorphism ip : SGM —* %GM by ip(Ti) — Oi + o~l and
tp(ai±l) =(Ji±l. Then for any words C,AandB in SGM:

(1) T){A) = r)(B) ifandonlyifip(A) = i>(B), and

(2) ip(CA) = ip(CB) <t=> tp(A) = rp(B) <t=^ iP(AC) = ip(BC).

We define the homomorphism ip : SG+
M —• ZGM as in Lemma 3.1. From the above

definitions and result, we deduce the following:

LEMMA 3 . 2 . Let U and V be in SG^, and suppose ip{U) = ip(V). Then e(U)
= i(V) andM{U) = M{V).

PROOF: Observe that U+ « V+ since they both represent the unique monomial of
maximal exponent sum of ip(U) = rp(V). But

(3.2) e(U) = e{U) + JV(£/) = e(U+) - e(V+) = e(V) + M{V) =

Notice that for every word A in SGM there is a unique monomial, represented by A~, obtained
by replacing each Tj by or1 in the support of i>{A), with minimal exponent sum e(A) -N{A).
Then since ip(U) = rp(V), it follows that U~ « V~, so

(3.3) e(U) - M(U) - e(U~) = e{V~) = e{V) -

By (3.2) and (3.3), M{U) = M{V). D

4. COMMON DIVISORS AND THE VASSILIEV HOMOMORPHISM

For the remainder of this paper we resume our assumption that M is of finite type. In this
section we provide a criterion (expressed in Corollary 4.2 below) for determining when two
elements of SG~M with the same image under ip have a non-trivial common divisor.

4 .1 . THE POSITIVE FORM. The reader is reminded that A is the lowest common multiple of

the set 5 , that C = A2, and that the words Co. f°r a € 5, are defined as in Section 2.1.

Now let W be a word over SL)S~1UT. Then there are words Wt over SuT and generators

a"1 € S'1 such that

W = WoaJWur-'Wi... Wt-io;t
lWk.

In accordance with [6, Section 5], we can define maps 9X and 92 by

w0<;alwl<;a2w2...wk-1<;atwk and
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So 9X turns W into a word over SUT by replacing each letter a~l from S"1 with a correspond-
ing (a, whilst 92 counts the number of occurrences of letters from S~l in W. Furthermore, 9X

acts as the identity on S U T, and for any words A" and Y, 9X(XY) = 0!(X)0i(r). Since
£a ~ aC for any generator a in 5 UT, by centrality, it can be shown (for example, [6, p. 278])
that0i(W) wC92(W)W.

For every W over 5 U S~J U T let q(W) be the largest integer such that the word
[6X(W) / Aq{yv)) is defined. Observe that, for any word W and any a in 5, ^(a"1) = 1
and q{W) ^ 92{W) ^ 0. This follows from the fact that (by Lemmas 2.1 and 2.3(1))
9x(a~1) = Ca ~ AaA ~ AAa< and a A ~ Aa ' for every generator a in 5 U T. Moreover, by
Lemma2.1 again, A^x)+q{Y) •< 9X(X)9X{Y) = 9X(XY), we have g(XF) ^ q(X)+q(Y) Js 0
for any words X and Y over SuS^UT. Since q(W) ^ 92{W) > 0, the word (9X {W)/A"^)
is always defined and we shall denote it by N(W). Hence N(W) is also a word over 5 U T
and N fixes elements of (S U T)*. Notice that for any words X and Y over S U S"1 U T,

N(X) A*2(y) N{Y).

Thus, since 92{XY) = 92{X) + 02(Y), Lemmas 2.1 and 2.2(2) yield

(4.1) N(XY) ^N(X)N(Y) if02(^)iseven.
\n(N(X)) N{Y) if 92(Y) is odd,

by cancellation. Since iV(A) = A, and by Lemma 2.2(1), TZ{A) ~ A, we obtain immediately
that N{A Y) ~ A N(Y) for any Y over S u 5 " ' u T.

We call a word W in (5 U S"1 U T)* minimal if g(W) = ^(W^)- We call a word W over
5 U T prime if it is not divisible by A. By recalling that q{W) is the largest integer such that
A ' W divides 9X{W), we see that if W is minimal then N{W) = (0i(W)/A«(iy>) is prime;
whereas A ^ A (̂VF) = (0i(VK)/A«2(w')) implies that q{W) = 92{W). Thus W is minimal if
and only if N(W) is prime.

LEMMA 4 . 1 . Let X and Y be words over SuS~lUT such that X « V; and Jet a, 6
be distinct elements in S. Then:

(1) W(.Y) ~ iV(r) ifandonlyif92(X) = 92{Y).

(2) If X = a~lXx, Y = b^Yi and N(X) ~ N{Y) then X and Y are not minimal.

PROOF: (1) If 92(X) - 92{Y) then since X&Y,

Ot{X)

when combined with Theorem 1.1(2), this yields 9X{X) ~ 9X(Y), so that

N(X) = (9x(X)/Ae*W) ~ (^(yj/A**1'') = N{Y).

Now suppose A^(X) ~ N(Y), and suppose further, without loss of generality, that

- 92{Y) > 0. By multiplying (6x{X)/Ae*W) = N{X) through on the left by Ae*x\ we
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obtain

91{X) ~ A9^X)N{X) ~ A$2{X)N(Y)

(since X * K, C = A2).

Thus A?WX)X = < f l 2 ( X ) ^ ~ «i(A") « Afl2W+8^y) X, and we have A2«>(x>
by cancellation and Theorem 1.1(2), so that 62{X) = 92{Y).

(2) Suppose X = a~lXu Y = b~lYi and N(X) ~ N(Y). By (1), 62(X) = 92(Y) so

1 + e2{Xl) = 92(a~1Xl) - ^ ( f t - 1 ^ ) = 1 + 92{Yy),

thus ^( -^ l ) is even if and only if ^ ( ^ I ) is even. When combined with (4.1), this implies

N(a~l) N(Xi) ~ N(X) ~ N(Y)

if 92 (Xi) is even, and

if #2p<a) isodd. LetL = lcm(/V(a *), N(b ')) which exists by either of the preceding chains
of equivalences. Then L ~ lcm(Aa<, Ay) (see Lemma 4.2(1) below), and since a ^ 6, we in-
fer from Corollary 2.1 that A -< L. Since 7l(A) ~ A, it follows that A also divides U{L). Thus
A X N(X)
~ N(Y), so that X and Y are not minimal. D

LEMMA 4 . 2 . For any positive integers r, s and generator a in S,

(1) the word a~r is minimal and

^ f (AoAa-)m ifr = 2m,
I (Aa- Ao)m Ao- if r = 2m + 1;

(2) Che word (a~ras) is not minimal

PROOF: (1) The claim certainly holds for r — 1 = 02{a~l) since by Lemmas 2.1 and
2.3(1), we obtain that 9i(a~1) = Co ~ AOA ~ A Ao<, so A^(a-1) ~ Ao< which is clearly
prime. For r = 2 = 92{a~2) we deduce from (4.1) and Lemma 2.3(1) that

N{a~2) ~ •ft(N(a"~1)) ^ ( a " 1 ) ~ Aa Ao..

Thus N(a~2) ~ Ao Aa- which is prime by Lemma 2.10. So suppose that r is any integer such
that r ^ 3 and that the claim holds for all I < r. If r = 2m then

(4.2) 0!(a-r) = C = Cr'Ca ~ A2"1'1 (Ao, A,)"1"1 Ao. Ca

~ A2"1'1 (Ao. A J " - 1 Aa. Aa A

(4.3) ~ A2m (A. Aa')"1'1 Aa Aa>

= A2m (Ao Aa,)
m.
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Note that (4.2) was obtained inductively (since 2m — 1 < r), and (4.3) holds by Lemmas 2.1
and 2.3(1). Hence N{a~r) ~ (Ao Aa<)m and is prime by Lemma 2.10. For r = 2m + 1, (4.1)
yields

N(a~T) = N{a~l a~2m) = Nia'1) N(a~2m)

~ Ao, (AaAa-)m

which is also prime by Lemma 2.10. The result for all r now follows by induction.

(2) Since 62(a
s) = 0, (4.1) gives N(a,-ras) ~ N(a,-T)N{as) ~ N(a~r) a", from which

we infer, by the first part of this lemma, that

N{a-a<)~ J<A.A*)m«' ifr = 2m>
K } \ (A«. A a ) m Ao. a* ifr = 2m + l.

But by Lemma 2.3(2), A ~ Aa-a. Hence A divides N{a~Ta') by Lemma 2.1. Thus N{a~Ta$)
is not prime, and so the word (a~ras) cannot be minimal. D

4.2. MINIMAL WORDS AND THE SUPPORT OF ip. Let U be any word over 5 U T, also
regarded as an element of SG^. A summand of ip(U) is any word over 5 U S'1 obtained by
replacing any given instance of r by a or a~l. The support of tp(U) is the set of summands
of ijj(U). Let Mu denote the summands of tp(U) that are minimal. For example, in type A2,

has summands a\a\a\, o\o\o\x, aia^^cr 1 1 ^ \ V f 1

V ^ x a r o u t i n e calculation shows

LEMMA 4 . 3 . Let f/, V be words in (5 U T)* aiso regarded as elements ofSGX, such

that ip{U) = I/J(V). For every summand F ofip(U) there is a corresponding summand G of

xj){V) such thatF * G, 02(F) = 62{G), N(F) ~ N(G) andFeMu if and only if G e Mv

PROOF: Let F be any element in the support ofip(U). Since F represents an element of
the Artin group GM and ip(U) = ip(V), there is an element G in the support of ip(V) such that
F % G. Thus F and G are equivalent monomials in GM, SO their exponent sums must be the
same; that is, e(F) = e(G). Since e(A) = £(A) - 292(A) for any word A in (5 U S'1)', we
have e{F) - 202(F) = t(G) - 262{G). By Lemma 3.2, t(F) = £{U) = t(V) = 1{G). Hence
92(F) = 62{G) and F « G, so that 7V(F) ~ iV(G) by Lemma 4.1(1).

Now let F be an element of Mu- Then F is a minimal word in the support of ip(U). By
the previous argument we deduce the existence of an element G in the support of ip(V) such
that F^G, 62{F) = 02(G) and N{F) ~ N(G). But F is minimal, so that N(F) ~ N{G) is
prime. This shows that G is a minimal word in the support of i>(V); that is, G € My D

LEMMA 4 . 4 . Let U be a word over SUT that is divisible by A. Then X y = 0.

PROOF: Since A divides U, there exists a word t/j over SliT such that {/ ~ At/i. Thus
i). Now let X be any summand of tp(U). Then by Lemma 4.3, there
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is a word Y in the support of ^(A£/x) such that X « Y and N{X) ~ N(Y). But K = AVi
for some word Y\ in the support of ip{U\). Hence,

A < AN(Yi) ~ N(AYi) = N(Y) ~ AT(X);

this implies that X is not minimal and therefore not an element of Mu- D

Corollary 4.2 below motivates the next proposition.

PROPOSITION 4 . 1 . Let C be a oa-chain to ab. Then there exists a word Z € Me

such that N(Z) ~ C" where C is a oa [a'a]-chain to ob if62(Z) is even [odd].

PROOF: By Lemma 2.4, <ja does not divide C. Write C = C\... C* where each d is
simple. Lemma 2.7 tells us that the target of C\ must lie in 5 . So suppose that ac is the target
of C\. Then there exist words P, Q such that (aaP, CxocQ) € 9tE. If Cx is over 5 , we have
that aa •/ Ci = C+ is a ao-chain to ac, C+ € A^Ci. and 82{C+) = 0 is even. Otherwise,
inspection of the set 1H of definig relations shows that either

d = Tj(aaaj)q for some <? such that 0 ^ g ^ m_,o — 2

or C\ = ro. Suppose first that C\ = Tj{oa(jj)
q. Then

since q + 1 < rrija. Clearly, C{~ is a summand of V(Ci) which (since it is not divisible by oa)
is prime and so must lie in Mci- Moreover, 62(C+) = 0 is even, and C+ is a simple aa-chain
to <rc (by definition). So assume that Ci = ra. Then the target of Ci is ac = aa. Put X = cr~l

which is obviously a summand of ip{Ci), and note that 92(X) — Us odd. By Lemma 4.2(1),
X is minimal and N(X) ~ Aa>a. Corollary 2.1 tells us that a'a does not divide N(X), and thus
by Lemma 2.9, N(X) ~ £> for some cr^-chain D. Since

a'a -< A ~ A^'CTQ ~ DCTO

by Lemma 2.3(2), the target of D must be aa = ac by Lemma 2.6. Hence, in all cases, there

exists a word X in A^Ci such that N(X) ~ C[ where

(4.4) C[ is a <ra [a^]-chain to ac if 02(^) is even [odd].

Now if k = 1 then C = C\, Ob = o"c» and we are done. Otherwise, C2 ... C* is a ac-chain to
a;,, from which we deduce, by induction, a word y in Mc2...ck such that ^ ( F ) ~ C'2 where

(4.5) Cj is a ac [cr^J-chain to o-j, if 82(Y) is even [odd].

Put Z — XY, and note that it is a summand of ip(C) = ip(CiC2 • • • Ck). Then (4.1) gives

N(Z)~[C>lC'2 if 02(Y) is even,
\7l(C[)C2 i f02(y)isodd.
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CASE 1. 02{Y) is even.

Put C" = C\C'2 so that N(Z) ~ C". Then C2 is a ac-chain to ab by (4.5). If 62{Z) is

even then 92(X) is also even, so by (4.4), C[ is a aa-chain to <TC, thus C" is a ao-chain to CT6 and

C" ~ iV(Z). On the other hand, if 62{Z) is odd then 92(X) is odd, and by (4.4) again, C[ is a

cr^-chain to ac; this shows that C" is a cr^-chain to ab as required.

CASE 2. 92(Y) is odd.

Put C" = H{C[) C2 so that N(Z) ~ C". By (4.5), C2 is a a^-chain to ab. By recalling
that 72. is an involutionary automorphism of (5 U T)* which preserves the set of relations 9t,
we deduce from (4.4) that

(4.6) 11{C[) is a a'a [aa]-chain to a'c if 62(X) is even [odd].

Thus, if 82{Z) is even then 62{X) is odd, so by (4.6), Tl(C[) is a CTO-chain to a'c\ this implies

that C" is a cro-chain to cr;,. On the other hand, if 62{Z) is odd then 02(X) is even, so by (4.6)

again, "R{C{) is a o^-chain to a'c, and thus C" is a a^-chain to a;,.

Cases 1 and 2 both show that N(Z) ~ C" where

C" is a CTO [a^-chain to ab if 02(21 is even [odd].

Moreover, by Lemma 2.9, C[ is prime. Since Z is a minimal element in the support of tp(C),

it must (by definition) lie in Me, and our proof is complete. D

COROLLARY 4 . 1 . Let U be a non-empty word in (5 U T)* and a any generator in

S. Suppose that a-fiU. Then Mv contains an element Z such that a [a1] -fi N(Z) if92(Z) is

even [odd ]. In particular, My ^ 0 whenever U is prime.

PROOF: Since o e S, we deduce from Lemma 2.9 that U ~ C for some a-chain C.

Proposition 4.1 now yields a word Z in Me such that N(Z) ~ C where C" is an a [a']-chain

if 92{Z) is even [odd]. By Lemma 2.9 again, we infer that a [a'] ^ N(Z) if 92{Z) is even

[odd]. Certainly il>(U) = V'(C) where £/ and C are regarded as (the same) elements of SG^.

By Lemma 4.3, there exists Z' € Mv such that iV(Z') ~ N{Z). Hence

a [a'] T< N(Z') if 92(Z') is even [odd],

and the result is proved. D

COROLLARY 4 . 2 . Let U,V be words in (SuT)* aiso regarded as elements ofSG^

such that ip(U) — il>(V), and let C be any word over S. Then C divides U if and only ifC

divides V.

PROOF: We first prove the 'only if part of the statement. Suppose first that U ~ aUx

for some generator a in S and word Ux over 5 U T. Put F = Aa- U and G — Aa> V. Then

A -< Aa,a Ui ~ F by Lemma 2.3(2), and ip(F) = Ao- tp(U) = Aa, x/>{V) = ip{G) giving

a one-one correspondence between the sets MF and Me by Lemma 4.3. Since A divides F,
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we deduce from Lemma 4.4 that MF — 0; whilst if G is prime, Corollary 4.1 yields MQ ^ 0
which contradicts the existence of the bijection between MF and MG- Hence A also divides
G - Aa< V, so by Lemma 2.3(2) and cancellation, a<V. This proves the result for £(C) = 1,
and by noting that it holds trivially for £(C) = 0, starts an induction. So assume that C divides
U and £(C) ^ 2. Then there exists a letter a in 5 and non-empty word Cx over 5 such that
C = Cia and U ~ CiaUi for some word U\ over 5 U T. By induction, we infer the existence
of a word Vi over S U T such that V ~ CXVX. Thus ^(CiaUi) = ip(U) = ip(V) = ^(Cx Vi)
which gives tp(aUi) — ipiVi) (by Lemma 3.1(2)) and shows that a divides Vi. Hence C = C\a
also divides V ~ C\ Vi as required, and the result for any £(C) follows by induction. Swapping
the roles of U and V in the preceding argument proves the converse of the result. D

5. T H E INTERMEDIATE LEMMA

In this section we prove that the Intermediate Property - discovered in [6, Intermediate
Lemma] and expressed in Lemma 5.1 below - is preserved under the Vassiliev homomorphism.
As a corollary we deduce that r\ is injective for a class of monoids which include singular Artin
monoids of type hip)-

LEMMA 5 . 1 . LetU.V be words in (S U T)* such that TtU ~ TjV. Then m0- ^ 2.

The proofs of the ensuing Lemmas 5.2 and 5.3, although technical, are straightforward and

lead to Proposition 5.1 below.

LEMMA 5 . 2 . Let F be a minimal word in (S U S"1 U T)*, and let q be any integer

such thatq ^ 1. lfO2(F) is even [odd] then

(1) CT« F is minimal whenevero, [a,1] -< N(F), and

(2) o-i F is minimal whenever aa \os'} -£ N(F).

PROOF: Suppose F is minimal so N(F) is prime.

C A S E 1. 92{F) is even.

Suppose first that os divides N(F), so that N(F) ~ aaFx for some word Fx over SuT.

Put F' = <jq
sF. By noting that 92{F) is even, (4.1) gives

N(F') = N(aq
s F) ~ N{o]) N(F) ~ CT« N{F).

Now A yS N(F) ~ a,Fu so by Corollary 2.2, it follows that

A ^ CT«+1 Fx = a\ a,Fx ~ a« N(F)

Hence N(F') is prime, and thus F' = uqF is minimal. Now assume that as -fi N(F), and put

F' = a~9F. Then since 62{F) is even, we infer that

N{F') = N{a;" F) ~ N(a;q) N{F)
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by (4.1) again; thus

1 ' ( ' ] K ' \ (Aa,, A,,)"1 Aa., N(F) ifg = 2m + l,

by Lemma 4.2(1). Since a, / Af(F), Lemma 2.10 yields that N{F') is prime, so F ' = aJqF

is minimal as required.

CASE 2. 02(F)isodd.

Assume F' = ofqF. By recalling that 71 is an involution, we deduce from (4.1) that

N(F') ~ -R.(N{of))N(F), so Tl(N(F')) ~ N{af)n(N(F)).

Since ft(crj = ^ -< JV(F) if and only if CT3 -< TZ(N(F)) andft(iV(F;)) is prime if and only
if N(F') is prime, the argument proceeds exactly as that of each alternative in the previous
case. D

LEMMA 5 . 3 . LetF = osFx beaminimal word in (SuS~l UT)' such that A divides
N(oTF). Then a~lFi is minimal or mrs = 2.

PROOF: Suppose mrs ^ 2. We show that (JJlF\ is minimal.

CASE 1. 62{Fi) is even.

By (4.1) we obtain that N(F) - N(asFi) ~ a,N(Fi). Since N(F) is prime, by assump-
tion, Lemma 2.1 thus shows that N(Fi) is also prime. Now A divides N(arF) = N(aTasFi),
so by (4.1) again,

(5.1) A -< NiarasFi) ~ N{artr.)N(Fi) ~ ar<r.N(Fi).

By noting that mrs ^ 2, it is evident that as is the only generator which right divides aras,

hence an application of Proposition 2.1 to (5.1) yields that cr, -< N(Fi) for every j / s.

Since N(Fi) is prime, this implies that as does not divide N(Fi). Hence a~lFi is minimal by
Lemma 5.2(2), as required.

CASE 2. 62(Fi) is odd.

By (4.1) we obtain that N(F) — N(asFi) ~ a'sN(Fi). Since N(F) is prime, by assump-

tion, Lemma 2.1 thus shows that N(Fi) is also prime. Now A divides N(crTF) — N(aTasFi),

so by (4.1) again,

(5.2) A -< Nia^F,) ~ 11 (N(ara3)) N{Fi) ~ a'ra'sN(Fl).

By recalling that mris> = mra ± 2, it is clear that oy = o'a is the only generator which right
divides <j'Ta's, hence an application of Proposition 2.1 to (5.2) yields that Oj> = a'j divides N(Fi)
for every f ^ s'. Since N(Fi) is prime, this implies that cr's does not divide N(Fi). Hence
a~lF\ is minimal by Lemma 5.2(2), as required. D
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PROPOSITION 5 . 1 . LetU = TiUu V = TjVx be words in (S UT) 1 aiso regarded
as elements ofSG^ such that xp(U) = ip(V). Then rtiij ^ 2.

PROOF: Suppose U — TiU\ and V — TjVi provide a counter-example. That is,
xp(TiUi) = ip(TjVi) butmij ^ 3. Suppose further that this counter-example is minimal with re-
spect to £(U), which by Lemma 3.2, is equal to Z{V). Then i(U) ^ 2, since £(U) = £{V) = 1
gives a,- + a~l = ip(U) = ip(V) = Oj + aj1 which holds precisely when i = j . We first
show that V — TjVx is not divisible by a,. Suppose, by way of contradiction, that it is. Re-
duction yields a word P such that Vi ~ OjP, and by recalling that ip(U) — ip{V), Corollary
4.2 implies that aj also divides U = TiU\, this gives, by reduction again, a word Q such that
Ux ~ (ajai)mii-lQ. Put C = (cr>cri)

mi-'-1. Then

(5.3) U = nUx ~ TiCQ ~ CrdQ

where rd is the target of C. By noting that C is over 5, we deduce, from Corollary 4.2 again,
that

C = CTJ(aiaJ)
m''-2 -< V ~ TjOjP ~ OjTjP.

Since m^ ^ 3, we infer that CTJ -< r^P by cancellation, so that P ~ {oiaj)mi>~lP' for some
word P'.over SuT. Thus

V ~ CTjTjP ~ ajrj(aiaj)
mi'-1P' ~ CT;(CTiCTj>

m^"1rcP'

~ (ajai^-'adTcP'

= CadrcP\

and since {c,d} — {i,j}, rncd ^ 3. When combined with the preceding equivalence, (5.3)
gives

^{CadTcP') = i,{V) = rP(U) - rP(CrdQ),

so that ip(adTcP') = tp(rdQ) by Lemma 3.1(2). Another application of Corollary 4.2 shows
that ad divides TdQ and this yields a word Q' such that Q ~ adQ'. Hence

so ip{TcP') = ip{TdQ') again by Lemma 3.1(2), and mcd ^ 3. This contradicts the minimality
of e(U) = i(V) (since £(V) > £{TCP')). Thus a, / V, from which we deduce, by a final
application of Corollary 4.2, that aj -ft U. This shows that the latter word is prime, and we
have Mu / 0 by Corollary 4.1. So let X be an element of Mu such that

(5.4) aj [a'j] -£ N{X) \f62{X) is even [odd],

the existence of which is guaranteed also by Corollary 4.1. Assume further that 92(X) — k is

maximal; that is, if G is any other word in Mu such that

a, [a'j] -£ N(G) if 02{G) is even [odd]
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then 62(G) ^ k. Now since U = TiUi, we deduce that either X = cr,"1 Xx or X = c r ^ ! for
some summand Xx of ip(Ux). We consider each case separately and show that each implies a
contradiction.

CASE 1. X = a~1Xl.

Then 62(X) = 1 + #2(^1). so 02(X) is even precisely when 02(Xx) is odd. Thus

| ) iffc^isodd,

by (4.1), and so

{ if02(X)isodd,

if02(X)iseven,

by Lemmas 4.2(1) and 2.3(1). This implies, by Corollary 2.1, that <x, [oj] -< 7V(A") if 62{X) is
even [odd] which clearly contradicts (5.4).

CASE 2. X = OiXx.

Since ip{U) = ip(V) and X 6 A^y, Lemma 4.3 yields the existence of a word Y in Mv
such that

(5.5) AT^Xi) = N(X) ~ AT(F) and 02(X) = 62{Y) = k.

By noting that V = TjVx, we deduce that Y = afxYx for some word Yx in the support of
ip{Vi). lfY = ajYx then 82(X) = 02(Y) = 92(YX) by (5.5); this gives

if02(X)isodd,

by (4.1) and contradicts (5.4). Hence Y = a~lYx. Observe that the word <jjY = OJ<J~XYX is
not minimal by Lemma 4.2(2), so (4.1) and (5.5) imply

(oiNiX) if 02(X) is even,
A / AT ( "V ̂  / ^ \ / *

1°>W(*) ifl

By recalling that m*, ^ 3 and that the word X = crj^! is minimal, we deduce from Lemma

5.3 that the word a^lXx is also minimal. Since U = TtUx and Xx is a summand of tp(Ux), this

shows t h a t a f ^ i e Me/. Put Fx = ai~
1Xx. Then

82(FX) = 1 + ^(Xj) = 1 + 82{oiXx) = 1 + 02{X) =

https://doi.org/10.1017/S0004972700034651 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700034651


420 N. Antony [20]

and

by (4.1), Lemmas 4.2(1) and 2.3(1). Since Fx is an element of Mu, Lemma 4.3 yields the
existence of a word Gi in Mv such that Fx « G\,

(5.6) N(Fi)~N(Gi) and 02(Gi) = 02{Fl) = 1 + jfe.

By noting that V = TjV\, we deduce that Gi = afxY2 for some summand Y2 of i>(Vi). If
Gj = cr~lY2 then this would contradict that F\ is minimal by (5.6) and Lemma 4.1(2). Thus
Gi = ajYz, so by (5.4),

(5.7) N(a~1X1) =

and

(5.8) 1 + k = 62(F1) = tf2(Gi) = 92(ajY2).

Observe that the word o-jFi = CTJCT"1 A"I is not minimal by Lemma 4.2(2), so

[ ife2(G,)iseven,

\ i ^ V ( G ) if ^(GO is odd.

by (4.1), (5.7) and (5.8). Since my ^ 3 and the word Gi = crjF2 is an element of Mv, we
deduce from Lemma 5.3 that the word a~lY2 is also minimal. This shows that Y2 must lie in
Mv (since V — TJVX and Y2 is a summand of ip(Vi)). Put G2 = a~lY2. Then (5.8) gives

(5.9) 62{G2) = 62{cj;xY2) = 1 +

and since G2 is minimal, we obtain

by (4.1), Lemmas 4.2(1) and 2.3(1). This implies, by Corollary 2.1, that

(5.10) a, [a'j] / AT(G2) if 52(G2) is even [odd]

since 92{G2) is even if and only if ^2(^2) is odd by (5.9). By recalling that G2 € Mv, a final
application of Lemma 4.3 yields the existence of a word F2 in Mu such that

N{F2)~N{G2) and 62{F2) = 02{G2).
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When combined with (5.9) and (5.10), this gives 92(F2) = 2 + k > k = 62(X) and

°i Wj\ / N(Fi) if 62(F2) is even [odd],

which contradicts the maximality of 62 (X) and (5.4). D

Recall that SGM denotes the monoid of type M generated by 5 U S"1 U T where
S = {oi | i e I}, T — {T{ I i € / } , and S~l consists of the set of formal inverses of
S. Recall also that the singular braid monoid o n n + 1 strings, SBn+i, is the singular Artin
monoid of type An; the special case obtained when / = {1,2, . . . n), m^ = 3 when \i — j \ = 1
and vriij = 2 whenever \i — j \ ^ 2. The singular Artin monoid of type I2(p) is the special case
when / = {1,2} and m\2 = p ^ 3. Thus if p = 3, types A2 and /2(3) coincide; the singular
braid monoid on three strings, SB3, is also the singular Artin monoid of type /2(3). Both types
An and I2(p) are finite (see, for example, [14, Chapter 2]).

For any i, j € / such that m^ ^ 3 let 7V, denote the monoid generated by 5u5~1U{ri, r,}
subject to the same defining relations as SGM- Let T£ denote the set of equivalence classes of
words in (5 U {T{, TJ})* under ~ . Then Ti; and T£ are both submonoids of SGM and SGM

respectively.

PROPOSITION 5 . 2 . The restriction of r\ from Ttj to the group algebra ZGM is

injective. In particular, the Vassiliev homomorphism r\: 5G/2(P) —• ZGj is faithful.

PROOF: By Lemma 3.1(1), it suffices to prove the result for xjj. We first prove the result
for the positive monoid T^. Suppose that U, V in (5 U {r;, r,})* provide a counter-example.
That is, assume U •/ V but tp(U) = ip(V). Suppose further that this counter-example is
minimal with respect to £{U), which by Lemma 3.2, is the same as £(V). Clearly £(U) ^ 2.
If U ~ CU', V ~ CV for some non-empty word C then ip{U') = ip{V) by Lemma 3.1(2),
U' ^ V, £{U') < £(U), and hence the minimality of £(U) is contradicted. Thus U, V have
no common divisor, from which we infer, by Corollary 4.2, that U and V are not divisible by
any generator from 5. This tells us that U = TTU\ and V = TSVI for some words U\, V\ in
T£ and generators r r , T, E {r,, Tj}. By noting that m,j ^ 3, we deduce from Proposition 5.1
that r = s; this shows that rr is a common divisor of U and V and so contradicts that gcd
(U, V) = 1. The result thus holds for T*.

Observe that C6l{w)8i (W) « W for any word W in T{j and 0x (W) is an element of T*.
The result for Ttj thus follows by an argument identical to that of Observation 1. By putting
/ = {1,2} and m12 = p ^ 3 we obtain SGh<J1) — T12, and this proves the second statement of
the proposition. D

REFERENCES

[1] E. Artin, 'Theorie der Zopfe', Hamburg Abh. 4 (1925), 47-72.

[2] J. Baez, 'Link invariants of finite type and perturbation theory', Lett. Math. Phys. 26 (1992),
43-51.

https://doi.org/10.1017/S0004972700034651 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700034651


422 N. Antony [22]

[3] J.S. Birman, 'New points of view in knot theory', Bull. Amer. Math. Soc. (N.S.) 28 (1993),

253-286.

[4] E. Brieskorn and K. Saito, 'Artin-Gruppen und Coxeter-Gruppen', Invent. Math. 17 (1972),

245-271.

[5] R. Charney, 'Artin groups of finite type are biautomatic', Math. Ann. 292 (1992), 671-683.

[6] R. Corran, 'A normal form for a class of monoids including the singular braid monoid', J. Algebra
223 (2000), 256-282.

[7] R. Corran, On monoids related to braid groups, Ph.D. Thesis (School of Mathematics and Statis-
tics, University of Sydney, 2000).

[8] O.T. Dasbach and B. Gemein, 'A faithful representation of the singular braid monoid on three
strands', Ser. Knots Everything 24 (2000), 48-58.

[9] J. East, 'Birman's conjecture is true for h(p)\ (preprint) http://www.maths.usyd.edu.au:8000/
u/pubs/publist/preprints/2002/east-8.html.

[10] R. Fenn, D. Rolfsen and J. Zhu, 'Centralizers in the braid group and the singular braid monoid',
Enseign. Math. 42 (1996), 75-96.

[11] F.A. Garside, 'On the braid group and other groups', Quart. J. Math. Oxford Ser. (2) 20 (1969),
235-254.

[12] E. Godelle and L. Paris, 'On singular Artin monoids', http://math.u-bourgogne.fr/topolog/
IMB2-publication.html annee 2003, n.356.

[13] J. Gonzdlez-Meneses, 'Presentations for the monoids of singular braids on closed surfaces',
Comm. Algebra 30 (2002), 2829-2836..

[14] J.E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathe-
matics 29 (Cambridge Univ. Press, Cambridge, U.K., 1990).

[15] A. Jarai Jr., 'On the monoid of singular braids', Topology Appl. 96 (1999), 109-119.

[16] L. Paris, 'Artin monoids inject in their groups', Comment. Math. Helv. 77 (2002), 609-637.

[17] L. Paris, 'The proof of Birman's conjecture on singular braid monoids', (preprint)
http://math.u-bourgogne.fr/topolog/IMB2-publication.html annee 2003, n.338 ArXiv:math.GR/
0306422 vl .

[18] V. Vassiliev, Cohomology of knot spaces, (V.I. Arnold, Editor), Theory of Singularities and its
Applications 1 (Amer. Math. Soc, Profidence, R.I., 1990).

[19] J. Zhu, 'On singular braids', J. Knot Theory Ramifications 6 (1997), 427-440.

School of Mathematics and Statistics
University of Sydney
New South Wales 2006
Australia.

https://doi.org/10.1017/S0004972700034651 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700034651

