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Abstract

Generalizations of the Green-Lanford-Dollard theorem on scattering into
cones and the Ruelle-Amrein-Georgescu theorem characterizing bound states
and scattering states are derived. The first is shown to be an easy consequence
of the Kato-Trotter theorem on semi-group convergence whilst the latter is a
corollary of Wiener's version of the mean ergodic theorem.

1. Introduction

Scattering theory consists of a quantitative comparison of the asymptotic motion
of an interacting particle system with the corresponding motion of a non-interacting
system. This comparison is facilitated by a priori estimates on both types of
motion and such estimates are the subject of the present note.

In two-particle quantum mechanical scattering theory the Green-Lanford [4]
and Dollard [3] theorem (the GLAD theorem) provides basic information on the
free propagation necessary for the asymptotic particle description. This theorem
states that the probability that a non-interacting particle is eventually in a cone C
with apex at the origin, that is,

C = {x;x.n^a\x\,\n\ = 1, 0 < a < 1},

is equal to the probability that the particle velocity lies in C. We generalize this
result by demonstrating, for a quasi-free evolution with energy momentum
relation p-xo(p), that the probability the particle is in the set tS at time t is
asymptotically equal to the probability that the generalized velocity Vco(p) lies
in S. (S is a bounded open set in the configuration space Rv.)

The Ruelle [9] and Amrein-Georgescu [1] theorem (the RAG theorem) concerns
the relative motion of two interacting particles and characterizes states of the point
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[2] Propagation properties in scattering theory 475

spectrum and states of the continuous spectrum in terms of spatial probability
distributions. To be more precise, let \j/-+\pt = e"H\ji describe the evolution of
i/>eL2(Rv) corresponding to the relative motion given by the self-adjoint
Hamiltonian H and define M^ by

M* = lim sup lim s u p - dt dvx\i/>,(x)|2/||iA \\2.
R-co T-m Tj0 J [X\£R

Clearly

and M ,̂ is a crude measure of the proportion of the time the particles are close
together. Under weak assumptions on the particle interaction we demonstrate i//
is in the subspace ^f p corresponding to the point spectrum of H if, and only if,
M$ = 1, whilst i]/ is in the subspace #ec of continuous spectrum if, and only if,
M^, = 0. (In fact we derive an exact expression for M^ in terms of the eigen-
projections of H.) This characterization of 2^c is exactly that given by the RAG
theorem but the condition M^ = 1 is a stronger criterion for ij/ to be in #? p than
that of the RAG result.

These generalizations of the GLAD-RAG theorems should also serve a peda-
gogic purpose. Whilst previous derivations of the GLAD theorem depended upon
special choices of co(p), for example, the non-relativistic form co(p) =p2, see [3, 4],
or special properties of to(p), for example, monotonicity in \p \, see [5], the present
proof relies solely on the Kato-Trotter theorem for the convergence of perturbed
unitary groups. Our proof of the RAG theorem is also conceptually simpler than
the original proofs insofar as it uses only the mean ergodic theorem.

2. The GLAD theorem

Elements <f>,ijj,... of the Hilbert space L2(RV) can be thought of as representing
states of a quantum mechanical particle in the configuration space Rv or the states
of relative motion of two such particles. These two points of view lead to identi-
fication of the dynamical problem of a particle moving in a potential field and the
problem of the relative motion of two particles with a potential interaction. For
simplicity we adopt the first viewpoint and subsequently talk about the motion of
a single particle.

Define a one-parameter group of unitary maps on L2(RV) by

J ;-<o(p)t

where ^ e L ^ R ^ denotes the Fourier transform of ^/eL2{Kv) and weC(R). This
group describes the evolution of a particle whose energy a> is determined com-
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pletely by its momentum p. We refer to it as a quasi-free evolution. The choice
co(p) =p2/(2m) corresponds to a non-relativistic particle of mass m and in this
case the Green-Lanford-Dollard theorem [3, 4] states that

lim f dvp\ij}(p)\2,
meC

where C is any cone with apex at the origin. This theorem has been extended to
quasi-free evolutions for which w is an increasing, differentiable, function of \p\
by Jauch et al. [5]. Further discussion of the physical interpretation of the theorem
can be found in [2, 7].

Our first result gives a generalization to quasi-free evolutions for which a> is
once-continuously diflferentiable.

THEOREM 1. Let ij/eL2(Rv)-njj,eL2(RV) denote the quasi-free evolution corres-
ponding to coeC^R"). Then

lim \ d"x\ 4>t{x) \2f(x/t) = [ d"p\ UP) 17(V(o(p))

for every bounded continuous f on Rv. Consequently

lim f
for each bounded, open, set ScR"such that {p; Vco(p)eS\S} has Lebesgue measure
zero.

PROOF. First define X = (XU...,XV) as the operators of multiplication,
(A'ji/r)(JC) =Xjij/(x), and define P = (PU...,PV) as the differential operators which
correspond to multiplication of the Fourier transform, that is, {Pi4i)(p) =Pi4>{p)-
The domains of these operators are specified by

D{Xt)

and

f f 1
. ) = ^ ; rfvx(l + |x,|z)|l^(x)| <+00>

I J J

and both operators have self-adjoint components. Note that the evolution \p-np,
can be written

where
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Next introduce the one-parameter family of "velocity" operators

V, = U.tXUJt.

The components of V, are self-adjoint on £/_, D(X,). But the set D formed by the
ty whose Fourier transforms ij/ are once-differentiable with compact support is a
core for each Xt and UtD = D. Hence D is a core for the components of each V,.
Moreover, ifij/eD, one easily computes that

Consequently

lim ||(K-Vo>(P))^|i = 0

for all ip in the common core D. But this implies that V, converges to Vco(P)
componentwise in the strong generalized sense (see, for example, [6], Chapter VIII
and in particular Section 1.1, Corollary 1.6). But the components of V, mutually
commute as do the components of Vco(P). Thus the unitary group exp{is.V,}
converges strongly to the unitary group exp{/'j.Vco(P)} as |/|-»oo. Moreover
f(Vt)-+f(Vco(P)) for each bounded continuous / (see, for example, [8], Theorem
VIII, 20(6)). Therefore

lim i
t|-00 J
lim | dvx\il/t(x)\2f(x/t)= lim W,U_J(Xlt)Ut<l,)

l » l -

= lim

= j \
Now the final statement of the theorem follows formally from the first state-

ment by choosing/to be the characteristic function Xs of the set S. But since this
latter function is not continuous it is necessary to use an approximation procedure.
One chooses two sequences of bounded continuous functions /„, gn, such that
/„ 5= xs, gn < Xs. \L I, 19n I < 1, and/„-•&;. gn-*xs pointwise. Consequently

lim sup | d"x\4<t(x)\2^ lim Lfx | •/,,(*)l2/n(*/0
| f | ->oo J x/teS |r|-»ooJ

J V
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where the last step uses Lebesgue's dominated convergence theorem. Similarly,

lim inf d"x\ Ux) \2>\ dvp\ Hp) |2gn(Va>(p))

> dvp\fop)\2.
n = co J Vc3(p)6S

The desired result follows by combination of these statements.
The second statement of the theorem gives a probabilistic interpretation of

Va>(p) as the asymptotic value of x/t, that is, the particle velocity. It states that
for large times t the probability that the velocity x/t is in S is the same as the
probability that Voo(j>) e 5.

One interesting case for which the theorem applies is that of a relativistic particle
of mass m. Thus co(p) = y/(p2+m2) if the speed of light is set equal to one. Hence
Vco(p)=p/y/(p2+m2) and, in particular, | Vco(p)\ < 1. Consequently the theorem
implies that

lim dvx\ij/t(x)\2 = 0,
|(|-.ooJ |

that is, asymptotically the particle is localized within the light cone.
The result of the theorem is easily interpretable in classical mechanics. The

classical orbit is given by x = Va>(/>) t+a, where a is the position at time zero, and
hence

f(x/t) =j

for each continuous/ If, however,/is twice differentiable one obtains the more
detailed estimate

Thus the O^t'1) term is proportional to the original displacement. Under more
stringent regularity properties of/, \j/ and a>, one may obtain similar estimates in
the quantum case. The simplest method is to assume/eZ,'(Rv). to write

J-dvx\ij,t(x)\2f(x/t)=W,f(Vt)il,)

= (2n)"v/2 dvsf(s)(il/,exp(isV,)\l/),

and then to use perturbation theory on the group exp(isVt).
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Alternatively, one may obtain generalizations [3, 4] to other evolution groups
incorporating a potential interaction with the aid of the Nteller matrices. Let 0,
be a one-parameter group on L2(RV) such that the Moller matrices

il±\j/=s . lim O-,U,il/

with respect to the quasi-free group exist. These operators are isometric and
invertible from the ranges R(Q±) to L2(RV). Moreover, if \peR(Q±)

Ql1il/=s. lim U_,tj,ip.

Thus, for i/>

lim Lrx|(O,t/0(x)|2/(x/0= lim (OrfJix/tXt,
t~* ± CO J t~* ± 00±00

- 1 ,= lim (U,Clll^,f(x/t)U,Q±iP)
t—±ao

ip) (p) |2

and the initial and final spatial distributions of i//, are determined by the

momentum distributions Ql 1 xp and Q+11/>.

3. The RAG theorem

Our aim is to characterize the subspaces associated with the point spectrum and
the continuous spectrum of a self-adjoint operator on L2(RV) in terms of "space-
time" properties. Ruelle [9] was the first to obtain results of this kind and his
work was subsequently generalized by Amrein and Georgescu [1]. The basic idea
behind both these works was an adaptation of the characterizations of almost
periodic vectors and flight vectors in ergodic theory. In contrast, our discussion is
based solely on the mean ergodic theorem in a form first stated by Wiener.

Let feR-» U, be a strongly continuous one-parameter group of unitary operators
on a Hilbert space Jf. Further let H denote the infinitesimal generator of U. The
mean ergodic theorem states that

lim - dt(<j), U, if/) = (<f>, £H({0}) i/O
r-co * J o

for all <p,il/eJt? where EH denotes the spectral family associated with H. Wiener's
theorem states that

1 P
l i m -
r-oo ' J (
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for all <f>,\l/eJ^ where op(H) denotes the point spectrum of H. Although Wiener's
theorem appears quite different to the mean ergodic theorem it is an immediate
consequence of applying this result to the unitary group U<3)U* on the space
•?f ® i ? p F denotes the conjugate to Jf and V, $ = U? <f>). Our principal result
is an extension of Wiener's theorem.

THEOREM 2. Let Abe a bounded, operator on 2f and assume there exists a function
xeR->/(x)eC such that

1. f(H) is densely defined with a bounded inverse f(ff)~1;
2. Af(H)~l is compact.

It follows that

1 P
l i m -
T—oo1 JO

dt\\AU,iP\\2= \AEH{{y})ili\\2.

PROOF. Since both sides of the required relation are continuous in i// it suffices
to derive the relation for ijs in the dense subset formed by the domain D(f(H)) of
f(H). But, if \j/ e D(f{H)), then \\i =f(H)~1 <j> for some <j> and

= \\Af{H)-lUt<j>\\2.

Next, consider the positive compact operator

For each e>0 there are A, > 0 and , such that

where E<l>l is the rank one projector with </>, in its range. Thus

\AUtil,\\
2- t A, 1(^,1/,^)

i = i

Now applying Wiener's theorem one obtains

1 fJ

l i m -
r-»oo J J o1 0 y e f f p ( H ) i = l

Reapplying the approximation for C then gives

1 CT

l i m -
T->oo I JO

i, EH({y})cj>)\: < £ .

dt\\AU,iP\\2- \Af(HylEH({y})(t>\ <2B.
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But/C//)"1 commutes with Eu and hence

1 fr

l i m -
T — o o ' J O

1 f
l i m - dt\\AU,iP\\2- £ \\AEH({y})iP\
T ' J O (Hr - o o ' J o

Since e>0 was arbitrary this completes the proof.

<2e.

Next let Jt?p and Jfc denote the closed subspaces of 3P corresponding to the
point spectrum and the continuous spectrum of H respectively. Thus

COROLLARY 1. Under the conditions of Theorem 1 with A invertible, the following
conditions are equivalent:

dt\\AU,il,\\2=0.
1 P

I. lim -
r - o o ' J o

This is an immediate consequence of Theorem 2 and the relation 3tfc = ^ .
The case of greatest interest for quantum mechanical scattering theory is

Jf = L2(RV) and A=%R is the operator of multiplication by the characteristic
function of the ball of radius R in Rv.

COROLLARY 2. Assume there exists a function xeR-+f(x)sC such that
1. f(H) is a densely defined operator with bounded inverse f(H)~i,
2- XRAH)-1 is compact for all R^O.

It follows that

1 CT

lim lim ~ t
R - a > T->a> ' J O

where Ep(H) is the projector onto tf?p. Therefore \p e &Fp if, and only if,
1 r r

l im l im ~ I dt\
«->co r - o o ' J o J |.

lim l i m - I dt\ dvx\(UtMx)\2/\\<l,\\2 = l,
' J J \xitZR

and \p G J f c if, and only if,

lim lim ~ I dt\ d"x\(U,<//)(x)\2 = 0.
i r r

lim lim ~ dt
R - o o r - o o ' J o J |:R -

PROOF. One may apply Theorem 2 with A = XR and hence
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But

I \\XREH({y})iP\\2^ E i|Ei

= \\Ep(H)il/\\
2,

and

lim |lz«

Thus

1 f
lim l i m -
-»co T->oc ' J

f
lim l i m - dt\\lRUt^f= £ lim || XR EH

by the Lebesgue dominated convergence theorem. The characterizations of 3Vp

and Jf c follow immediately.

REMARK. Since /?-»|| / R f/,i^ ||2 is a monotonically increasing function, the
criterion for J f c may be restated as ^ e J f c if, and only if,

l p
l im — <
T->m ' J o

1 r r
lim — dM '
r->oo J J o J \x\iR

for all 7? ^ 0, that is,

l i m - I dt\ dvx\(U,il/)(x)\2 =0

for all J? ^ 0. This is Ruelle's result [9]. Similarly, the characterization of 3tfp

may be restated as ij/ 6 ^"p if, and only if, for e > 0 there is an R > 0 such that

1 fT f
l i m - \ dt\
r-oo •« J o J i.

Ruelle [9] showed that the mean value is not necessary in this last formula, that is,
\j/ e Jf p implies that

1\x\»R

for J? sufficiently large, uniformly in t.

The assumptions of Corollary 2 can be verified in many cases of interest.

Case 1. Let H — Ho where Ho is an operator of multiplication on the Fourier
space
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and co is a real Lebesgue measurable function satisfying | co{p) |->oo as \p |->oo. It
follows that %R(H0 + i)~l is compact.

Case 2. Let V be a self-adjoint operator such that H = Ho+ V is self-adjoint on
D(H0)f] D(V) (Ho as in 1); then xR(H±i)-1 is compact.

Case 3. Let Wbt a self-adjoint operator such that the form sum H = H0+ V+ W
is self-adjoint (i/0+ Kas in 2); then xR(H±i)~1 is compact.

(For proofs of these statements see [1] where a variety of other cases are also
handled.)

Corollary 2 has an obvious physical interpretation in terms of bound states and
non-bound states. It concludes that ^/e^p if and only if the corresponding
quantum mechanical particle remains close to the origin. Thus JFP corresponds
to the subspace of bound states and its orthogonal complement #ec corresponds
to unbound, or scattering, states.

Although this discussion is only directly applicable to the relative motion of two
particles it can be extended to the full motion as follows. The appropriate Hilbert
space is #? =L2(RV)®L2(RV) where the tensor product is symmetrized, or anti-
symmetrized, if the particles are identical Bosons, or Fermions. The values
il/(x1,x2) of each ij/e JC describe the quantum-mechanical distribution of a particle
at the point xx and a second particle at the point x2. But there is a second factor-
ization Jti? = ^cm(8)^frel corresponding to the choice of centre of mass and
relative coordinates

X = i(x1+x2), x=x1-x2.

In this second factorization ^fcm is isomorphic to L2(RV) and #e™x is isomorphic
to L2(R*) or the subspace of symmetric, or anti-symmetric, functions. If the
particles interact through a translationally invariant two-body potential the total
Hamiltonian H separates with respect to this second factorization in the form

where Hcm is a sub-Hamiltonian corresponding to the centre of mass motion and
HnX describes the relative motion. Since //cm has continuous spectrum the total
Hamiltonian has continuous spectrum. Nevertheless there is a factorization of 3^
corresponding to the point spectrum and continuous spectrum of Hni. Let
•?fpel, Jf"' ^ f̂rel denote the subspaces of point, and continuous, spectrum of
Hrel and define

jep = ^

One can now characterize elements of #ep and #PC by criteria of the type given in
Corollary 2. This is based on an extension of Theorem 2.
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COROLLARY 3. Let #? = Jifl®3#'2 end assume that the generator H of U, has
the form H = Hl®l+I®H2 where Hl and H2 are self-adjoint operators on 2tf\
and ^ 2 respectively. Let A be a bounded operator on #C2 and assume that there
exists a function x e R->/(x) e C such that

1. f(H2) is densely defined with bounded inverse f(H2)~
l;

2. Af(H2)~
1 is compact.

It follows thai

1 [T

lim - i
7-»oo 1 J o

dtUl®A)utip\\2= £ ll(i®^£ff2({)-}))'/'ll2.

The proof is essentially identical to that of Theorem 2 except one must also use
a strong approximation of \p bya sum£jA,i/41)(><)i/'j2) of products of orthonormal
vectors \]/\x)s Jif u and i/42)e£>(/(//2)). We omit the details.

Therefore, under assumptions on the relative Hamiltonian identical to those of
Corollary 2, one finds \j/ e &Fp if, and only if,

lim l i m - dt\ dxldx2\(Utxj/){x1,x2)\
2l\\^\\2 = l,

R-»oo T - o o • ' J o J | x i - x 2 | « J J

and ij/ e 3fPc if, and only if,

lim l i m - dt\ dXldx2\(Ut4f)(xltx2)\
2=0.

K-»oo T—ta ' J O J |x i—x 2 |^K

These methods also yield characterizations of the bound states of three or more
particles and it should be possible to characterize the subspaces describing bound
states of subsets of the particles. But this no doubt requires more stringent
assumptions on the range of the interparticle interaction.
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