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The central component of hypoxia sensing in the cell is the hypoxia-inducible
factor (HIF) transcriptional complex. HIF activity is deregulated in many human
cancers, especially those that are highly hypoxic. Hypoxic tumour cells are
usually resistant to radiotherapy and most conventional chemotherapeutic
agents, rendering them highly aggressive and metastatic. Overexpression of
HIF-a, the regulatory subunit of HIF, is associated with increased vascular
density, severity of tumour grade, treatment failure and a poor prognostic
outcome with conventional therapies. Therefore HIF is an attractive, although
challenging, therapeutic target, and several different strategies have been
developed to target HIF directly or indirectly in recent years. This review
outlines the preclinical and clinical advances in this arena and discusses
which cancers may benefit from HIF-targeted therapy.

Hypoxia is a common characteristic of all solid
tumours (Ref. 1) and is a condition in which
proliferating tumour cells are deprived of
oxygen due to a limited blood supply from
abnormal tumour microvasculature (Fig. 1).
Hypoxic cells are at risk of stress-induced
insults including oxidative DNA damage, DNA
strand breaks and genetic aberrations, which
can restrain growth and ultimately result in cell
death. However, cancer cells show a range of
genetic changes that improve survival and
enable them to adapt to hypoxic conditions. As
a result, hypoxic tumour cells continue to
proliferate, are associated with a more invasive
and metastatic phenotype and are usually
resistant to conventional treatments such as

radiotherapy and chemotherapy (Refs 2, 3, 4, 5,
6). Therefore, gaining a clearer understanding
of the underlying molecular mechanisms
involved in hypoxia signalling in cancer cells
and how these processes might become
deregulated in different cancer types is likely to
result in better targeting of hypoxic tumour
cells and more-effective treatments for solid
tumours. A central component of hypoxia
signalling in the cell is hypoxia-inducible factor
(HIF), which is critically involved in both
sensing and responding to changes in cellular
oxygen (Ref. 7). This review outlines the
therapeutic strategies used to target HIF/
hypoxic signalling in tumour cells and
discusses recent advances made in this area.
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The HIF pathway
HIF is a transcriptional complex activated in
response to changes in cellular oxygen levels
and mediates the expression of many genes
(Refs 8, 9). HIF target genes encode proteins
that are involved in the regulation of various
aspects of tumour biology, including oxygen
transport, iron metabolism, glycolysis, glucose
transport, cell survival and proliferation,
angiogenesis, invasion and metastasis. HIF

activity is deregulated in many human cancers,
and this is most commonly due to the
overexpression of HIF-a, the regulatory subunit
of the HIF complex. Overexpression of HIF-a is
usually associated with increased vascular
density, severity of tumour grade, treatment
failure and a poor prognostic outcome (Refs 10,
11). Blocking HIF activity or targeting HIF-1a
expression in tumours has been shown to
significantly slow tumour growth in xenograft

Increased hypoxia is detected at increasing tumour size
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Figure 1. Increased hypoxia is detected at increasing tumour size. The figure shows fluorescence imaging of
human glioblastoma xenograft tumours. Tumours from the human glioblastoma multiforme tumourcell line E106
were transplanted subcutaneously into nude mice. Tumours were harvested when they reached a mean size of
2 mm(a),4 mm(b),6 mm(c),8 mm(d)and10 mm(e).Tumoursectionswerestainedwithantipimonidazole (green)
to indicate areas of hypoxia, 9F1 (a monoclonal antibody to mouse endothelium; red) to assess vasculature,
and Hoechst 33324 (blue) for nuclei. As tumour size increased, the vascular architecture became less
organised. This figure was kindly provided by Dr Jan Bussink (Department of Radiation Oncology 874,
Radboud University Nijmegen, The Netherlands) and is reprinted from Ref. 153, with permission from
Elsevier (& 2009 Elsevier).
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models (Ref. 12) and render hypoxic cells more
susceptible to killing by conventional therapies
(Refs 13, 14, 15, 16).

HIF-1: structure and regulation
The HIFs belong to a family of structurally related
basic-helix–loop–helix (bHLH)-containing proteins
(Ref. 7). The prototype of the family is HIF-1. HIF-1
consists of two subunits: the regulatory HIF-1a
subunit and the ubiquitously expressed HIF-1b
subunit (also known as aryl hydrocarbon
receptor nuclear translocator, ARNT). HIF-1a
protein is composed of four functional
domains: a bHLH domain and a PER–ARNT–
SIM (PAS) domain (involved in dimerisation
and DNA binding), an oxygen-dependent
degradation (ODD) domain (required for
targeting to the proteasome and degradation),
and two transactivation domains (N-TAD and
C-TAD) required for transcriptional activation
(Ref. 17) (Fig. 2). HIF-1b contains bHLH, PAS
and transactivation domains (Ref. 18).

Whereas HIF-1b is constitutively expressed
in cells, the availability of HIF-1a is dependent
on cellular oxygen levels. In normoxia (21%
oxygen levels), HIF-1a protein is rapidly and
continuously expressed and degraded (for

review, see Ref. 9). The synthesis of HIF-1a
protein is regulated by oxygen-independent
mechanisms involving growth-factor-mediated
activation of the phosphoinositide 3-kinase
(PI3K) and mitogen-activated protein kinase
(MAPK) pathways (Refs 19, 20). HIF-1a protein
degradation is controlled by the ODD domain,
and deletion of the entire ODD region renders
HIF-1a stable even in the absence of hypoxia
signalling (Ref. 21). Hydroxylation of proline
residues 402 and 564 within the ODD domain
of HIF-1a mediates its interaction with the von
Hippel–Lindau tumour suppressor protein
(pVHL), which is the recognition component of
an E3 ubiquitin ligase, leading to HIF-1a
ubiquitination and subsequent degradation
by the 26S proteasome (Refs 22, 23, 24, 25).
The hydroxylation process is governed by
three evolutionarily conserved HIF prolyl
hydroxylases – PHD1 (EGLN2), PHD2 (EGLN1)
and PHD3 (EGLN3) – and their activity depends
on the availability of oxygen, iron, 2-oxoglutarate
and ascorbate (Refs 26, 27). Interestingly, it
has been shown by using small interfering
RNA (siRNA) techniques that PHD2 plays a
predominant role in controlling HIF-1a levels
(Ref. 28).

Schematic representation of HIF-1α and its functional domains
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Figure 2. Schematic representation of HIF-1a and its four functional domains. The basic-helix–loop–helix
(bHLH) and PER–ARNT–SIM (PAS) domains of hypoxia-inducible factor 1a (HIF-1a) are involved in dimerisation
and DNA binding; the oxygen-dependent degradation (ODD) domain is required for degradation via the
proteasome; and the transactivation domains (N-TAD and C-TAD) are involved in transactivation activity.
Hydroxylation of proline residues 402 and 564 within the ODD domain mediates its interaction with the von
Hippel–Lindau tumour suppressor protein (pVHL). Hydroxylation of asparagine 803 in the C-TAD blocks its
association with transcriptional coactivator p300/CBP.
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Under hypoxic conditions, prolyl hydroxylation
within the ODD domain is inhibited and the
interaction of HIF-1a with pVHL is prevented.
As a result, HIF-1a ubiquitination and
degradation is blocked and consequently the
level of the protein increases. The accumulated
HIF-1a translocates to the nucleus where it
dimerises with HIF-1b (Ref. 7) via the bHLH and
part of the PAS domain to form the HIF-1
complex. HIF-1 recruits transcriptional
coactivators such as p300/CBP (p300/CREB-
binding protein) (Ref. 29) and binds to the
hypoxia-response element (HRE) within the
promoter region of HIF-1-responsive target genes
(Ref. 30), thereby mediating their transcriptional
activation.

The transcriptional activity of HIF-1 is also
controlled by an asparagine hydroxylase known
as FIH-1 (factor inhibiting HIF-1) (Refs 31, 32,
33, 34, 35). In normoxia, hydroxylation of
Asn803 in the C-TAD of HIF-1a blocks its
association with p300/CBP. FIH-1 was also
reported to interact with pVHL to modulate
HIF-1a protein stabilisation (Ref. 35). Thus,
FIH-1 acts as a negative regulator of HIF-1a to
suppress transcriptional activity.

Other HIF-a family members
Two other HIF-a isoforms have been identified:
HIF-2a and HIF-3a (Ref. 36). HIF-2a has a
similar structure to HIF-1a (Ref. 37). Like HIF-
1a, HIF-2a is rapidly induced in response to
hypoxia, negatively regulated by the pVHL
ubiquitin E3 ligase complex, and can mediate
the transcriptional activation of a number of
known HIF-1 target genes (Ref. 38). However,
the expression of HIF-2a is cell-type specific
and it has a distinct biological role from HIF-1a
(Refs 39, 40, 41, 42, 43), with particular
importance in renal cancer and vascular biology.
In development, HIF-1a and HIF-2a were
demonstrated to have nonoverlapping functions:
HIF-1a2/2 and HIF-2a2/2 mouse embryos have
different phenotypes and developmental defects
(Ref. 40). HIF-2a is also expressed at a higher
level than HIF-1a in several pVHL-defective
renal carcinoma cell lines (Refs 42, 44), and
various groups have reported that HIF-1 and
HIF-2 can regulate both overlapping and distinct
target genes (Refs 39, 41, 43).

The function of HIF-3a is not well understood.
Several splice variants of HIF-3a have been
identified (Ref. 45). One of the HIF-3a splice

variants, known as the inhibitory PAS domain
protein (IPAS), can function as a dominant
negative regulator of hypoxia-inducible gene
expression: it binds to the HIF-1a subunit to
form a nonfunctional complex in the nucleus,
impairing the expression of HIF-1 target genes
under hypoxic conditions (Ref. 46).
Interestingly, it has been reported recently that
IPAS gene expression is induced in response to
hypoxia and is regulated directly by HIF-1
binding, forming a further level of negative
feedback in the hypoxia-response system (Ref. 47).

HIF and cancer
In addition to hypoxia, loss-of-function mutations
in several genes involved in the oxygen-sensing
mechanism have also been shown to contribute
to the overexpression of HIF-a (HIF-1a and
HIF-2a) and activation of the HIF pathway in
tumour cells (Fig. 3). For example, loss-of-
function mutations in VHL have been shown to
increase HIF-1a and HIF-2a expression in clear-
cell renal carcinoma, haemangioblastoma and
other VHL-associated tumours due to the lack of
HIF-a ubiquitination and degradation (Ref. 44).
Mutations in succinate dehydrogenase (SDH)
and fumarate hydratase (FH) inhibit prolyl
hydroxylase activity, resulting in abnormal
stabilisation of HIF-1a and upregulation of
HIF target genes such as vascular endothelial
growth factor (VEGF) in several cancers,
namely paragangliomas, phaeochromocytomas,
leiomyomas and renal cell cancers (Refs 48, 49).

Dysregulation of key signal transduction
pathways also contributes to the overexpression
of HIF-1a and activation of HIF-1 in cancer.
Tumour cells with constitutive activation of the
Ras–MAPK pathway (Ref. 50), Src (Ref. 51) or
the PI3K–AKT(PKB)–mTOR (mammalian
target of rapamycin) pathway (Refs 52, 53) have
elevated expression of HIF-1a protein. Loss of
function of tumour suppressor proteins such as
PTEN (which leads to constitutive activation of
AKT) (Refs 54, 55) and p53 can also result in
increased HIF-1 activity (Fig. 3).

Since HIF-a (HIF-1a and HIF-2a) is induced in
cancer cells in response to hypoxia and growth
factors, and as a result of known genetic
abnormalties, it is no surprise then that HIF-a
protein has been shown to be overexpressed
in human tumour biopsy samples.
Immunohistochemical analyses of paraffin-
embedded tissue sections have shown HIF-1a
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(nuclear) to be highly expressed in many tumour
types including pancreatic (Ref. 56), head and
neck (Refs 57, 58), oropharyngeal (Ref. 59),
breast (Refs 60, 61), renal (Ref. 62), ovarian
(Ref. 63), urothelial (Ref. 64), bladder, brain,
colorectal and prostate (Ref. 65). Several

independent studies have revealed a strong
correlation between HIF-1a overexpression and
patient mortality. High HIF-1a expression has
also been associated with low survival rates in
pancreatic carcinoma (Ref. 56), head and neck
squamous cell carcinoma (Ref. 58), clear-cell

HIF-1α expression is deregulated in cancer
Expert Reviews in Molecular Medicine © Cambridge University Press 2009
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Figure 3. HIF-1aexpression is deregulated in cancer. Overexpression of hypoxia-inducible factor 1a (HIF-1a)
and activation of the HIF pathway in cancer is caused by a combination of microenvironmental changes, such as
changes in oxygen levels (hypoxia), pH and nutrients (deprivation), increases in growth factors, and genetic
abnormalities leading to loss of tumour suppressor function, oncogenic activation or deregulated
mitochondrial function. Increased HIF-a protein in cancer cells translocates to the nucleus, binds to HIF-1b,
recruits coactivators (e.g. p300/CBP) and activates the transcription of multiple genes involved in
angiogenesis (e.g. VEGF), metabolic adaptation (e.g. GLUT-1), cell survival (e.g. IGF-1) and metastasis (e.g.
LOX, PAI-1) – thereby driving tumour progression. Abbreviations: FH, fumarate hydratase; GLUT-1, glucose
transporter 1; HRG, heregulin; IGF-1, insulin-like growth factor 1; LOX, lysyl oxidase; p300/CBP, p300/
CREB-binding protein; p14ARF, alternate reading frame (ARF) product of CDKN2A (cyclin-dependent kinase
inhibitor 2A) locus; PAI-1, plasminogen activator inhibitor 1; PTEN, phosphatase and tensin homologue;
pVHL, von Hippel–Lindau tumour suppressor protein; SDH, succinate dehydrogenase; VEGF, vascular
endothelial growth factor.
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renal cell carcinoma (Ref. 62) and breast
carcinoma (Refs 60, 61). This might be because
the overexpression of HIF-1a, which often
indicates significant levels of tumour hypoxia,
is involved in mediating cellular adaptive
responses that enable tumour cells to survive.
Tumour hypoxia and HIF-1a overexpression is
reported to correlate with an increased
aggressiveness of tumour cell behaviour,
angiogenesis (Ref. 57) and metastasis (Ref. 61)
and can be used as a marker to predict outcome
in patients with metastatic disease.
Interestingly, a study in clear-cell renal cell
carcinoma has shown that HIF-1a expression
directly correlates with markers of apoptosis
(p53) and growth inhibition (p21), the mTOR
pathway (AKT, p27), the chemokine receptors
CXCR3 and CXCR4, and proteins of the VEGF
family (Ref. 62). Therefore, induction of HIF-1a
in many cancer types results in several
consequences that could enable tumour cells to
survive and continue to proliferate.

Surprisingly, not all tumours that exhibit HIF-1a
overexpression have been found to be associated
with decreased patient survival rates (Ref. 66).
For example, in early-stage squamous cell
carcinoma of the oral floor HIF-1a
overexpression is associated with improved
survival rates (Ref. 66). This difference may arise
from the fact that HIF-1a could function by
having a dual role in early carcinogenesis. On
the one hand, HIF-1a promotes tumour
angiogenesis and cell survival when mediating
an adaptive response, while on the other hand,
in response to cellular stress HIF-1a cooperates
with the apoptotic machinery (via induction of
apoptotic genes or crosstalk to p53) to mediate
tumour cell death (Ref. 67). Indeed, the function
of the HIFs in tumour progression might depend
on the cell type and cellular context as well as
the stage of carcinogenesis, and further work is
needed to clarify this in order to establish when
best to target the HIF pathway in cancer and
whether certain cancer types would prove more
or less sensitive to a HIF inhibitor.

Strategies to target the HIF pathway
in cancer

In recent years, several strategies have been
developed to identify direct and indirect
inhibitors of HIF-a that function by blocking
HIF-a (HIF-1a or HIF-2a) expression levels
and/or HIF (HIF-1 or HIF-2) activity. These

include cell-based reporter screens, antisense
approaches, targeting key protein–protein
interactions, increasing HIF-1a protein turnover
or utilising a HIF oligonucleotide decoy
(Table 1). In addition, therapeutic exploitation
of other key pathways and mechanisms that are
known to regulate HIF-1a protein availability
(stability and synthesis) and HIF-1 activity
could also potentially be utilised to target the
HIF pathway in cancer (Fig. 4). While the HIF
transcriptional complex itself is a challenging
therapeutic target, blockade of the HIF pathway
and inhibition of HIF-a expression is
therapeutically attractive because of its pivotal
role in driving angiogenesis and tumour
progression. Overexpression of HIF-1a in many
cancers and deregulation of HIF activity offers a
degree of selectivity for tumour cells over
normal tissue (Ref. 68), and blocking HIF-1a
especially when in combination with
conventional therapies has a significant impact
on tumour growth (Ref. 69).

Targeting HIF-1a directly
As it functions as part of a transcriptional
complex, targeting HIF-1a directly is
challenging. Specific antisense approaches have
been used to reduce HIF-1a expression and
transcriptional activity (Ref. 70), and a
dominant negative form of HIF-1a has also
been used (Ref. 71). Another approach is
to inhibit HIF-1 transcriptional activity by
blocking HIF-1a protein–protein interactions
(Ref. 72). For example, the binding between
HIF-1a and the coactivator p300/CBP, and
hence hypoxia-inducible transcription, has
been attenuated by retroviral expression of a
polypeptide (Ref. 73), by the small-
molecule chetomin (Refs 13, 74) or by the
use of the indazole compound YC-1
(Refs 75, 76). In addition, small molecules
such as rolitetracycline (a semisynthetic
pyrrolidnomethyltetracycline) that block HIF-
1a–HIF-1b dimerisation by targeting the PAS
domain offer a strategy to block HIF-1-
mediated activity in tumour cells by inhibiting
the formation of the HIF-1 complex (Ref. 77).

Targeting HIF-1a expression and/or
HIF-1 activity indirectly
Prolyl hydroxylases
Mechanisms that regulate HIF-1a protein stability
provide indirect means to target HIF-1a protein
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levels in tumour cells (Fig. 4). For example,
overexpression of PHDs (Ref. 78) enhances HIF-
1a protein turnover and results in reduced HIF-
1a protein availability in tumour cells. Thus,
small-molecule activators of the PHDs – such as
KRH1020053 – have been developed to reduce
HIF-1a protein levels in tumour cells (Ref. 79).
Alternatively, genetic blockade of SIAH2, which
encodes an E3 ubiquitin ligase that ubiquinates
PHD2 in hypoxia, leads to reduced HIF-1a
availability (Ref. 80) and provides another
potential mechanism for targeting HIF-1a
protein stability (Ref. 81).

The p53 tumour suppressor protein
Understanding the relationship between HIF and
other key signalling pathways can provide
valuable therapeutic insight for developing
strategies to target HIF indirectly (Fig. 4). For
example, considerable progress has been made
to our understanding of the molecular

mechanisms by which HIF is regulated by the
tumour suppressor protein p53, a transcription
factor that plays a crucial role in monitoring
cellular integrity. When the cell is stressed, p53
protein rapidly accumulates leading to either
cell cycle arrest or apoptosis. However, p53 is
mutated in over 50% of human cancers
(Ref. 82). Mutated p53 is unable to transactivate
downstream targets and is associated with
malignant progression and metastasis (Refs 83,
84). While hypoxia induces cells to undergo
p53-dependent apoptosis under some
circumstances, cancer cells with dysregulated
p53 function are able to survive (Refs 85, 86, 87).

p53 is involved in negatively regulating HIF-1a
expression and HIF-1 activity (Refs 88, 89, 90, 91).
While the molecular crosstalk between HIF-1 and
p53 is complex, HIF-1a has been observed to bind
to p53 in some cellular settings (Ref. 88). An in
vitro study has provided biophysical evidence
supporting the direct binding of p53 with

Table 1. Strategies to identify inhibitors of HIF-1a and the HIF pathway

Strategies Agents Mechanism Refs

Cell-based (HRE
reporter)

Topotecan (Hycamtin) Topoisomerase-1 inhibitor 102, 103
NSC-134754 Translation inhibitor 100
103D5R Translation inhibitor 101
Echinomycin DNA binding 154
DJ12 DNA binding/transactivation 155
Alkyliminophenylacetate Mitochondria 156
Anthracycline chemotherapeutic
agents

DNA binding 157

Cardiac glycosides HIF-1a protein synthesis
inhibitors

117

Dominant negative dnHIF-1 Inhibition of functional HIF-1
formation

71

Antisense SPC-2968 (ENZ-2968) DNA–RNA interaction
(expression inhibitor)

158

RX-0047 DNA–RNA interaction
(expression inhibitor)

159

Protein–protein
interaction

Chetomin p300–HIF-1a interaction
inhibitor

13, 74

Rolitetracycline HIF-1a–HIF-1b (ARNT
interaction inhibitor)

72, 77

Other KRH102053 PHD2 activator 79
HIF oligonucleotide decoy Binds to and inactivates HIF-1a 160
Intrabodies (IB-AG2) Inhibits HIF-1 transcriptional

activity
219

Abbreviations: HIF, hypoxia-inducible factor; HRE, hypoxia-response element; PHD, prolyl hydroxylase.
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Strategies to target the HIF-1 pathway in cancer
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Figure 4. Strategies to target the HIF-1 pathway in cancer. (a–c) Several strategies to specifically target
hypoxia-inducible factor 1a (HIF-1a) protein levels and HIF-1 activity in cancer cells have been developed
(shown in red), including: (a) inhibition of protein–protein interactions (e.g. HIF-1 dimerisation or coactivator
recruitment); (b) inhibition of HRE transcriptional activity (e.g. using small-molecules identified in HRE cell-
based reporter screens); and (c) activation of HIF-1a protein degradation (e.g. using PHD activators). (d–f) In
addition, therapeutic targets currently in development that are known regulators of the HIF-1 pathway
provide an alternative means for blocking HIF-1a protein availability (stability and synthesis) and HIF-1
activity in tumour cells (shown in green), including: (d) inhibition of signalling pathways upstream of HIF
(PI3K–AKT–mTOR/HDM2 and Ras–MAPK); (e) inhibition of chaperone proteins (e.g. HSP90); and (f)
activation of the tumour suppressor p53. Direct downstream targets are indicated by solid lines, and
downstream effectors are indicated by dashed lines. Abbreviations: AKT, AKT/protein kinase B; HDM2,
human homologue of MDM2 (E3 ubiquitin ligase; p53-binding protein); HRE, hypoxia-response element;
HSP90, heat shock protein 90; MAPK, mitogen-activated protein kinase (also known as extracellular-signal-
regulated kinase, ERK); MEK, MAPK kinase; mTOR, mammalian target of rapamycin; p300/CBP,
p300/CREB-binding protein; PHD, prolyl hydroxylase domain protein; PI3K, phosphoinositide 3-kinase;
pVHL, von Hippel–Lindau tumour suppressor protein; RTK, receptor tyrosine kinase; SIAH1a/2, seven in
absentia homologue 1a/2; Ub, ubiquitination.
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HIF-1a via the ODD domain within HIF-1a
(Ref. 92). This interaction was originally
proposed to result in p53 stabilisation (Ref. 88)
as well as inhibition of HIF-1 activity (Refs 88,
89, 92, 93). However, further work has shown
that HIF-1a induced in hypoxia does not affect
p53 stabilisation (Ref. 90), and it has been
proposed that the direct interaction of p53 with
HIF-1a leads to HDM2-mediated degradation
of HIF-1a (Ref. 90), resulting in hypoxia-
induced p53-dependent apoptosis (Refs 88, 89,
94). Indeed, recent work has shown that the
apoptotic function of p53 can be regulated by
the status of HIF-1a in cells and that blocking
HIF-1a expression can drive p53-mediated
tumour cell death in hypoxia (Ref. 91).

It has been suggested that p53 can block HIF-1
transcriptional activity by competing with HIF-1a
for p300 (Ref. 93). p53, which itself is a
transcription factor, requires the recruitment of
p300 for its activity. Using an HRE–luciferase
reporter assay to measure the transactivation of
HIF-1, it has been demonstrated that low levels
of exogenous p53 can block HIF-1
transcriptional activity and this effect can be
relieved by overexpression of p300 in the cell
(Ref. 93). This competitive binding of p53 for
p300 was also confirmed in a separate in vitro
transcription assay (Ref. 93). While low levels of
p53 can affect HIF-1 activity, high levels of p53
have been reported by several independent
studies to block HIF-1a protein accumulation
(Refs 54, 90, 93, 94). Furthermore, loss of p53
has been observed to correlate with increased
HIF-1a protein level and increased HIF-
1 activity (Ref. 90). Forced expression of
HIF-1a in p53-expressing tumour cells
upregulates VEGF expression (Refs 90, 95),
neovascularisation and the growth of tumour
xenografts (Ref. 90). Taken together, these
studies clearly demonstrate that p53 negatively
regulates HIF-1 transcriptional activity and
HIF-1a protein levels and highlights the
possibility that reactivating p53 may provide a
means to target the HIF pathway in cancer (Fig. 4).

Efforts have been made to identify agents that
reactivate mutant p53 (Refs 96, 97) or activate
wild-type p53 (Refs 98, 99) in cancer cells
(Table 2). Recently, a small-molecule activator of
p53, RITA (reactivation of p53 and induction of
tumour cell apoptosis), was demonstrated to
induce and activate p53, resulting in tumour
cell apoptosis (Refs 91, 98). Interestingly, RITA

was also observed to block HIF-1a expression,
resulting in downregulation of VEGF
expression, and antiangiogenic effects in vivo
(Ref. 91). The ability of a single agent to activate
p53-dependent apoptosis and simultaneously
suppress tumour angiogenesis represents a
novel and promising therapeutic strategy for
targeting the HIF pathway in solid tumours
(Ref. 91).

Other mechanisms for targeting HIF
Several high-throughput cell-based screening
approaches using HRE–luciferase reporter
systems have identified numerous HIF-1a
small-molecule inhibitors that block tumour cell
growth by blocking HIF-1a protein
accumulation and HIF activity (Refs 100, 101),
although their mechanism of actions remain to
be understood. For example, topotecan – a
topoisomerase inhibitor and known cytotoxic
agent (Table 2) – was found to block HRE
activity in a cell-based screen and was
subsequently shown to suppress HIF-1a protein
translation (Refs 102, 103). This inhibitor is
currently being launched in the clinic to target
ovarian and small-cell lung cancer cells.
Interestingly, PX-478, another inhibitor of
HIF-1a protein translation (although not
identified through a cell-based HRE–luciferase
reporter screen) is in Phase I clinical trials
(Refs 104, 105, 106); however, the precise
cellular target of PX-478 that is responsible for
HIF-1a inhibition is not certain, and thus the
development of clear clinical endpoints may
prove challenging.

In addition to strategic efforts being developed
to target the HIF pathway, many recognised
anticancer drugs that target known regulators
of HIF function have also been shown to block
HIF-1a protein levels and/or HIF-1 activity
(Table 2). For example, the histone deacetylase
(HDAC) inhibitors trichostatin A and FK228
inhibit HIF-1a induction and HIF-1 activity
(Refs 107, 108, 109, 110, 111). Geldanamycin and
17-AAG, which are HSP90 antagonists, are also
effective at inhibiting HIF-1a expression levels
(Refs 112, 113, 114, 115, 116), and recent work
has identified digoxin as a potent inhibitor of
HIF-1a synthesis and tumour growth (Ref. 117).
Other tractable HIF regulators that have
emerged recently include c-Myc (Refs 118, 119),
c-Met (Refs 120, 121, 122) and components of
the Ras (Ref. 123) and Wnt (Refs 124, 125, 126)
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Table 2. Anticancer agents that decrease HIF-1a and target the HIF-1 pathway

Target pathways/mechanisms Agents Refs

Signalling
Receptor tyrosine kinases Genistein 161, 162, 163, 164

(VEGFR)-bevacizumab (avastin) 165
(EGFR)-Iressa/gefitinib 166, 167, 168
Tarceva/erlotinib 168
C225/cetuximab 75, 167

Ras–MAPK pathway PD98059 169, 170
BAY 43-9006 (sorafenib) 171

PI3K–AKT pathway LY294002 162
Wortmannin 162
Nelfinavir (HIV protease inhibitor) 172, 173
Silibinin 174
NO-sulindac 175

mTOR Rapamycin 176, 177
Temsirolimus/CC1-779 178
Everolimus/RAD001 179, 180

HSP90 Geldanamycin 112, 113
17AAG 114, 115, 116
Apigenin 181, 182, 183, 184

Soluble guanylyl cyclase (sGS) YC-1 (sGC stimulator) 70, 75, 76, 185, 186, 187, 188

COX-2 NS398 189, 190, 191
Ibuprofen 192

Histone deacetylase SAHA 193
FK228 107, 108, 109, 110
LAQ824 194
Trichostatin A 111

Microtubules
Microtubule destabilisers Curcumin 195

EF24 195
2-ME2 196, 197, 198
ENMD-1198 199, 200

Microtubule stabiliser Taxol 201

DNA binding/damage/cytotoxic
DNA binding Echinomycin 154, 202

Polyamide 203
DJ12 155
Doxorubicin 204
Cisplatin 204

p53
p53–HDM2 interaction Nutlins 99, 205

RITA 91

(continued on next page)
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pathways. A thorough evaluation of how these
regulators influence HIF function in cancer may
provide further insights into targeting the HIF
pathway.

Which HIF-a subunit to inhibit?
When developing new agents to target HIF-a
in cancer, the specific effects mediated by a
particular HIF-a (HIF-1a or HIF-2a) isoform in
different cell types should be taken into
consideration (Ref. 39). Targeting a single HIF-a
subunit may not necessarily give the desired
effects because it has been demonstrated that
different subunits may play distinct roles in
different cellular contexts (Refs 39, 41, 127, 128).
For example, using siRNA techniques, HIF-1a
was reported to be the primary hypoxia-induced
transcription factor in breast carcinoma and
endothelial cells (Ref. 129), whereas in renal
carcinoma cells HIF-2a was shown to
be primarily responsible for the induction of
hypoxic genes (Ref. 39). These findings were
supported by two separate studies that

confirmed HIF-1a primarily regulates the
transcription of hypoxia-regulated target genes
in MCF-7 breast carcinoma cells, while HIF-2a
controls the transcription of target genes such as
glucose transporter 1 (GLUT-1) as well as
tumour progression in renal carcinoma cells that
have lost pVHL function (Refs 39, 43, 130).
Interestingly, in pVHL-defective renal carcinoma
cells, HIF-1a was found to play a tumour
suppressor role. Because the tumour-promoting
HIF-a subunit in these cell lines is HIF-2a
(Refs 43, 118, 130), treatment targeting this
subunit may be more beneficial (Ref. 39). It is
important to assess whether targeting both HIF-
1a and HIF-2a or either subunit selectively will
provide better therapeutic effects in vivo.

Recent work has revealed that pVHL-defective
renal carcinoma cells can be further subdivided
into tumours with detectable HIF-1a and
HIF-2a, or just HIF-2a exclusively (Ref. 119).
Accordingly, tumours with detectable HIF-1a
and HIF-2a exhibit enhanced activation of
AKT–mTOR and MAPK pathways and gH2AX

Table 2. Anticancer agents that decrease HIF-1a and target the HIF-1 pathway
(continued)

Target pathways/mechanisms Agents Refs

Translation PX-478 104, 105, 106, 206, 207, 208
Tunicamycin 209, 210
UVC irradiation 211

Topoisomerase I/II Topotecan 102, 103, 212
NSC-644221 213

DNA replication/transcription
Topoisomerase I/II Irinotecan 102, 176, 214

Mitochondria Alkylimino- phenylacetate 156
Antimycin 215
Rotenone 216, 217
Myxothiazol 216

Others
Thioredoxin redox system Pleurotin 218
RNA polymerase TAS106 (ECyd) 220
DNA synthesis/repair TS-1 221
Multiple signalling pathways
(Ras–MAPK; P13K–AKT)

Resveratrol 222

CDK Flavopiridol 223

Abbreviations: CDK, cyclin-dependent kinase; COX-2, cyclooxygenase 2; EGFR, epidermal growth factor
receptor; HIF, hypoxia-inducible factor; HSP90, heat shock protein 90; MAPK, mitogen-activated protein kinase;
2-ME2, 2-methoxy estradiol; mTOR, mammalian target of rapamycin; PI3K, phosphoinositide 3-kinase; RITA,
reactivation of p53 and induction of tumour cell apoptosis; VEGFR, vascular endothelial growth factor receptor.
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(phosphorylated histone H2AX) accumulation,
whereas tumours with only HIF-2a expression
display increased c-Myc activity. The identified
oncogenic pathways associated with these
tumours may enable the strategic selection of
combined targeted therapies to be used against
these different tumour subtypes.

Translation of HIF inhibitors into the clinic
Hypoxic tumours are usually resistant to
radiotherapy, as a result of the low level of
oxygen molecules available to generate DNA
strand breaks, and to chemotherapy, because of
their slow divisional rate, abnormal vasculature
and the upregulation of many genes that
contribute to their aggressive phenotype.
However, blocking HIF-1a renders tumour
cells more susceptible to radiotherapy and
conventional chemotherapeutic agents (Refs 13,
14). The recent advances to our understanding
of the HIF pathway have helped us to clarify its
role in cancer and consequently enable the
identification and design of novel therapies.
Inhibitors that target the HIF pathway directly
or indirectly are attractive and should prove
useful in the treatment of most solid tumours
including breast, prostate and renal carcinomas.
Understanding the mechanism of action of
different HIF pathway inhibitors is of particular
importance when deciding when and how they
would best be used in combination.

Which cancer types to target?
HIF-1a protein levels can be used as a prognosis
marker in various cancers (Refs 131, 132, 133, 134),
as well as a predictive biomarker when designing
new treatment regimes. Patients with VHL-
mutated sporadic clear-cell renal carcinomas
exhibit high basal HIF-a expression and
subsequently increased expression of VEGF and
platelet-derived growth factor (PDGF). To date,
the small-molecule tyrosine kinase inhibitors
sunitinib and sorafenib that block VEGF and
PDGF signalling have been the only agents
shown to stabilise the disease, although
increases in overall survival are disappointingly
low (Refs 69, 135, 136, 137). Both sunitinib and
sorafenib have been approved for the treatment
of renal cell carcinoma, where sunitinib is
currently recommended as a first-line treatment
and sorafenib as a second-line treatment option
for people with advanced metastatic renal cell
carcinoma (Refs 69, 138). Clinical trials are

under way to investigate the efficacy of these
drugs in combination with conventional
treatments or other small-molecule inhibitors
and antibody therapies. Interestingly, a recent
cell-based assay approach using renal
carcinoma cells has identified STF-62247, an
agent that functions to selectively induce
cytotoxic and antitumour effects in pVHL-
deficient renal carcinoma cells by inducing
autophagy (Ref. 139). The identification of STF-
62247 illustrates the possibility of developing
therapeutic agents that specifically target
pVHL-deficient renal cancers (with high basal
HIF-a expression), which account for around
75% of renal cell carcinomas (Ref. 139).
Moreover, a pilot synthetic lethal screen has
identified that inhibition of kinases such as
CDK4/6 enhanced growth inhibition of pVHL-
deficient renal cell carcinomas compared with
matched pVHL-proficient renal cell carcinomas
(Ref. 140), further highlighting those tractable
targets for therapeutic intervention in renal cell
carcinoma. It will be of particular interest to
establish whether HIF inhibitors when used
either alone or in combination with these other
agents can provide a better therapeutic outcome
for patients with advanced metastatic renal cell
carcinoma.

Imaging hypoxia as a clinical tool
Effective imaging of hypoxia is important for
cancer detection and diagnosis, assessment of
therapy, as well as drug development. Imaging
also provides a prognostic basis by which the
effects of tumour hypoxia could be evaluated in
personalised cancer treatment. For example,
patients could be selected for hypoxia and high
HIF-1a protein levels in their tumours, in order
to enter them into clinical trials involving HIF
inhibitors.

Several direct and indirect methods for
measuring hypoxia have been developed.
Direct pO2 measurement can be performed by
an Eppendorf probe (a polarographic needle
microelectrode) by direct insertion into tissues
(Refs 141, 142). Exogenous markers of hypoxia
(such as pimonidazole and EF5) provide a more
reliable measurement than using Eppendorf
probes and can be used to detect the
distribution of hypoxia in a small fraction
of tumour (Refs 143, 144, 145). Positron
emission tomography (PET) tracers such as
[18F]fluoromisonidazole have also been used
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to measure hypoxia throughout the body
(Refs 146, 147, 148). PET imaging is sensitive
and has a spatial and temporal resolution
suitable for accessing the heterogeneity of local
pO2. This technique was shown to have the
ability to predict outcomes from radiation
therapy by imaging hypoxic tissues (Refs 149,
150, 151, 152). Several magnetic resonance
(MR)-based imaging (MRI) and spectroscopy
strategies have been developed to assess
tumour hypoxia directly or indirectly – namely
19F-MRI and spectroscopy, high molecular
weight dynamic contrast-enhanced MRI,
electron paramagnetic resonance imaging and
electron paramagnetic resonance oximetry.
These methods can reliably and precisely reveal
heterogeneity of oxygen distribution within
tissues. As well as locating tumour and
assessing treatment, MRI-based techniques can
detect detailed metabolic and physiological
information and PET imaging can reveal
biochemical characteristics of the tumour,
including metastases. With the preclinical
development of many new HIF inhibitors being
pursued currently, one challenge will be to
define robust preclinical noninvasive
imaging endpoints that are not only consistent
with measurable effects on the HIF pathway
in vivo, but that also directly relate to the
mechanism of action and provide clear
therapeutic insight with respect to the hypoxic
tumour compartment.

Conclusions
Hypoxic tumours are usually resistant
to killing by radiotherapy and conventional
chemotherapies, rendering them highly
aggressive and metastatic. Oxygen homeostasis
in cells and the response to hypoxic stress is
largely mediated by the HIF pathway. However,
dysregulation of the HIF pathway occurs in
many human cancers and usually correlates
with a poor prognostic outcome using
conventional treatments. Therefore, targeting
the HIF pathway provides an attractive strategy
to treat hypoxic and highly angiogenic
tumours. The combination of HIF inhibitors
with existing treatments or new targeted
therapies may prove to be useful clinically.

However, the development of appropriate
imaging strategies to accurately measure
hypoxia in tumours along with the
identification of suitable biomarker endpoints

will accelerate the translation of new
therapeutic combinations into the clinic as well
as provide prognostic information that helps
tailor specific treatments to different cancer
types. HIF inhibitors are in preclinical and
clinical development and these offer a novel
and attractive approach for the treatment of
solid tumours.
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Further reading, resources and contacts

Davis, D.W., Herbst, R.S. and Abbruzzese, J.L., eds (2008) Antiangiogenic Cancer Therapy, CRC Press
One of the most widely pursued therapeutic strategies in cancer therapy has been to target the angiogenic

process, which is regulated by the hypoxia/HIF pathway in tumour progression. This book
comprehensively reviews the progress made in antiangiogenic cancer therapies in recent years.

Online sources of general information on cancer research:

http://www.cancer.gov (US National Cancer Institute)
http://www.cancer.org.uk (Cancer Research UK)
http://www.oncolink.org (web-based cancer resource, University of Pennsylvania, USA)
http://www.icr.ac.uk/ (The Institute of Cancer Research, UK)
http://www.ucl.ac.uk/cancer/ (UCL Cancer Institute, UK)
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Figure 1. Increased hypoxia is detected at increasing tumour size.
Figure 2. Schematic representation of HIF-1a and its four functional domains.
Figure 3. HIF-1a expression is deregulated in cancer.
Figure 4. Strategies to target the HIF-1 pathway in cancer.

Tables
Table 1. Strategies to identify inhibitors of HIF-1a and the HIF pathway.
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