ON THE THETA DIVISOR OF SU(r, 1)

SONIA BRIVIO AND ALESSANDRO VERRA

Abstract. Let SU(r,1) be the moduli space of stable vector bundles, on a smooth curve C of genus $g \geq 2$, with rank $r \geq 3$ and determinant $O_C(p)$, $p \in C$; let \mathcal{L} be the generalized theta divisor on SU(r,1). In this paper we prove that the map $\phi_{\mathcal{L}}$, defined by \mathcal{L} , is a morphism and has degree 1.

§0. Introduction

Let C be a smooth, irreducible, complex, projective curve, of genus $g \geq 2$. Let SU(r,d) denotes the moduli space of semistable vector bundles with rank r and fixed determinant $L \in \operatorname{Pic}^d(C)$. SU(r,d) is an irreducible projective variety of dimension $(r^2 - 1)(g - 1)$, (see [S] and [N-R]), its Picard variety is free cyclic, see [D-N], the ample generator \mathcal{L} is called the generalized theta divisor of SU(r,d). Let $\phi_{\mathcal{L}}: SU(r,d) \to |\mathcal{L}|^*$ be the map associated to the theta divisor: if r = 2, then $\phi_{\mathcal{L}}$ is an embedding, see [Be1], [L],[B-V1], [vG-I] for d even, [D-R], [Be2] and [B-V2] for d odd. In this paper, we will assume $r \geq 3$ and we will consider SU(r,1), where $L = O_C(p)$ and p is a given point of C, our first result is the following:

THEOREM 0.0.1. For any curve C of genus $g \geq 2$: $\deg(\phi_{\mathcal{L}}) = 1$, the linear system $|\mathcal{L}|$ on SU(r,1) is base points free, i.e. the map $\phi_{\mathcal{L}}$ is a morphism.

As a second result we prove the following:

THEOREM 0.0.2. For any curve C of genus $g \geq 2$, we have $\deg(\phi_{\mathcal{L}}) = 1$.

The paper is organized as follows. The first section is devoted to proving theorem (0.0.1). In section 2, we study rank r-bundles with r + 1

Received December 7, 1999.

²⁰⁰⁰ Mathematics Subject Classification: 14 D20.

The authors were partially supported by the European Science Project "AGE (Algebraic Geometry in Europe)", contract n. ERBCHRXCT940557.

sections extending the rank 2 case dealed in [B-V2]. Fix a line bundle $l \in \operatorname{Pic}^g(C)$: we can identify the spaces SU(r,1) and $SU(r,O_C(p+rl))$, let $E \in SU(r,O_C(p+rl))$, assume that $h^0(E)=r+1$ and the natural map $w_E: \wedge^r H^0(E) \to H^0(\det E)$ is injective, then $\operatorname{Im} w_E$ is a (r+1)-dimensional subspace of $H^0(O_C(p+rl))$. This allow us to define a map

$$g_l: SU(r, O_C(p+rl)) \to G_l(r+1, H^0(O_C(p+rl)),$$

we prove that g_l is a birational map and it is defined by a linear system in $|\mathcal{L}|$. In section 3, we prove theorem (0.0.2). Actually, we perform a non empty open subset $\mathcal{U} \subset SU(r,1)$ such that the restriction $\phi_{\mathcal{L}|\mathcal{U}}$ is an embedding. \mathcal{U} is naturally defined as the set of bundles ξ for which exists $l \in \text{Pic}^g(C)$, s.t. g_l is biregular at the point $E = \xi(l)$. If r = 2, in [B-V2] we proved that actually $\mathcal{U} = SU(2,1)$, which allows us to conclude that \mathcal{L} is very ample. If $r \geq 3$, actually \mathcal{U} can be a proper subset of SU(r,1), (see lemma (3.2.1)), this unable us to extend completely the result of rank 2.

Finally, we would like to remember that rank 2 vector bundles with 3 sections were useful also in proving that $\phi_{\mathcal{L}}$ is an embedding at singular points of SU(2), see [I-vG].

0.1. Notations.

We reserve the notation ξ for points of SU(r,1); with some abuse, the same notation will be used for the vector bundle corresponding to ξ . For a vector bundle ξ of degree d and rank r we denote by $\mu := \frac{d}{r}$ the slope of ξ . We say that ξ is semistable iff for every proper subbundle $\eta \subset \xi$ we have $\mu(\eta) \leq \mu(\xi)$, it is stable iff the inequality is strict. Given two vector bundles ξ , η on C, they are said complementary if $\chi(\xi \otimes \eta) = 0$.

We recall that there exists a Poincaré family on SU(r,1), see [N-R], i.e. a vector bundle U on $SU(r,1) \times C$ such that $U_{|\xi \times C} \simeq \xi$, for any $\xi \in SU(r,1)$. Let as usual π_i denote the natural projections of $SU(r,1) \times C$ onto factors. Note that if U is a Poincaré bundle, then for any $A \in Pic(SU(r,1))$, $U \otimes \pi_1^* A$ is a Poincaré bundle too. Actually there exists a unique Poincaré bundle U on $SU(r,1) \times C$ with the further following property, (see [Ra]):

$$\det U_{|SU(r,1)\times\{x\}}\simeq \mathcal{L},$$

where \mathcal{L} is the theta divisor of SU(r,1). Following [Ra], we will call such a bundle U the universal bundle.

§1. On the base points of the theta divisor 1.0.

Let θ be an effective divisor of degree g-1 on C, θ defines a natural isomorphism

(1)
$$f_{\theta}: SU(r,1) \to SU(r,r(g-1)-1)$$

sending ξ to $\xi^*(\theta)$. Let $(\xi, \eta) \in SU(r, 1) \times SU(r, r(g-1) - 1)$ we have

$$\chi(\xi \otimes \eta) = 0,$$

hence the subset

(3)
$$\hat{\Theta}_{\xi} := \{ \eta \in SU(r, r(g-1) - 1) / h^0(\xi \otimes \eta) > 0 \}$$

is either SU(r, r(g-1)-1) or a theta divisor of SU(r, r(g-1)-1), see [D-N].

LEMMA 1.0.1. Let $U_{\xi} \subset \hat{\Theta}_{\xi}$ be the locus of points η such that each non zero morphism $u: \eta^* \to \xi$ is a monomorphism. Then U_{ξ} is a non empty open subset.

Proof. Let \mathcal{F} be a family of stable vector bundles on $S \times C$, let $U: \mathcal{F}^* \to \pi_2^* \xi$ be a non zero morphism of vector bundles. It is enough to show that the locus Δ of points $s \in S$ such that U_s is not a monomorphism is closed. This is immediate because Δ is the projection of the degeneracy locus of U. The non emptyness follows from the exact sequence

$$(4) 0 \to \xi(-\theta) \to \xi \to O_{\theta} \otimes \xi \to 0$$

where
$$\eta^* = \xi(-\theta)$$
.

LEMMA 1.0.2. We have: $\dim U_{\xi} \leq (r^2 - 1)(g - 1) - 1$.

Proof. Let $\eta \in U_{\xi}$: then there exists an exact sequence as follows

(5)
$$0 \to \eta^* \to \xi \to O_D \to 0,$$

where D is a divisor in the linear system $|\det(\xi) \otimes \det(\eta)|$, that is $|r\theta|$. Let's consider the natural rational map

(6)
$$V_D: \operatorname{Hom}(\xi, O_D) \to SU(r, r(g-1)-1)$$

which associates to any epimorphism $v: \xi \to O_D$ the sheaf $(\ker v)^*$. Then any $\eta \in U_{\xi}$ belongs to the image of the above map V_D . The group of automorphisms $\operatorname{Aut}(O_D)$ naturally acts on $\operatorname{Hom}(\xi, O_D)$; the action is faithful on points v which are epimorphisms, moreover $\operatorname{Aut}(O_D)$ contains the torus $\mathbf{C}^{*\deg D}$. Since $\operatorname{Hom}(\xi, O_D) \simeq \xi^* \otimes O_D$, it follows that the dimension of the image of the previous map at V_D is bounded by

$$(r-1) \deg D = (r^2-1)(g-1) - (r-1)(g-1).$$

On the other hand, if $r \geq 3$ we have $\dim |D| = (r-1)(g-1) - 1$. Let $\mathcal{D} \subset C \times |D|$ be the universal divisor, then U_{ξ} is contained in the image of the natural map

(7)
$$\pi_{2*}((\pi_1^*\xi) \otimes O_{\mathcal{D}}) \to SU(r, r(g-1)-1).$$

By the previous count the dimension of this image is at most $(r^2 - 1)(g - 1) - 1$.

Let $\xi \in SU(r,1)$, with the above notations, we define

(8)
$$\Theta_{\varepsilon} := f_{\theta}^* \hat{\Theta}_{\varepsilon}.$$

PROPOSITION 1.0.1. For any $\xi \in SU(r,1)$, Θ_{ξ} is actually a theta divisor on SU(r,1).

Proof. It is enough to prove the assertion for $\hat{\Theta}_{\xi}$. Note that $\hat{\Theta}_{\xi}$ is either a theta divisor on SU(r, r(g-1)-1) or it is SU(r, r(g-1)-1). Let's assume that $\hat{\Theta}_{\xi} = SU(r, r(g-1)-1)$, then by the preceding lemma U_{ξ} is an open subset of SU(r, r(g-1)-1): but this is impossible because $\dim U_{\xi} < \dim SU(r, r(g-1)-1)$. This implies the claim.

1.1.

Fix $\theta \in C^{(g-1)}$, the previous remarks allow us to define a map

(9)
$$\phi_{\theta}: SU(r,1) \to |\mathcal{L}| \simeq \mathbf{P}^n$$

just sending ξ to the divisor Θ_{ξ} . From the previous proposition follows immediately that ϕ_{θ} is a morphism.

LEMMA 1.1.1. We have: $\phi_{\theta}^* O_{\mathbf{P}^n}(1) = \mathcal{L}$.

Proof. Let $\xi_0 \in SU(r,1)$ be a point wich is not a point of ramification of ϕ_θ , set $\eta := f_\theta(\xi_0) = {\xi_0}^*(\theta)$. Let H be the hyperplane of \mathbf{P}^n consisting of divisors passing through ξ_0 . We have:

$$\phi_{\theta}^* H = \{ \xi \in SU(r, 1) : \eta \in \hat{\Theta}_{\xi} \} = \{ \xi \in SU(r, 1) : h^0(\xi \otimes \eta) > 0 \};$$

and set theoretically this is a divisor in the linear system $|\mathcal{L}|$. Actually, $\xi_0 \in \phi_{\theta}^* H$ and since it is not a point of ramification, we have $\phi_{\theta}^* H = \mathcal{L}$.

As an immediate consequence we have

PROPOSITION 1.1.1. The map associated to the theta divisor $\phi_{\mathcal{L}}$: $SU(r,1) \to |\mathcal{L}|^*$ is a morphism.

§2. Bundles with r+1 sections

2.1. Definition

Let $(\xi, l) \in SU(r, 1) \times Pic^g(C)$. We say that (ξ, l) satisfies condition (*) if the following three properties hold:

- (i) $h^0(\xi(l)) = r + 1$,
- (ii) $\xi(l)$ is globally generated,
- (iii) the determinant map $w_{\xi,l}: \wedge^r H^0(\xi(l)) \to H^0(\det \xi(l))$ is injective.

We will set

(10)
$$X_l := \{ \xi \in SU(r,1)/(\xi,l) \text{ satisfies } (*) \}.$$

2.2. Remark

Assume that a pair $(\xi, l) \in SU(r, 1) \times \operatorname{Pic}^g(C)$ satisfies properties (i) and (ii), then it satisfies (iii) too. First of all, note that since $h^0(\xi(l)) = r + 1$, every vector of $\wedge^r H^0(\xi(l))$ is indecomposable. So assume that $v \neq 0$ is in the kernel of the map $w_{\xi,l}$, then $v = s_1 \wedge s_2 \wedge ... \wedge s_r$, with $s_i \in H^0(\xi(l))$, i = 1...r. Then the sections $s_1, ...s_r$ would generate a subbundle $\eta \subset \xi(l)$ with the following properties: $rk\eta = s \leq r - 1$, $h^0(\eta) \geq r$, and η is globally generated too. This implies $rk\eta = r - 1$, $h^0(\eta) = r$ and the following commutative diagram

$$0 \longrightarrow (\det \eta)^{-1} \longrightarrow H^{0}(\eta) \otimes O_{C} \stackrel{e}{\longrightarrow} \eta \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow O_{C}(p+rl)^{-1} \longrightarrow H^{0}(\xi(l)) \otimes O_{C} \longrightarrow \xi(l) \longrightarrow 0,$$

which implies deg $\eta \geq 1 + rg$, which contradicts the stability of $\xi(l)$.

We will show later that actually for any $l \in \text{Pic}^g(C)$, X_l is a non empty open subset of SU(r, 1).

2.3. Definition

Let $l \in \text{Pic}^g(C)$, we will consider the Grassmannian

(12)
$$G_l = G(r+1, H^0(O_C(p+rl)))$$

of (r+1) dimensional subspaces of $H^0(O_C(p+rl))$. If (ξ,l) satisfies assumptions (i) and (iii) then the image of the determinant map $w_{\xi,l}$ is a (r+1) dimensional subspace of $H^0(O_C(p+rl))$, let's denote it by

$$W := \operatorname{Im} w_{\xi,l}.$$

This defines a map

(13)
$$g_l: SU(r,1) \to G_l(r+1, H^0(O_C(p+rl)))$$

by sending ξ to the point of the Grassmannian corresponding to the subspace $W \hookrightarrow H^0(O_C(p+rl))$.

Note that there is a canonical isomorphism $\wedge^r H^0(\xi(l)) \simeq H^0(\xi(l))^*$, which induces an inclusion

(14)
$$w'_{\varepsilon}: H^0(\xi(l))^* \hookrightarrow H^0(O_C(p+rl)),$$

whose image is again W. Assume now that $\xi(l)$ is globally generated too, then we have an exact sequence

(15)
$$0 \to O_C(p+rl)^{-1} \to H^0(\xi(l)) \otimes O_C \to \xi(l) \to 0,$$

and its dual

(16)
$$0 \to \xi(l)^* \to H^0(\xi(l))^* \otimes O_C \to O_C(p+rl) \to 0;$$

passing to cohomology we have

(17)
$$0 \to H^0(\xi(l)^*) \to H^0(\xi(l))^* \xrightarrow{\pi} H^0(O_C(p+rl)) \to \dots,$$

since $\xi(l)$ is stable, then $H^0(\xi(l)^*) = 0$, so we can conclude that π is injective. We claim that $\operatorname{Im} \pi = W$, so that we can identify the maps π and w'_{ξ} .

2.4.

Let $W \in G_l(r+1, H^0(O_C(p+rl)))$, assume that |W| is base point free. Then we can consider the evaluation map $e: W \otimes O_C \to O_C(p+rl)$, which is surjective, so its kernel is a rank r vector bundle, let's define

(18)
$$E_W := (\operatorname{Ker} e)^*.$$

We have $\det E_W = O_C(p + rl)$, moreover we have the following exact sequence

(19)
$$0 \to O_C(p+rl)^{-1} \to W^* \otimes O_C \to E_W \to 0,$$

so we can conclude that E_W is generated by (r+1) global sections spanning the subspace $\text{Im}(W^* \hookrightarrow H^0(E_W))$. Passing to cohomology, we have

(20)
$$0 \to W^* \to H^0(E_W) \to H^1(O_C(p+rl)^{-1}) \to W^* \otimes H^1(O_C) \to ...;$$

note that $h^0(E_W) = r + 1$ if and only $H^0(E_W) \simeq W^*$, that is the following multiplication map is an isomorphism

(21)
$$\mu_W: W \otimes H^0(\omega_C) \to H^0(\omega_C \otimes O_C(p+rl)).$$

We have the following results:

LEMMA 2.4.1. Let E be a rank r vector bundle with $h^0(E) = \chi(E) = r + 1$, which is globally generated, then E is stable.

Proof. By Riemann Roch theorem we have $\deg(E)=1+rg$, and $\mu(E)=g+\frac{1}{r}.$ Assume there exists a destabilizying subbundle $F\subset E$ with $rk(F)=s\leq r-1$ and $\mu(F)\geq g+\frac{1}{r}.$ This implies $\deg(F)\geq 1+sg$ and $\chi(F)\geq s+1.$ Since E is generated by r+1 global sections spanning $H^0(E)$, then $h^0(F)=s+1$ and F is globally generated too. So we have a commutative diagramm

$$(22) \qquad 0 \longrightarrow (\det F)^{-1} \longrightarrow H^{0}(F) \otimes O_{C} \stackrel{e}{\longrightarrow} F \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow \det E^{-1} \longrightarrow H^{0}(E) \otimes O_{C} \stackrel{e}{\longrightarrow} E \longrightarrow 0,$$

from the inclusion $(\det F)^{-1} \hookrightarrow \det E^{-1}$ we have $sg + 1 \ge rg + 1$, which is impossible. This concludes the proof.

Assume that for a subspace W the map μ_W is an isomorphism, then by preceding lemma E_W is stable, so that $E_W(-l) = \xi \in SU(r,1)$. Moreover, (ξ,l) satisfies conditions (i),(ii) so that the map g_l is defined at the point ξ and we actually have $g_l(\xi) = W$. We would remark that the exact sequence

$$(23) 0 \to \xi(l)^* \to W \otimes O_C \to O_C(p+rl) \to 0$$

is just the pull-back of the Euler sequence

$$(24) 0 \to \Omega_{\mathbf{P}^{r-1}}(1) \to W \otimes O_{\mathbf{P}^{r-1}} \to O_{\mathbf{P}^{r-1}}(1) \to 0$$

under the morphism $f: C \to \mathbf{P}^{r-1} = \mathbf{P}(W^*)$ defined by |W|. Hence it turns out that

(25)
$$\xi(l) \simeq f^* T_{\mathbf{P}^{r-1}}(-1).$$

Let's define the following subsets of G_l :

(26)
$$B_l := \{ W \in G_l : |W| \text{ has base points } \}$$

and D_l as the set of W such that the multiplication map

(27)
$$\mu_W: W \otimes H^0(\omega_C) \to H^0(\omega_C \otimes O_C(p+rl))$$

is not surjective. Note that $\forall l$, we have $B_l \subset D_l$. Moreover, we have the following fact:

LEMMA 2.4.2. For any $l \in \text{Pic}^g(C)$, D_l is a Cartier divisor on G_l .

Proof. For more details see also [B], th.(0.0.1).

There exists a homomorphism between vector bundles $\mu: \mathcal{G} \to \mathcal{F}$ such that at the point $W \in G_l$ is actually the multiplication map

(28)
$$\mu_W: W \otimes H^0(\omega_C) \to H^0(\omega_C \otimes O_C(p+rl));$$

so that D_l is actually the degeneracy locus of μ . From Thom-Porteous's formula it is either a Cartier divisor or $D_l = G_l$. Actually we show that there exists $W \notin D_l$.

Claim: let $r \ge 1$, for any line bundle L of degree rg+1, base points free and non special, there exists a subspace $W \subset H^0(L)$ s.t. μ_W is surjective.

We will prove the claim by recurrence on r. Note that if r = 1, and L is a non special base points free line bundle of degree g + 1, the assertion

follows from the base points free pencil trick, see [A-C-G-H]. Assume that the claim is true for degree 1 + (r - 1)g. Let L be any line bundle of degree 1 + rg: choose $x_1, ..., x_g \in C$ with the following properties:

- i) $x_1 + ... + x_q$ is non special,
- ii) $L(-x_1 \dots x_q)$ is base points free and non special.

By the induction hypothesys there exists an r dimensional subspace $\overline{W} \subset H^0(L(-x_1-...-x_g))$ for which $\mu_{\overline{W}}$ is surjective. Choose a global section $s \in H^0(L)$, such that $s(x_i) \neq 0$, for i=1,...g, and define the subspace

$$W := \langle \bar{W}, s \rangle.$$

By i), we can find indipendent global sections ω_1 , ω_2 ,..., ω_g such that $\omega_i(x_j) \neq 0$ if and only if j = i; let $f_i = \mu_W(s \otimes \omega_i)$, then it is easy to see that $f_1, ..., f_g$ are indipendent global sections of $H^0(L \otimes \omega_C)$. This implies the following commutative diagramm

the following commutative diagramm
$$\bar{W} \otimes H^{0}(\omega_{C}) \xrightarrow{\mu_{\bar{W}}} H^{0}(L(-x_{1} - ... - x_{g}) \otimes \omega_{C}))$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad$$

Since both $\mu_{\bar{W}}$ and μ_s are surjective, we can conclude that μ_W is surjective too.

As an immediate consequence of the lemma we have that X_l is a non empty open subset of SU(r,1): in fact if W is a point in $G_l - D_l$, then by the previous arguments $E_W(-l) = \xi \in X_l$. Moreover the map $h_l: G_l - D_l \to X_l$ sending W to $E_W(-l)$ is actually the inverse map of g_l .

2.5.

Let's consider the Pluecker embedding of the grassmannian G_l :

(30)
$$p_l: G_l(r+1, H^0(O_C(p+rl))) \hookrightarrow \mathbf{P}^N = \mathbf{P}(\wedge^{r+1}H^0(O_C(p+rl)))$$
 and look at the composition map

(31)
$$p_l \cdot g_l \colon SU(r,1) \to \mathbf{P}^N,$$

we have the following result:

Proposition 2.5.1. Let $l \in \text{Pic}^g(C)$,

- (1) $g_l: SU(r,1) \to G_l(r+1, H^0(O_C(p+rl)))$ is a birational map, the restriction $g_{l|X_l}: X_l \to G_l D_l$ is biregular;
- (2) the rational map $p_l \cdot g_l : SU(r,1) \to \mathbf{P}^N$ is defined by N+1 indipendent global sections of $H^0(\mathcal{L})$, where \mathcal{L} is the generalized theta divisor on SU(r,1).

Proof. (1) Let $l \in \text{Pic}^g(C)$, note that we can identify the two moduli spaces SU(r,1) and $SU(r, O_C(p+rl))$ via the natural isomorphism sending $\xi \to \xi(l)$. Let \mathcal{U}_l be the universal bundle on $SU(r, O_C(p+rl)) \times C$, let as usual π_i , with i = 1, 2, denote the natural projections. We recall that

(32)
$$\det \mathcal{U}_{l|SU(r,O_C(p+rl))\times x} \simeq \mathcal{L},$$

moreover det $\mathcal{U}_{l|\xi(l)\times C} \simeq O_C(p+rl)$, so that we can conclude that

(33)
$$\det \mathcal{U}_l \simeq \pi_2^* O_C(p+rl) \otimes \pi_1^* \mathcal{L}.$$

We will consider, on $SU(r, O_C(p+rl))$, the torsion free sheaf $\pi_{1*}\mathcal{U}_l$, whose fibre at the point ξ is $H^0(\xi(l))$. Let'consider the following open subset of $SU(r, O_C(p+rl))$

(34)
$$V_l := \{ \xi(l) : h^0(\xi(l)) = r + 1 \},$$

then $\pi_{1*}\mathcal{U}_{l|V_l}$ is a vector bundle of rank r+1. There is a natural map between sheaves on $SU(r, O_C(p+rl)) \times C$, see [H],

$$(35) E: \pi_1^*(\pi_1 \mathcal{U}_l) \to \mathcal{U}_l,$$

let's consider the map $\wedge^r E$

(36)
$$\wedge^r E: \pi_1^* (\wedge^r \pi_{1*} \mathcal{U}_l) \to \wedge^r \mathcal{U}_l = \det \mathcal{U}_l,$$

and tensor this map with $\pi_1^*\mathcal{L}^{-1}$, so we have

(37)
$$\pi_1^*(\wedge^r(\pi_{1*}\mathcal{U}_l)\otimes\mathcal{L}^{-1})) \to \pi_2^*O_C(p+rl).$$

Finally let's push down this map on $SU(r, O_C(p+rl))$, by using the projecting formula and recalling that $\pi_{1*}O_{SU(r,O_C(p+rl))\times C}\simeq O_{SU(r,O_C(p+rl))}$, we will have the following map

(38)
$$G: \wedge^r(\pi_{1*}\mathcal{U}_l) \otimes \mathcal{L}^{-1} \to \pi_{1*}\pi_2^*O_C(p+rl).$$

Note that $\pi_{1*}\pi_{2}^{*}O_{C}(p+rl)$ is the trivial bundle on $SU(r, O_{C}(p+rl))$ with fibre $H^{0}(O_{C}(p+rl))$, moreover at the point $\xi(l)$ G is actually the determinant map

(39)
$$w_{\xi} : \wedge^r H^0(\xi(l)) \to H^0(O_C(p+rl)).$$

If $g_l(\xi)$ is defined, then $(\operatorname{Im} G)_{\xi(l)} = g_l(\xi)$ and this shows that g_l is a rational map. Moreover, let $U_l \subset SU(r, O_C(p+rl))$ the set of points $\xi(l)$ satisfying properties (i) and (iii), then $X_l \subset U_l$ and the restriction $G_{|U_l}$ is an injection of vector bundle, and codim $U_l \geq 2$.

Since $\dim SU(r,1) = \dim G_l = (r^2 - 1)(g - 1)$, and moreover both SU(r,1) and G_l are smooth and irreducible, then by Zariski's main theorem it is enough to show that $g_{l|X_l}$ is injective, but this follows from the preceding section.

(2) Since $\wedge^r(\pi_{1*}\mathcal{U}_l) \simeq \pi_{1*}\mathcal{U}_l^* \otimes \det(\pi_{1*}\mathcal{U}_l)$, $G_{|U_l}$ gives the following injection

$$(40) \qquad (\pi_{1*}\mathcal{U}_l)^* \otimes \det(\pi_{1*}\mathcal{U}_l) \otimes \mathcal{L}^{-1} \hookrightarrow H^0(O_C(p+rl)) \otimes O_{SU(r,1)},$$

which is actually the pull back of the universal subbundle W on G_l , via the map $g_{l|U_l}$. Since the Pluecker map p_l of G_l is defined by the line bundle det W^* , we can conclude that

(41)
$$(p_l \cdot g_l)^*(O_{\mathbf{P}^N(1)}) \simeq \det(g_l^* W^*).$$

We will prove that actually $g_l^*W^* \simeq \pi_{1*}\mathcal{U}_l$ and $\det \pi_{1*}\mathcal{U}_l = \mathcal{L}$. Let's consider again the natural map of sheaves

$$(42) E: \pi_1^*(\pi_1 \mathcal{U}_l) \to \mathcal{U}_l,$$

the restriction at $\xi(l) \times C$ is actually the evaluation map: assume that $\xi(l) \in X_l$, then $E_{|\xi(l) \times C}$ is surjective and $(\ker E)_{|\xi(l) \times C} \simeq O_C(p+rl)^{-1}$. Let's consider the set $V \subset SU(r, O_C(p+rl)) \times C$ of pairs $(\xi(l), x)$ with $\xi(l) \in X_l$: we have

(43)
$$(\operatorname{Ker} E)_{|V} = \pi_2^* O_C(p+rl)^{-1} \otimes \pi_1^* B,$$

with $B \in \text{Pic}(SU(r, O_C(p+rl)))$. Look at the following exact sequences on V:

$$(44) 0 \to \ker E_{|V} \to \pi_1^*(\pi_{1*}\mathcal{U}_l)_{|V} \to \mathcal{U}_{l|V} \to 0,$$

(45)
$$0 \to \mathcal{U}_{l|V}^* \to \pi_1^*(\pi_{1*}\mathcal{U}_l)_{|V}^* \to (\operatorname{Ker} E)_{|V}^* \to 0,$$

by pushing down to $SU(r, O_C(p+rl))$ we obtain an injective map Π :

(46)
$$\Pi: (\pi_{1*}\mathcal{U}_l)_{|V}^* \to \pi_{1*}(\operatorname{Ker} E)_{|V}^*,$$

where $\pi_{1*}(\operatorname{Ker} E)^*_{|V} = \pi_{1*}\pi_2^*O_C(p+rl)\otimes B$. Note that by construction, Π turns out to be the restriction to V of the above map G, so we can conclude that actually $B = O_{SU(r,O_C(p+rl))}$ and $\det \pi_{1*}\mathcal{U}_l = \mathcal{L}$, and this concludes the proof.

As an immediate consequence we have an alternative proof of the following well known result, see [N]:

Proposition 2.5.2. SU(r,1) is a rational variety.

§3. The main result

Let $\phi_{\mathcal{L}}: SU(r,1) \to |\mathcal{L}|^*$ be the map associated to the theta divisor. By prop. (2.5.1) there exist s_0, \ldots, s_N , indipendent global sections of $H^0(\mathcal{L})$ which define the rational map $p_l \cdot g_l$. Let V be the subspace spanned by them, we have a natural inclusion $V \hookrightarrow H^0(\mathcal{L})$, which induces a linear projection

(47)
$$\pi_l: |\mathcal{L}|^* \to \mathbf{P}(V^*) = \mathbf{P}^N$$

such that $g_l = \pi_l \cdot \phi_{\mathcal{L}}$. This allows us to prove that for any curve C of genus $g \geq 2$, the map $\phi_{\mathcal{L}}: SU(r,1) \to \mathbf{P}^n$ has degree one.

3.1. Proof of theorem (0.0.2)

Actually, we will perform a non empty open subset \mathcal{U} of SU(r, 1), such that the restriction of $\phi_{\mathcal{L}}$ to \mathcal{U} is actually injective, moreover we will prove that the tangent map $d(\phi_{\mathcal{L}})_{\mathcal{E}}$ at a point ξ of \mathcal{U} is injective too.

Consider in $SU(r,1) \times \operatorname{Pic}^g(C)$ the set X containing pairs (ξ, l) satisfying property (*). We will denote by

$$\mathcal{U}:=p_1(X),$$

then \mathcal{U} is a non empty open subset of SU(r,1). First of all note that if $\xi \in \mathcal{U}$ the following set

(49)
$$\{l \in \operatorname{Pic}^{g}(C) \ (\xi, l) \text{ satisfies } (*)\}$$

is a non empty open subset of $\operatorname{Pic}^g(C)$. Now let ξ_1 and ξ_2 be any two points of \mathcal{U} : then there exists l such that $(\xi_i, l) \in \mathcal{U}$, for i = 1, 2. For such an l,

let $g_l: X_1 \to G_l$ be the rational map defined in (2.3), then by pr. (2.5.1) the restriction $g_{l|X_l}$ is biregular and both ξ_1 and ξ_2 are in X_l . Now assume that $\phi_{\mathcal{L}}(\xi_1) = \phi_{\mathcal{L}}(\xi_2)$. Since $g_l = \pi_l \cdot \phi_{\mathcal{L}}$, then we have $g_l(\xi_1) = g_l(\xi_2)$. But $g_{l|X_l}$ is injective, so we can conclude that $\xi_1 \simeq \xi_2$.

Assume now that $d(\phi_{\mathcal{L}})_{\xi}(v) = 0$ for a point $\xi \in \mathcal{U}$ and a tangent vector $v \in T_{SU(r,1),\xi}$. Let $l \in \text{Pic}^g(C)$ such that $(\xi,l) \in U$: then consider the rational map g_l , the linear projection π_l is defined at $\phi_{\mathcal{L}}(\xi)$, so we have

$$(50) (d\pi_l)_{\phi_{\mathcal{L}}(\xi)} \cdot (d\phi_{\mathcal{L}})_{\xi} = (dg_l)_{\xi}.$$

Since $\xi \in X_l$ and $g_{l|X_l}$ is biregular, then $(dg_l)_{\xi}(v) = 0$, hence v = 0, and $(d\phi_{\mathcal{L}})_{\xi}$ is injective. This concludes the proof.

3.2.

For $r \geq 3$, \mathcal{U} may be a proper subset of SU(r,1), that is there exist bundles ξ such that for any $l \in \operatorname{Pic}^g(C)$ we have $\xi(l) \notin X_l$.

Let E be a semistable bundle on C of rank r, for any $l \in \operatorname{Pic}^g(C)$ we have $h^0(E(l)) \geq \max(0, \chi(E(l)))$; actually there exists an open subset $U \subset \operatorname{Pic}^g(C)$ such that for $l \in U$ this value is constant, following Raynaud, let's denote it by $h^0(E(l_{gen}))$, (see [R]). If $r \leq 2$ or r = 3 and the curve is general, then Raynaud proved that for any bundle we have $h^0(E(l_{gen})) = \max(0, \chi(E(l)))$; for $r \geq 4$ he showed the existence of bundles which do not satisfy this property, we will call such bundles Raynaud bundles, see [R].

Let $\eta \in SU(r)$: for any non zero morphism $\lambda \in \text{Hom}(\eta, C_p)$ the sheaf $\ker \lambda$ is actually a vector bundle on C with det $\ker \lambda = O_C(-p)$:

(51)
$$0 \to \ker \lambda \to \eta \xrightarrow{\lambda} C_n \to 0.$$

We claim that if η is stable then $\ker \lambda$ is stable too. In fact, if $\alpha \subset \ker \lambda \subset \eta$ is a destabilizing subbundle of $\ker \lambda$, then $\mu(\alpha) = \frac{d}{s} \geq \frac{-1}{r}$, with $s \leq r - 1$: this implies $d \geq 0$ and contradicts the stability of η . Let's define

(52)
$$\xi := \ker \lambda^*,$$

we can conclude that $\xi \in SU(r, O_C(p))$, and fits into the exact sequence

$$(53) 0 \to \eta^* \to \xi \xrightarrow{v} C_p \to 0.$$

In the above notations, we can prove the following fact:

LEMMA 3.2.1. If $\eta^* \in SU(r)$ is a stable Raynaud bundle, then for any $l \in Pic^g(C)$, we have $\xi(l) \notin X_l$.

Proof. Consider the exact sequence (53) and tensor with $l \in \text{Pic}^g(C)$,

$$(54) 0 \to \eta^*(l) \to \xi(l) \xrightarrow{v_l} C_p \to 0,$$

passing to cohomology, we can consider the following commutative diagramm

(55)
$$0 \longrightarrow H^{0}(\eta^{*}(l)) \longrightarrow H^{0}(\xi(l)) \xrightarrow{\bar{v_{l}}} C$$

$$\downarrow \qquad \qquad \downarrow e_{p} \qquad \downarrow \qquad \downarrow e_{p} \qquad \downarrow \qquad \downarrow e_{p} \qquad \downarrow e_{$$

Since η^* is a Raynaud bundle, then $h^0(\eta^*(l)) \ge r+1$ for any $l \in \operatorname{Pic}^g(C)$, this implies that either $h^0(\xi(l)) \ge r+2$ for any $l \in \operatorname{Pic}^g(C)$, or $h^0(\xi(l)) = r+1$ for l generic, and moreover $\overline{v_l}$ is the zero map. In this case, $\operatorname{Im} e_p \subset \operatorname{Ker}(v_{p,l}^-)$ for any l, which implies that $\xi(l)$ is not globally generated at p for any l. So we can conclude that $\xi \notin X_l$ for any $l \in \operatorname{Pic}^g(C)$, and \mathcal{U} is a proper subset of $SU(r, O_C(p))$.

References

- [A-C-G-H] E. Arbarello, M. Cornalba, P.A. Griffiths and J. Harris, Geometry of Algebraic curves, Springer verlag, Berlin, 1985.
- [Be1] A. Beauville, Fibrés de rang 2 sur une courbe, fibré determinant et functions theta, Bull. Soc.Math.France, 116 (1988), 431–448.
- [Be2] _____, Fibrés de rang 2 sur une courbe, fibré determinant et functions theta II, Bull. Soc. Math.France, **119** (1991), 259–291.
- [B] S.Brivio, On the degeneracy locus of a map of vector bundles on Grassmannian Varieties, Preprint (1999).
- [B-V1] S. Brivio and A. Verra, The theta divisor of $SU_C(2)^s$ is very ample if C is not hyperelliptic, Duke Math. J., **82** (1996), 503–552.
- [B-V2] _____, On the theta divisor of SU(2,1), Int. J. math., 10, 8 (1998), 925–942.
- [D-N] I.M. Drezet and M.S. Narasimhan, Groupes de Picard des variétés des modules des fibrés semistable sur les courbes algebriques, Invent.Math., 97 (1989), 53–94.
- [D-R] U.V. Desale and S. Ramanan, Classification of vector bundles of rank two on hyperelliptic curves, Invent. Math., 38 (1976), 161–185.
- [H] R. Hartshorne, Algebraic Geometry, Springer verlag, New York, 1977.
- [I-vG] E.I zadi and L. van Geemen, The tangent space to the moduli space of vector bundles on a curve and the singular locus of the theta divisor of the Jacobian, Preprint (1997).

- Y. Laszlo, A propos de lespace des modules de fibres de rang 2 sur une courbe,
 Math. Ann., 299 (1994), 597–608.
- [N-R] M.S. Narasimhan and S. Ramanan, Moduli of vector bundles on a compact Riemann surface, Ann.Math., 89 (1969), 19–51.
- [N] P.E. Newstead, Rationality of moduli spaces of vector bundles over an algebraic curve, Math.Ann., 215 (1975), 251–268. Correction, ibidem, 249, (1980), 281–282.
- [Ra] S. Ramanan, The moduli spaces of vector bundles over an algebraic curve, Math. Ann., 200 (1973), 69–84.
- [R] M. Raynaud, Sections des fibrés vectoriels sur une courbe, Bull.Soc.math. France, 110 (1982), 103–125.
- [S] C.S. Seshadri, Fibrés vectoriels sur les courbes algébriques, Astérisque, 96 (1982),
 3-50.

Sonia Brivio Dipartimento di Matematica Universita' di Pavia via Abbiategrasso 209 - 27100 Pavia Italy Brivio@dimat.unipv.it

Alessandro Verra

Dipartimento di Matematica

Universita' di Roma Tre

largo S. Leonardo Murialdo 1 - 00146

Roma

Italy

Verra@matrm3.mat.uniroma3.it