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1. Introduction

One elementary proof of the spectral theorem for bounded self-adjoint
operators depends on an elementary construction for the square root of a
bounded positive self-adjoint operator. The purpose of this paper is to
give an elementary construction for the unbounded case and to deduce
the spectral theorem for unbounded self-adjoint operators. In so far as all
our results are more or less immediate consequences of the spectral theorem
there is little that is entirely new. On the other hand the elementary approach
seems to the author to provide a deeper insight into the structure of the
problem and also leads directly to the spectral theorem without appealing
first to the bounded case. Besides this, our methods for proving uniqueness
of the square root and of the spectral family seem to be new even in the
bounded case. In particular there is no need to invoke representation
theorems for linear functionals on spaces of continuous functions.

For positive self-adjoint T and positive real A, (AZ+T)"1 is a bounded
positive self-adjoint operator. Write YA = {{U+T)-1}* and Bx = (M+T)YA.
Letting A -> 0+0 we obtain an operator B which is positive self-adjoint
and B2 = T.

After obtaining the square root we follow the approach of [4, § 108]
to obtain for self-adjoint A, the 'Jordan decomposition' A = A+—A~ with
A+ and A~ self-adjoint and positive and the range of each contained in
the null space of the other. The spectral projections are then given, as in
the bounded case, by defining E(X) to be the orthogonal projection on the
null space of (̂ 4 —A/)+ for all real A.

The contents of this paper apart from Theorems 19 and 20 form the
basic material on which [1] depends. For completeness some standard
results about unbounded operators are also included. These form most
of §2.

Added 22 February 1967. An earlier version of this paper was submit-
ted to Proc. London Math. Soc. in March 1965. Since that time a shorter
elementary proof of the existence of the square root of a positive operator
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18 S. J. Bernau [2]

has been obtained independently by A. Wouk [6]. Wouk's method is
different from the method of this paper and some details are suppressed.
He does not obtain the full strength of Theorem 10 although there is no
difficulty in proving Theorem 10 from his construction; nor does he give a
uniqueness proof.

I am grateful to the referee for his helpful comments on this paper.

2. Definitions and preliminary results

Let § be a Hilbert space, real or complex, and let T be a linear operator
whose domain <£)(T) and range dt(T) are subspaces of §. The Cartesian
product §X§ is a Hilbert space under natural linear operations and the
inner product

yi» 2/2) (*i. *2. Vi. y%e §)•

The graph of T, r(T) is the set {[a;, Tx] :a;eS)(r)}; r(T) is a subspace
of § x § . T is closed if, whenever (xn) is a sequence of elements of ^(T)
such that xn -*• x and Txn -> y then a; e S)(T) and Tx — y; equivalently
T is closed if -T(^) is closed in § x §.

Suppose 2)(T) is dense in §. We define an operator T* as follows:
2)(r*) is the set of y in § such that there exists y* in § with the property

(7s, y) = (a, y») (*e®(r));

then, T*y = y* (^e®(P)) . T"* is called the adjoint of T, it is uniquely
defined and is a closed linear operator.

Throughout this paper we adopt the

CONVENTIONS, (i) All operators are linear with domain and range in §;
(ii) if T is an operator any reference to T* implies that S)(T) is dense

in § and any reference to T being bounded implies that ®(T) = £>;
(iii) the statement, (xn) is a sequence in S5(T), means, (xn) is a sequence

of elements of S)(T).
Let S and T be operators; S is an extension of T, written S 2 T or

TCS, means that %{T) Q ®(S), and Tx = Sx (x e ®(T)). T = 5 if and
only if T Q S and S QT. If T QS then T* 2 5*. In general T commutes
with S means TS = ST, however, if one of S and T, say S, is bounded, T
commutes with 5 means ST Q TS.

T is symmetric if ®(T) is dense in § and

(Tx,y) = (x,Ty) (x,yeS>(T));

equivalently, T is symmetric if T Q T* (if T QT*, Convention (ii) implies
that S)(r) is dense). T is self-adjoint if T=T*. T is positive if T is self-
adjoint and (Tx, x) ^ 0 (x e ®(r)).
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[3] The square root of a positive self-adjoint operator 19

For general properties of unbounded operators we refer to [4, §§ 114-119],
and [2, Chapter XII, § 1]. Results for which a reference is not given can
be found in one of these places.

LEMMA 1. If T is an operator with ®(!T) dense in §, then T has a closed
linear extension if and only if ®(T*) is dense in §. In this case T** is the
minimal closed extension of T and r(T**) is the closure, in ^>X§, of F{T).
In particular, if T is closed and %(T) is dense, %{T*) is dense and T = T**.

This lemma is proved in [4, § 117], except for the statement about
F(T**). This statement is an easy deduction.

LEMMA 2. Let T be a closed operator with dense domain. Then,
(i) (7+T*T)- 1 exists and is a bounded self-adjoint operator;

(ii) T*T is self-adjoint and positive;
(iii) if T is the restriction of T to <&{T*T), then T(J ') is dense in F(T).
This lemma is most of [2, Lemma XII 7.1]. Parts (i) and (ii) are also

proved in [4, §§ 118, 119].
As a corollary of Lemma 2 we have

LEMMA 3. If T is a closed symmetric operator such that T2 is an extension
of a self-adjoint operator S then T is self-adjoint and T2 = S.

PROOF. By Lemmas 1 and 2, TT* = T**T* is self-adjoint. Because T
is symmetric TT* D T2 and, because T2 2 S, and S is self-adjoint,
TT* = T2 = 5. Let x e 2)(r*); by Lemma 2(iii), there exists a sequence
(xn) in ^{TT*) = S)(r2) such that xn -+ x and T*xn -> T*x. Because T
is symmetric and xn e S)(T), T*xn = Txn. Because T is closed x e ®(r) and

Tx = lim Txn = lim T*xn = T*x.

Hence T = T* as required.

THEOREM 4. Let T be a bounded positive self-adjoint operator. There exists
a unique bounded positive self-adjoint operator Tb such that (Ti)2 = T.
Tb can be obtained as the strong limit of a sequence of polynomials in T and
hence Tb commutes with every bounded operator which commutes with T.

This theorem is proved in [4, § 104]. We deduce

LEMMA 5. Let T be a bounded positive self-adjoint operator and let B
a closed operator which commutes with T. Then, B commutes with Tb.

PROOF. Let (pn) be a sequence of polynomials in T such pnx-> Tbx
(n -> oo) (x e §) and let x e %{B). Clearly

pnBQBpn ( n = l , 2 , - - - ) ,
hence

pnx
and
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pnBx = Bpnx (n = 1, 2, • • •).

Now pnx -> Tbx and Bpnx = pnBx -> TiBa; (« ->• oo). Hence, because B
is closed, T*a; e %{B) and BTia; = lim Bpnx = riBa;. Thus J i B Q BTl
as required.

3. Unbounded positive operators

Throughout this section T denotes a, not necessarily bounded, positive
self adjoint operator.

LEMMA 6. Let X be a positive real number; then (AZ+T)"1 exists and is a
bounded positive self-adjoint operator.

PROOF. If

(1)

The remainder of the proof is omitted.
For the next two lemmas, I am very grateful to the referee of an

earlier version of this paper for greatly simplifying my original arguments.

LEMMA 7. Let X and (i be positive real numbers, define

YA = {(AZ+3T)-1}*. Bx = YJ\

Then, Bx is self-adjoint and positive, B\ = XI-\-T, Bx = (XI-\-T)Y^ and

2>(BA) = $R(YA) = K(y^) = ®(B^).

PROOF. Note first that if Yxx = 0,

x = (M+T)Ylx = 0

so that Yl1 exists. Because U{YK) 2 ®(AI+T), %(BX) is dense and

Bt = {Y£)* = (yt)-1 = Y? = BK.
Because YA commutes with XI-\-T, Lemma 5 shows that

(2) YX(U+T)Q(U+T)YX.

Hence,
Yx{U+T)YkQ(U+T)Y\ = I

and it follows that

(3) B A = ( A / + r ) Y A .

lix e %{BX), x = YAM for some u in § and

[BKx, x) = (BxYxu, Yxu) = (u, YKu) ^ 0.
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Thus Bx is positive. Furthermore,

B\ = Y? = (YD'1 = U+T.
To see that SR(YA) = ^(Y,,) w e observe that, because

= SR(YJ).

It follows from (1) that ||Y^|| = ||(AZ+3")-1!| ^ A"1 so that 0 ^ AYf ^ / in
the usual ordering of bounded self-adjoint operators. Because TY\ = I—KY\,
it follows that TY\ is bounded and 0 ^ TY\ ^ / . Then, for ft > 0,
(,a7+r)y^ is bounded self-adjoint and positive and commutes with Yj.
It now follows from Theorem 4 that

(5) YA = I

and hence 9t(YA) = ^(Y^) as required.

LEMMA 8. $(BAB,,) = ®(r), B^B^ = B^B^; and, if x<s%{T) and
0 <*.</*,

(6) (J^i

PROOF. Because 3)(BA) =

Because Y^ and Y£ commute, Theorem 4 shows that YXY^ = YAYA and
it follows that B^B^ = B)iBx.

If 0 < A < n the argument preceding (5) gives

0 ^ ^

Hence, by (5), Y^^Y^. Thus Yx—Y^ and Y^ are commuting positive
operators and YAY^—Y^ = Y/((YA—Y ,̂) ^ 0. Now, if x
x = Y^YpW = YpYxW for some w in Q and

(w, YxY^

(w, Yjw)

THEOREM 9. Write S) = ©(BJ = $({(/+T)-1}*). For eacA x t« 35,
Bxx tends to a limit as A ->• 0 + 0 . TAe operator B determined by 35(B) = 25,
Bx = limA_^,+0 BAx is self-adjoint and positive and B2 = T.

PROOF. Suppose 0 < X < /x and let x e 35(T). By Lemmas 8 and 7
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(7) | |B^-BA*| |« = (B>, x)-2(BxB/lx, x) + (B\x, x)
^ {B\x, x)-2(B\x, x) + (B\x, x)

Suppose x e S, because B^ is self-adjoint, Lemma 2(iii) shows there exists
a sequence (xn) in ©(B2,) = ^{T) such that xn -+ x and B^x,, ->• B^a;.
By (v),

(8) | | B A ( * . - * » ) I I ^ I !« , (*»—*„) l l+ l l (^—

- > 0 (w, w -»• oo).

Hence, the sequence (Bxxn) is convergent. Because Bx is self-adjoint,
BA is closed and BKxn -> BAa;. Thus,

(9) \\BpX-Bxx\\* = lim \\Bfxn-Bxxn\\*

Relation (9) shows that, if a; 6 2), JSAa; tends to a limit as A -> 0+0.
Define a (clearly linear) operator B with domain 2) by,

Bx = lim BAx (a e 2)).
A_M)+0

By letting X -+ 0+0 in (9), we have

(10) WBp-BxWi-ZpWxW* (xe%).

Now, suppose x e ̂ (T); by Lemma 8,

x e ®(BABA) and B ^ a ; = BABAx (A > 0, /« > 0).

Because BAa; ->• Bx, BAB/1a; ->- BB^a; (A ->- 0+0) and B^ is closed we have
B^Ba; = BB^a; (x e ®(r)) . Hence if * e ®(J), Ba; e S) and x e ®(B2). Then,

\\Tx—B*x\\ = ||—^ar+B^a;—BB^+B^Ba;—B2a;||

By (10),

\\Tx-B*x\\ ^ f*\\x\\+/*i\\Btlx\\+pi\\Bx\

This proves that T Q B2.
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If x, y e 3),

(Bx, y) = lim (Bxx, y) = lim (x, Bxy) = (x, By).

Thus B is symmetric, and B2 = T.
Suppose (xn) is a sequence in ® such that a;n -> a; and .B:rB -»• y; take

[i > 0. An argument, similar to the proof of (8) but based on (10) shows
that the sequence (B^x^ is convergent. Because B^ is closed, x e % and
BpXn -> jB â; (« ->• oo). Hence, by (10),

||Sf—Sa;|| = lim

^ lira sup {\\(B/l-B)(xn~-x)\\ + \\Bll(xn-x)

= 0.

This shows that B is closed. Because we have already proved that B is
symmetric and B2 = T it follows from Lemma 3 that B is self-adjoint.
Finally for x e %,

(Bx, x) = lim (Bxx, x) ^ 0,

which shows that B is positive and completes the proof.
Before proving that B is the unique positive self-adjoint square root

of T we need a result which, while important in its own right, is essentially
a tricky technicality.

THEOREM 10. / / A is a closed operator which commutes with T then A
comntmies with B.

PROOF. Take X > 0. The hypothesis on A shows that,

Q

so, by Lemma 5, YXA £ AYX.
We now distinguish two cases
CASE (i). A is bounded and ATQTA. In this case ^S>{YXA) = § and

hence YXA = AYX. Then

g (U+T)AYX

= (M+T)YXA

= BXA.
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Hence, for x e %, Ax e 3) and

ABx = A lim Bxx = lim ABxx = lim BxAx = BAx.
A->0+0 A-M)+0 A->0+0

Thus A B Q BA as required.

CASE (ii). A is closed and AT = 7M. This time we only have
YXA Q AYX and hence

BXA = (A/+r)YA4 g (A/+r),4YA = A(M+T)YX = ABX.

Suppose xe'S)(A) and Ax e 2) = 2)(BA)• Then BAa; e ©(-4) and BA4a; = ABxx.
Now Bxx-> Bx and 4̂BAa; = BA^lx -> ZL4:c (A->-0+0). Because 4̂ is
closed, Bxe^iA) and 4£a; = lim ABxx = BAx. Hence, BAQAB.

Conversely, suppose x e %{AB). Take A > 0; then .4£x = ABB\Y\x.
Because B\ = U+T, B\ commutes with B and with A. Thus
^Bx = B\ABY\x. This shows that BY2^ e %(BXA) = ®(B^) and,
because

BABY\x = >15«Yja! = ^jyAa; = T^Y^a; = B2AY\x.

Hence, Ŷ ar e <&(BA) and BAY\x = ABY\x. We conclude that

,45a: = B\ABY\x = B^B^Y^x = B^BjYja; = BAx.

Thus i S C B i s o that AB = BA as required.

NOTE. Case (ii) includes the case of a bounded operator A such that
AT = TA. Under our convention (ii), %{A) = § and hence, A is closed
and^S = BA.

The elegant use of the generalised Schwarz inequality in the next
theorem was also pointed out to me by the referee of an earlier version of
this paper.

THEOREM 11. The operator B determined by Theorem 9 is unique. In
other words, if A is a positive self-adjoint operator such that A2 — T then
A = B.

PROOF. Because AT = A3 = TA, Theorem 10 shows that AB = BA.
Hence ®(T2) = ®(^2S2) = %{ABAB) Q ®(AB). Thus, if xe®(T*) and
y = Ax—Bx,

(A + B)y = (A+B)(A-B)x = 0.

Because A and B are positive, and

0 ^ (Ay, y) + (By, y) = ((A+B)y, y) = 0,

we have (Ay, y) = 0. By the generalised Schwarz inequality [4, § 104]

\(Ay,z)\*^(Ay,y)(Az,z) (z
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Hence (Ay, z) = 0 (z e %{A)), Ay = 0 and similarly By = 0. Then

\\(A-B)x\\* = (y, Ax)-(y, Bx)

= (Ay,x)-(By,x)

= 0 (i

a; = Bx (x
Let B" and £ ' denote the restrictions of B to ̂ (T2) and 2)(7) respec-

tively and similarly for A. Now if x, y e

l|5(*-y)ll2 = {B\x~y), x-y)

It follows from Lemma 2 (iii) r(B") is dense in r(B'), and, in any case,
r(B) is the closure of r(B'). Thus /"(fi) is the closure of r{B"), similarly
F(A) is the closure of r{A"). We have shown above that r(A") = r(B");
hence F(A) = F(B) as required.

The graph juggling in the above proof is due to the referee. It replaces
the author's original proof which was more complicated.

REMARK. It T is assumed to be bounded the proof of Theorem 11
collapses into a proof of uniqueness of Ti which differs from that given in
[4, § 104]. The referee informs me it is essentially the same as given in [5].

DEFINITION. If T is a positive self-adjoint operator T% is the unique
positive self-adjoint operator whose square is T.

4. A decomposition theorem

We shall prove the following theorem:

THEOREM 12. Let A be a self-adjoint operator. Then there exist unique
positive self-adjoint operators A+ and A~ such that: A = A+ — A~\
$t(A+) Q3l(A-); fR(A~) Q9l(A+). Furthermore A+ and A~ commute with
every bounded operator which commutes with A.

(For any operator T, 3l(T) denotes the null space of T).
The remainder of this section consists of some definitions and three

lemmas of which Theorem 12 is an immediate consequence.
We assume, throughout this section, that A is a self-adjoint operator.
By Lemma 2(ii), A2 is self-adjoint and positive. Accordingly define

\A\ = (A*)i.

LEMMA 13. 3>(|4|) = %>(A) and \\Ax\\ = || \A\x\\ (x e

PROOF. If x

\\Ax\\* = (A*x, x) = {\A\*x, x) =
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By Lemma 2(iii) 7~"(|̂ 41) is the closure of -T(|̂ 4|') where \A\' is the restriction
of \A\ to ®(|^12) = ®(^2), and similarly for r(A). The required results
follow.

Now consider the operators £(|.4H-4) and ^(|^4|— .4); these have
dense domain, ^(A), and are clearly symmetric. Hence, [4, § 119], they
have closed symmetric extensions [J(|^4|+^4)]** and [J(|-4|— A)]**.

DEFINITION. A+ = $(\A\+A)]**, A~ = [\{\A\—A)]**.

LEMMA 14. (i) A = A+—A-, \A\ = A++A~;
(ii) fH(A+)Qm(A-), fR(A~) GW(A+);

(iii) A*= (A+)*+{A-)*i
(iv) A+ and A~ are positive self-adjoint operators;
(v) A+ and A" commute with every bounded operator which commutes

with A.

PROOF, (i) Clearly A Q A+—A~ and, because A is self-adjoint and
A+—A~ is (obviously) symmetric, A = A+—A~. Similarly \A\ = A+-\-A~.

(ii) Suppose xe<S)(A2). By Lemma 13, \A\x e ®(|4|) = ^>(A) and
A+x = \(\A\+A)x e %(A) Q %{A~). Hence,

A~A+x = i(\A\-A)(\A\+A)x

= ±{\A\A-A\A\)x.

By Theorem 10, \A\A — A\A\ and hence,

Let x e ^{A). By Lemma 2(iii) there exists a sequence (xn) in
 <£>(A2) such

that xn -> x and Axn -*• Ax. By Lemma 13, \A\xn -> \A\x. Hence,
A+xn ->• \(\A\-\-A)x = A +x. Because A~ is closed, 3l(A~) is closed and
A+xe3l(A-)(xe'S)(A)). Finally, because di(^(\A\+A)) is dense in m(A+)
and Vl{A-) is closed, we have dt{A+) Q 3t{A~). To show that fH{A~) Q 91(4+)
we can either argue similarly or use the obvious relations A+ = (—A)~,
A-=(-A)+

(iii) If x e 2){A2), then, in particular,

A+x—A-x = Axe %(A+).

By (ii), A-xe^)(A+); hence, A+xe%{A+). Similarly A~xe^){A-) and,
by (ii)

A2x = A+{A+x-A-x)—A-{A+x—A-x)

= (A+)2x+{A-)*x.

Thus A2Q (A+)*+(A-)2. Because A2 is self-adjoint and A+ and A~ are
symmetric we have A% = (24+)2+(y4-)2, which is (iii).
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(iv) Let xe<&(A+*). Recall, [4, § 117], that, because A+ is closed,
F(A+) is closed and its orthogonal complement in § X § is the set

{[A+*u, -u] :ue^(A+*)}.

Hence, there exist y in ®(̂ 4+) and z in %{A+*) such that:

[x, A+*x] = [y, A+y]+[A+*z, - * ] ;
in other words,

(11) x = y+A+*z, A+*x = A+y—z.

Because A+is symmetric the first equation of (11) shows tha t A+*z e 3) (A + * ) .
Hence, A+*x = A+y+(A+*)h and, (11) gives, z = — (A+*)*z. Suppose
v e %{A-); by (ii) A~v e l2l(A+) and

(A-v, z) = (^-v, ~(^4+*)22) = (A+A-v, —A+*z) = 0.

Thus 2 e 9J(^'*) C %{{A-*Y). Now, by (iii)

= (A*)*
= A2.

Hence, z e %(A2) Q S)((^+)2); therefore {A+*)2z = (^+)2z and

0 ^ ||z||2 = ( ,̂ -(A+)*z) = - | | ^ + 2 | | 2 ^ 0.

Because z = 0, (11) shows that x = ye ®(^4+) and hence, /1+ is self-adjoint.
Now A~ = (— 4̂)+ is also self-adjoint.

It is convenient, for later applications to give the proof that A~ is
positive. Observe first that, because A+ is closed, %l(A+) is closed. Let E
be the orthogonal projection onto 3l(A+). Clearly A+E = 0 and,

EA+ = E*A+* Q (A+E)* = 0,

so that EA+ = 0|S>(4+). Because 81(4-) C9*(il+). £ ^ - = 4~; hence,
[4, § 115], because E is bounded,

A-E = ^ - * £ * = (EA~)* = i l -* = i l -

Hence, if xe^A),
(A~x, x) = (EA~x, x)

= (EA-x, Ex)
= (A-Ex, Ex)
= ((A++A-)Ex, Ex)
= (\A\Ex,Ex)
> 0.
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If xe^>(A~) there exists, by Lemma 1, a sequence (xn) in 2)(̂ 4) such
that xn -> x and A~xn -> A~x. Thus 0 ^ lim (A~xn, xn) = (A~x, x); A~ is
positive and similarly, A+ is positive.

(v) Suppose £ is bounded and BA QAB. By Theorem 10, B\A\ Q \A\B.
Thus

BA+x = $B(\A\+A)x = A+Bx (x

If xe%(A+), the usual closure argument shows that Bx e%(A+) and
BA+x = A+Bx. Thus BA+ Q A+B as required.

LEMMA 15. Suppose B and C are positive self-adjoint operators such that:
3t(B) C5R(C); «R(C) CSR(B); 4 = B - C . Then, B = A+, C = A~.

PROOF. We begin by showing that B-\-C is self-adjoint. The same
argument used to prove Lemma 14(iii) shows that

A2 = B2+C2 = (B±C)«.

Because B-\-C is clearly symmetric it is now sufficient, by Lemma 3, to
prove that B+C is closed. If x e ®(5+C) = $(£—C) = %{A),

|» = \\Bx\\*±(Bx, Cx)±(Cx, Bx) + \\Cx\\*

= ||-Ba;||2±(^ BCx)±(BCx, x) + \\Cx\\*

= \\Bx\\*+\\Cx\\\

Hence, if (xn) is a sequence in ®(^4) such that xn -> x and (B+C)xn -> y,
it follows that (J3a:J and (Cxn) are both Cauchy sequences. Because B
and C are both closed, x e ®(.B+C), Bxn -> Ba; and Ca;n ->• Cx. Thus
j / = lim (B-\-C)xn = Bx-\-Cx and B-\-C is closed.

It is clear that B + C is positive so, by Theorem 11, B-\-C = \A\. Thus,

) U - C ) Q B .

Because B is self-adjoint,
B2[\{\A\+A)}** = A+

and, because A+ is self-adjoint, 5 = ^4+. Similarly C = ^4~, which completes
the proof.

5. The spectral theorem for self-adjoint operators

Throughout this section A is a self-adjoint operator, projection means
orthogonal projection, and statements about convergence of projections
refer to strong convergence.

DEFINITION. A spectral family is a family (F(A) : — oo < A < oo} of
projections such that
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(i)
(ii) F(X+0) = F(X);

(iii) F(A)-> 0 (A->-oo) , F(X)-+I (X-+ao).

DEFINITION. For real X, E(X) is the projection on 3l((A—XI)+).

LEMMA 16. For each real X, E(X) commutes with A and with every bounded
operator which commutes with A.

PROOF. The proof that A~ is positive in Lemma 14 (iv) shows that

I 0 = (A-XI)+E(X) 2 E{X){A-XI)+ = 0\$>((A-XI)+),
( ' I (A-XI)-E(X) = (A—XI)~ = E(X){A—XI)-.

Hence E(X)(A-XI) Q (A-XI)E(X) and E{X)AQAE(X). Suppose B is
bounded and B commutes with A. By Lemma 14 (v), B commutes with
(A—XI)+. Hence, by (12),

0 = B{A-XI)+E(X) = [A-XI)+BE(X).

Thus, BE(X) = E(X)BE(X). Because B is bounded,

B*(A-XI)+ Q ((A-XI)+B)*
Q(B{A-XI)+)*
= (A-XI)+B*.

Hence, B*E{X) = E(X)B*E(X) and

E(X)B = (B*E{X))* = E{X)BE{X) = BE(X),
as required.

The aim now is to prove that {E(X) : — oo < X < oo} is a spectral
family. It is convenient to do this in two stages.

LEMMA 17. / / X and /J, are real with X < [i then, E{X) sj E(fi) and
A[E(fi)—E(X)) is bounded and self-adjoint; furthermore,

(13) X{E{p)-E{X)) ^ A{E{?)-E(X)) ^ /*(Efr)-E(X))

in the usual ordering of bounded, self-adjoint operators and hence

(14) \\A{E{p)-E{X))\\ ^ max {\X\, \fi\}.

PROOF. By Lemma 16, E(X)E(fi) = E{fj,)E(X) and E(X) commutes
with A—pi. By Lemma 14(v), E(X) commutes with (A—pI)+ and, by (12),
(A—pI)+2 [I—E(p))(A—/iI). Hence, if xe%{A) and X < p,

(A-pI)+E(X)x = E{X){I~E{p)}{A-ixI)x
= {I-E(p)}E(X)(A-XI)x-(p-X){I-E(p)}E(X)x
= -{I-E(p)}(A-XI)-E(X)x-(p-X){I-E(p)}E(X)x.
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Hence, because E{JJL) commutes with (A—XI)~,

0 ^ ((A—/d)+E{X)x, E{X)x)

= ~{{I-E{n)}{A-U)-E{X)x, E(X)x)-{fi-X){{I-E{fi)}E{X)x,E{X)x)

^ -fa-X)\\{I-E(n)}E(X)x\\*

£0.

Thus (I—E(ji))E{X)x = 0 (xe%)(A)) and, because ^(A) is dense in £,
(I-E(n))E(X) = 0. That is E(X) = E(/t)E(k) and E(X) ̂  E{/i) (A < p).

Because E{X) ^ E{fi), E{JJL)—E{X) is a projection and certainly com-
mutes with A. Hence, if x e S)(̂ 4) and ?/ = E(fi)x—E(X)x, then y =
and

y, y)

= (-{A-id)-y,y)+ii\\y\\*

Similarly,

(A{E<ji)-E(X))x, x) ^ X\\(E(p)-E{X))x\\* = X((Efr)-E{X))x, x).

Now, write M = max {|A|, 1̂ 1}; by arguments based on [3, § 18, Theorem 3]
it follows that

\\A(E(p)-E(X))x\\ ^ M\\(EM-E(X))x\\(x e

If x e §, there exists a sequence (xn) in S)(̂ 4) such that xn -> a;. Then,
(£(iM)-£(A))a;re->(£(Ja)-£:(A))a; and, because i4(£(^)-£(A)) is bounded
on 2)(^4), the sequence (A{E(/J.)— E{X)}xn) is convergent. Because A is
closed, (£(,«)—£(A))a; eS)(^4). Thus ^4(E(JJ,)—E(X)) is defined everywhere
and bounded and

\\A(E{p)-E(X))\\ ^ M = max {|A
Next,

Hence,
{A(E(F)-E(X))}*2(E((i)-E(X))A(E(n)-E(X))

Thus 4(£(/i)—E{X)) is symmetric and, being everywhere defined, self-
adjoint. Finally, the inequalities

X{{E{p)-E{X)}x,x) ^

https://doi.org/10.1017/S1446788700004560 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700004560


[15] The square root of a positive self-adjoint operator 31

which we have already proved for x in % (A), extend, by continuity, to all
x in §. Thus,

which completes the proof.

COROLLARY. If x e%{A)

{A{I~E(X)}x, {I-E(X)}x) ^ X\\{I-E(X)}x\\*.

PROOF. Let fi -> oo in the first inequality of (13).

LEMMA 18. {E(X) : — oo < X < 00} is a spectral family.

PROOF. Condition (i) of the requirements for a spectral family has been
proved in Lemma 17.

To prove condition (ii) write P = E(X-\-0) —E(X). P is a projection
and, because E{fi) ^ E(2.+0) ^ E(X) fji >X),P= (E{p)—E{X))P (u > X)
and E(X)P = 0. By (13),

0 =g A{E{n)-E(X))-X{E{ji)-E{X))

and

By Lemma 17,

Px=(E{/i)—E(X))Pxe'5){A) (a6§).
Hence,

\\APx-XPx\\ = \\(A-XI)(E(p)-E(X))Px\\ ^ 0*-X)\\Px (xe§).

Letting /<->-A+0we deduce, APx = XPx. Now,

{A-XI)-Px = {A—XI)-E(X)Px = 0.
Hence,

(A—XI)+Px = (A-XI)Px = 0;

and Px e 9l((A—XI)+). Thus, Px = E{X)Px = 0 (a; e £). This shows that
£(A+0) = E(X) as required.

To show that E(X) -> 0 (X -*• —00) write £(—00) = limA_̂ _oo E(X).
Let xe%{A); because A is closed, the usual argument shows that
E(-co)x 6$)(A) and AE{-OD)X = lim AE{X)x = lim E(X)Ax = E(- ao)Ax.
Write y = E(—co)x. For all X, y = E(X)y and

((4-A/)y, y) = ((A-XI)E(X)y, y) = -((A-XI)-y, y) ^ 0.

Hence, (Ay,y) ^LX\\y\\2 for all X. If y ^ 0 we obtain a contradiction
by letting X -> — 00. Thus £(— oo)a: = 0 (« e ©(̂ 4)) and, by continuity
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of E(— oo), E(—oo) = 0. Similarly, if E(co) = liin^^, E(X), we have
(

and xe%{A), y= [I-E{X))y and {(A-XI)y, y) = {(A-XI)+y, y) ^ 0.
Hence, E{oo)x = x (x e ^(A)) and E(co) = I as required.

We wish next to establish the formula

A = f°°
J —o

for A. To do this we must first define the symbols used. For arbitrary real
a, b the integral ^XE(dX) is a well defined Rieman-Stieltjes integral and
defines a bounded operator on §, see for example [4, § 107]. It is even
true that the approximating sums converge uniformly to the integral.
Because A is not, in general, bounded we must think in terms of strong,
rather than uniform, convergence. Accordingly we interpret the formula

A = f°° XEtdX),
J —oo

as follows. The domain of A is to be the set of x in £> such that J* XE(dX)x
tends to a limit as a -> —oo and b -> oo; (this is clearly equivalent to:
jb_b XE(dX)x tends to a limit as b -> oo). Then, for x e %{A),

Ax = lim XE(dX)x.
o—>—oo, 6—*-oo J a

This definition is clearly valid for an arbitrary spectral family and,
because E(b)—E(a) is easily seen to commute with \h

alE{dX), it follows
that the definition gives rise to a densely defined operator.

THEOREM 19. There exists a spectral family, {E{X) : — oo < A < 00}
such that, for all X, E(X) commutes with A and with every bounded operator
which commutes with A and

A =j™ooXE{dX).

PROOF. In view of Lemmas 17 and 18 it is only necessary to prove that
A = \XE{dX).

The inequalities (13) show as in [4, § 107] that, if a < b,

A(E{b)-E(a)) = j*XE(dX).

Write B = J ^ XE(dX) and suppose x e %{B). Then

A(E(b)~E{a))x = j " XE(dX)x

->• Bx (a -> — 00, b -> 00);

and, (E(b) — E{a))x^*x{a-+ — 00, 6-^oo). Because A is closed, xe%(A)
and Ax = Bx. Thus BQA. Conversely, if x e
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j*XE(dX)z = A{E(b)-E{a))x

= (E{b)-E{a))Ax

->- Ax (a -> —oo, b -> oo).

Thus A Q B, which completes the proof.

THEOREM 20. If {F(X) : —oo < A < 00} is a spectral family such that

A = {°° XF(dX),

then F(X) = E(X) (— 00 < X < 00).

PROOF. We show that for real X, F(X) is the projection on 5R( (A —XI)+).
The case X = 0 is typical and notationally, simplest.

Define an operator B as follows. %{B) is the set of x in § such that
Jg XF(dX)x tends to a limit as b -> 00. For a; e 2)(B), 5a; = l i m , ^ JJ XF{dX)x.
Similarly define C = — J ^

For 6 > 0, F(6)a; e

BF(b)x = j*XF(dX)x

and, if a; e ®(5), 5F(6)a; -> Ba; (b -*• 00). Clearly F(6)5 Q BF(b). Hence,
ifx, ye%{B),

(Bx, y) = lim (BF(6), y) = lim (*, 5F(6)y) = (*, By).

(here we use the known fact that JJJ XF(dX) is self-adjoint). This shows that
B is symmetric. Let x e %(B), y e %{B*);

(x, F(b)B*y) = (BF(6)*f y) - (a?, BF{b)y).
Thus,

BF(b)y = F{b)B*y->B*y (b -> 00).

This shows that # e S)(B) and By = B*y. Thus B is self-adjoint. Finally

(Bx, x) = j™X(F(dX)x, x)^0 (xe © ( £ ) ) ,

and B is positive. Similarly C is self-adjoint and positive.
Next we show that .F(O) is the projection on 9i(B). Clearly BF(0) = 0.

Suppose Bx = 0 and d > 0,

0 = {Bx, x) = j™X(F(dX)x, x) = j™X\\F(dX)x\\*

^f~X\\F(dX)x\\* ^ 6 j ~ \\F(dX)x\\*

= 6(\\xW-\\F(6)xW)
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Hence x = F{8)x (8 > 0) and, letting 8 -> 0+0 we obtain x = F(0)x.
Clearly F(0)C = C and hence «R(C) C9l(5). Similarly fR(B)Q3l(C).

Finally,

B—C = j^XF(dX)+O • (F(O)-F(O-O)) = ,4.

By Lemma 15, B = A+, C = A~. Hence, F{0) = E(0) as required.

6. Polar decomposition of a normal operator

A closed operator T is normal if ^(T) is dense in § and 7T* = T*T.
We begin with a lemma which is exercise 9 in [2, XII.9].

LEMMA 21. (i) A closed operator T is normal if and only if T* is normal;
(ii) T is normal if and only if %{T) = %(T*) and \\Tx\\ = \\T*x\\

(iii) a normal operator has no proper normal extension.

PROOF. We content ourselves with remarking that Lemma 2 (iii) is
needed to prove the "only if" part of (ii).

Our next result is part of exercise 10 in [2, XII.9]. The proof we give
is partly based on [4, § 110].

THEOREM 22. / / T is normal there exist a unique positive self-adjoint
operator \T\ and a unitary operator U such that U\T\ = \T\U = T. U is also
uniquely determined if we require Ux = x [x e 9^(7")).

REMARK. A partial converse of this theorem, also given in exercise
10 of [2, XII.9] is the following:

if T = UH Q HU for some self-adjoint H and unitary U, then T is normal
and UH = HU.

We shall not prove this converse.

PROOF OF THEOREM 22. Let |T| = (T* T)l. By the argument of Lemma
13, and by Lemma 21 (ii),

(is)

llTx\\ = \\T*x\\ = \\\T\x\\\ {xe<S>(T)).

Write m = (fH{T))- (the closure of fR(T)). If y ±_ 3Ji, y e %{T*) and T*y = 0.
Hence,

(16) m = (fR(T))- = (fft(T*))- = (8t(m))-
a r = 3i(r) = yi(T*) = 31{\T\).

If x,ye ©(T) and \T\x = \T\y then by (16), x—y e 3t(T) and Tx = Ty.
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Hence, for x e %(T) we may define U\T\x = Tx. This defines U uniquely
on fR(\T\) and, by (15), U is isometric on $i(\T\) onto 9?(r). Extend U to
9JI by continuity giving an isometry of 2Ji onto 3K. For x e'JBl1- = %l(T),
define Ux = x and extend U to Jp by linearity. It is clear that U is an iso-
metric mapping of § onto Jp. Hence, U is unitary.

By definition of U, T = U\T\. Because U is bounded, T* = \T\U*.
Hence,

= rr* =
and U\T\* = \T\*U. By Theorem 10, U\T\ = |r|C7. Thus T = U\T\ = |r|C7
as required.

Finally, suppose T = VH with V unitary, Vx = x (x e 91 (r)) and H
self-adjoint and positive. Then, T*T = i7F*Fi? = H2. By Theorem 11,
/? = |T| and it follows that V = U.

COROLLARY 1. If T is (1 — 1) the conditions T = U\T\ with U unitary
determine U uniquely.

COROLLARY 2. fR(T) = ^(T*) = 8t(|r|).

PROOF. Because T = U\T\ = \T\U, it follows that

Hence,
Tx = |r|(C/a;) = T*(U*x) (« e

We close with a result which is required in [1].

THEOREM 23. Suppose that § is complex, T is normal and, for real 1
E(X) is the null space projection of (\T\—A/)+; then E(k) commutes with T
and TE(X) is a bounded normal operator with \|TE(X)\\ :£ X. Furthermore,

(17) {TE(X)}* = T*E(X), \TE(X)\ = \T\E(X).

PROOF. Because \T\ is positive E(X) = 0 if X < 0. Hence, if X > 0,

\T\E(X) = \T\(E(X)-E(-\X))

and it follows from Lemma 17 that \T\E(X) is a bounded self-adjoint
operator and \\\T\E(X)\\ ^ X.li X = 0, \T\E(X) = Ohy definition. It follows
from (15) that TE(X) and T*E(X) are both bounded with norm less than
or equal to X. Because, by Theorem 22, T — U\T\ = \T\U with U unitary
it follows from Lemma 16 that E(X) commutes with \T\ and with U and
hence with T (and T*). Now

(TE(X))*2E(X)T* and E(X)T* Q T*E(X).

Because $( r*) is dense it follows that (TE(X))* = T*E(X) and (15) shows
that \\TE(X)x\\ = \\T*E(X)x\\ (xe§). Thus TE(X) is normal and (17)
follows.
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