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Abstract
We give a new proof of an unpublished result of Dale Peterson, proved by Lam and Shimozono, which identifies
explicitly the structure constants, with respect to the quantum Schubert basis, for the T-equivariant quantum
cohomology 𝑄𝐻•

𝑇 (𝐺/𝑃) of any flag variety 𝐺/𝑃 with the structure constants, with respect to the affine Schubert
basis, for the T-equivariant Pontryagin homology 𝐻𝑇• (G𝑟) of the affine Grassmannian G𝑟 of G, where G is any
simple simply-connected complex algebraic group.

Our approach is to construct an 𝐻•
𝑇 (𝑝𝑡)-algebra homomorphism by Gromov-Witten theory and show that it is

equal to Peterson’s map. More precisely, the map is defined via Savelyev’s generalized Seidel representations, which
can be interpreted as certain Gromov-Witten invariants with input 𝐻𝑇• (G𝑟) ⊗ 𝑄𝐻•

𝑇 (𝐺/𝑃). We determine these
invariants completely, in a way similar to how Fulton and Woodward did in their proof of the quantum Chevalley
formula.
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2 C. H. Chow

1. Introduction

Let G be a simple simply-connected complex algebraic group. The quantum (resp. affine) Schubert
calculus studies the algebra structure on the T-equivariant quantum cohomology 𝑄𝐻•

𝑇 (𝐺/𝐵) of the
complete flag variety 𝐺/𝐵 (resp. the T-equivariant Pontryagin homology 𝐻𝑇• (G𝑟) of the affine Grass-
mannian G𝑟 of G) in terms of the quantum Schubert classes {𝑞𝛽𝜎𝑣 }(𝛽,𝑣) ∈Eff ×𝑊 (resp. the affine Schu-
bert classes {𝜉𝑤𝑡𝜆 }𝑤𝑡𝜆∈𝑊 −

𝑎 𝑓
). An unpublished result of Dale Peterson, announced during the lectures1

he gave at MIT in 1997, states that these two calculi are equivalent:

Theorem 1.1. The map

Φ : 𝐻𝑇−•(G𝑟) → 𝑄𝐻•
𝑇 (𝐺/𝐵) [𝑞−1

𝑖 | 𝑖 ∈ 𝐼]

𝜉𝑤𝑡𝜆 ↦→ 𝑞𝜆𝜎𝑤

is a graded homomorphism of 𝐻•
𝑇 (pt)-algebras.

A published proof, given by Lam and Shimozono [16], is algebraic and combinatorial. In this paper,
we present a geometric proof by taking Φ to be the algebro-geometric and T-equivariant version of a
map constructed by Savelyev [26] who generalized Seidel representations [29] from 0-cycles in G𝑟 to
higher dimensional ones, and showing this map to have the desired form.

In the same paper, Lam and Shimozono also proved the following:

Theorem 1.2. A parabolic version of Theorem 1.1 holds.

We will prove Theorem 1.2 as well. Since even stating it requires a substantial number of Lie-
theoretic notations, we postpone the statement to Section 4.4, where we prove the Borel and parabolic
cases simultaneously.

Remark 1.3. Savelyev has already computed his map partially. In [28], he showed that his map defined
for P𝑛 is nonzero on each generator of 𝜋∗(Ω𝑆𝑈 (𝑛 + 1)) ⊗ Q which has degree < 2𝑛. In [27], he proved
that for any 𝑤𝑡𝜆 ∈ 𝑊−

𝑎 𝑓 such that w is the longest element of W, his map defined for 𝐺/𝐵 sends
𝜉𝑤𝑡𝜆 to 𝑞𝜆𝜎𝑤 plus some higher terms with respect to an action functional on the space of sections of
Hamiltonian fibrations.

Remark 1.4. The proof of Theorem 1.1 given by Lam and Shimozono relies on the equivariant quantum
Chevalley formula [21], which is the T-equivariant generalization of another unpublished result of
Peterson proved by Fulton and Woodward [9]. Although we do not apply this formula directly, we do
apply the key idea of the proof: the transverse property between the Schubert cells and the opposite
Schubert cells in𝐺/𝑃which implies that the moduli spaces for all two-pointed Gromov-Witten invariants
are simultaneously regular and T-equivariant, allowing us to count the elements of their zero-dimensional
components easily.

Remark 1.5. Unlike the proof by Lam and Shimozono, our proof of Theorem 1.2 is independent
of Peterson-Woodward’s comparison formula [30], which expresses explicitly the Schubert structure
constants for 𝑄𝐻•(𝐺/𝑃) in terms of those for 𝑄𝐻•(𝐺/𝐵). In fact, our work provides an alternative
proof of this formula because it can be derived directly from Theorem 1.2 as shown by Huang and Li
[12, Proposition 2.10].

2. Preliminaries

2.1. Some notations

Let G be a simple simply-connected complex algebraic group and 𝑇 ⊂ 𝐺 a maximal torus. Put
𝔤 := Lie(𝐺) and 𝔱 := Lie(𝑇). Denote by R the set of roots associated to the pair (𝔤, 𝔱). We have the root

1Lecture notes typeset by Arun Ram and Gil Azaria are available at Lectures 1-5; 6-10; 11-15; 16-18.
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space decomposition

𝔤 = 𝔱 ⊕
⊕
𝛼∈𝑅

𝔤𝛼,

where each 𝔤𝛼 is a one-dimensional eigenspace with respect to the adjoint action of 𝔱. Denote by W the
Weyl group. Fix a fundamental system {𝛼𝑖}𝑖∈𝐼 of R, where 𝐼 := {1, . . . , 𝑟}. Denote by 𝑅+ ⊂ 𝑅 the set of
positive roots spanned by the 𝛼𝑖’s. We have two particular Borel subgroups 𝐵− and 𝐵+ of G containing
T with their Lie algebras equal to 𝔱 ⊕

⊕
𝛼∈−𝑅+ 𝔤𝛼 and 𝔱 ⊕

⊕
𝛼∈𝑅+ 𝔤𝛼, respectively.

Let 𝑊𝑎 𝑓 := 𝑊 � 𝑄∨ be the affine Weyl group where 𝑄∨ :=
∑
𝛼∈𝑅 Z · 𝛼

∨ ⊂ 𝔱 is the lattice spanned
by the coroots. Elements of 𝑊𝑎 𝑓 are denoted by 𝑤𝑡𝜆 with 𝑤 ∈ 𝑊 and 𝜆 ∈ 𝑄∨ (where 𝑡𝜆 means the
translation 𝑥 ↦→ 𝑥 + 𝜆). Denote by 𝑊−

𝑎 𝑓 the set of minimal length coset representatives in 𝑊𝑎 𝑓 /𝑊 . It is
easy to see that the map 𝑊−

𝑎 𝑓 → 𝑄∨ defined by 𝑤𝑡𝜆 ↦→ 𝑤(𝜆) is bijective.

2.2. Flag varieties

Let P be a parabolic subgroup of G containing 𝐵+. Define 𝑅+
𝑃 ⊆ 𝑅+ to be the subset such that

Lie(𝑃) = Lie(𝐵+) ⊕
⊕
𝛼∈−𝑅+

𝑃

𝔤𝛼

and 𝑅𝑃 := 𝑅+
𝑃 ∪ (−𝑅+

𝑃). Let 𝐼𝑃 ⊆ 𝐼 be the set of 𝑖 ∈ 𝐼 such that 𝛼𝑖 ∈ 𝑅+
𝑃 . Define 𝑄∨

𝑃 :=
∑
𝛼∈𝑅+

𝑃
Z ·𝛼∨ ⊆

𝑄∨. Denote by 𝑊𝑃 ⊆ 𝑊 the subgroup generated by the simple reflections 𝑠𝛼𝑖 with 𝑖 ∈ 𝐼𝑃 and by 𝑊𝑃

the set of minimal length coset representatives in 𝑊/𝑊𝑃 . For any 𝑣 ∈ 𝑊𝑃 , define 𝑦𝑣 := �𝑣𝑃 ∈ 𝐺/𝑃,
where �𝑣 ∈ 𝑁 (𝑇) is any representative of v. Then {𝑦𝑣 }𝑣 ∈𝑊 𝑃 is the set of T-fixed points of 𝐺/𝑃.

The 𝐵−-orbits 𝐵− · 𝑦𝑣 ⊆ 𝐺/𝑃, 𝑣 ∈ 𝑊𝑃 are called the Schubert cells, and the 𝐵+-orbits 𝐵+ · 𝑦𝑣 ⊆

𝐺/𝑃, 𝑣 ∈ 𝑊𝑃 are called the opposite Schubert cells. Define the (opposite) Schubert classes

𝜎𝑣 := PD
[
𝐵− · 𝑦𝑣

]
∈ 𝐻2ℓ (𝑣)

𝑇 (𝐺/𝑃)

𝜎𝑣 := PD
[
𝐵+ · 𝑦𝑣

]
∈ 𝐻dimR (𝐺/𝑃)−2ℓ (𝑣)

𝑇 (𝐺/𝑃).

Then {𝜎𝑣 }𝑣 ∈𝑊 𝑃 and {𝜎𝑣 }𝑣 ∈𝑊 𝑃 are 𝐻•
𝑇 (pt)-bases of 𝐻•

𝑇 (𝐺/𝑃).
The following well-known fact is crucial to us.

Lemma 2.1. Every Schubert cell intersects every opposite Schubert cell transversely. In particular,
{𝜎𝑣 }𝑣 ∈𝑊 𝑃 and {𝜎𝑣 }𝑣 ∈𝑊 𝑃 are dual to each other with respect to

∫
𝐺/𝑃

− ∪ −.

Proof. See, for example, [9, Section 7]. �

It is also well known that the closures of (resp. opposite) Schubert cells have 𝐵−-equivariant (resp.
𝐵+-equivariant) resolutions (e.g., the Bott-Samelson-Demazure-Hansen resolutions). See, for example,
[4, Section 2] for the construction.

Definition 2.2. For each 𝑣 ∈ 𝑊𝑃 , fix a 𝐵+-equivariant morphism

𝑓𝐺/𝑃,𝑣 : Γ𝑣 → 𝐺/𝑃

which is the composition of a resolution Γ𝑣 → 𝐵+ · 𝑦𝑣 and the inclusion 𝐵+ · 𝑦𝑣 ↩→ 𝐺/𝑃.

We now recall the T-equivariant quantum cohomology of 𝐺/𝑃. See, for example, [5, 8, 15] for more
details. There are isomorphisms

https://doi.org/10.1017/fms.2025.24 Published online by Cambridge University Press
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4 C. H. Chow

𝐻2(𝐺/𝑃) 
 𝑄∨/𝑄∨
𝑃 


⊕
𝑖∈𝐼\𝐼𝑃

Z · 𝛼∨
𝑖 (2.1)

where the first is defined as the dual of the composition of three isomorphisms:

(
𝑄∨/𝑄∨

𝑃

)∗ 𝜌 ↦→𝐿𝜌
−−−−−→ Pic(𝐺/𝑃)

𝑐1
−→ 𝐻2 (𝐺/𝑃) 
 𝐻2 (𝐺/𝑃)∗.

Here, 𝐿𝜌 is the line bundle 𝐺 ×𝑃 C−𝜌, where C−𝜌 is the one-dimensional representation of weight −𝜌
on which P acts by forgetting the semi-simple and unipotent parts. Denote by Eff ⊂ 𝐻2 (𝐺/𝑃) the semi-
group of effective curve classes in 𝐺/𝑃. Under (2.1), Eff corresponds to the semi-subgroup of 𝑄∨/𝑄∨

𝑃
generated by 𝛼∨

𝑖 with 𝑖 ∈ 𝐼 \ 𝐼𝑃 .
Define the T-equivariant quantum cohomology of 𝐺/𝑃

𝑄𝐻•
𝑇 (𝐺/𝑃) := 𝐻•

𝑇 (𝐺/𝑃) ⊗ Z[𝑞𝑖 | 𝑖 ∈ 𝐼 \ 𝐼𝑃] .

We grade 𝑄𝐻•
𝑇 (𝐺/𝑃) by declaring each 𝑞𝑖 to have degree 2

∑
𝛼∈𝑅+\𝑅+

𝑃
𝛼(𝛼∨

𝑖 ). The T-equivariant
quantum cup product ★ is a deformation of the T-equivariant cup product, defined by

𝜎𝑢 ★𝜎𝑣 :=
∑
𝑤 ∈𝑊 𝑃

∑
d

��

∏
𝑖∈𝐼\𝐼𝑃

𝑞𝑑𝑖𝑖
���
(∫

M0,3 (𝐺/𝑃,𝛽d)
ev∗1 𝜎𝑢 ∪ ev∗2 𝜎𝑣 ∪ ev∗3 𝜎

𝑤

)
𝜎𝑤 ,

where

1. d = {𝑑𝑖}𝑖∈𝐼 \𝐼𝑃 runs over the set of (𝐼 \ 𝐼𝑃)-tuples of non-negative integers;
2. 𝛽d ∈ Eff corresponds to

∑
𝑖∈𝐼 \𝐼𝑃 𝑑𝑖𝛼

∨
𝑖 via the isomorphism (2.1);

3. M0,3 (𝐺/𝑃, 𝛽d) is the moduli of genus-zero stable maps to 𝐺/𝑃 of degree 𝛽d with three marked
points and

ev1, ev2, ev3 : M0,3 (𝐺/𝑃, 𝛽d) → 𝐺/𝑃

are the evaluation morphisms at these marked points; and
4. the integral

∫
M0,3 (𝐺/𝑃,𝛽d)

is the T-equivariant integral.

Then (𝑄𝐻•
𝑇 (𝐺/𝑃), ★) is a graded commutative 𝐻•

𝑇 (pt)-algebra.

2.3. Affine Grassmannian

The affine Grassmannian G𝑟 of G is by definition (see, for example, [31, Section 1.2]) the functor

𝐴 𝑓 𝑓 𝑆𝑐ℎC → 𝑆𝑒𝑡𝑠

Spec 𝑅 ↦→

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
isomorphism classes of (E𝑜, 𝜈𝑜) where
E𝑜 is a 𝐺-torsor over Spec 𝑅[[𝑧]],
𝜈𝑜 : E𝑜 |Spec 𝑅 ( (𝑧))

∼
−→ Spec 𝑅((𝑧)) × 𝐺

is a trivialization

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
.

(We use the notation (E𝑜, 𝜈𝑜) instead of a more natural one (E , 𝜈) because the latter is reserved for
G-torsors over P1.) It is well known that G𝑟 is represented by an Ind-projective Ind-scheme. See, for
example, [31, Theorem 1.2.2]. By Beauville-Laszlo’s theorem [2], G𝑟 also represents the subfunctor
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Spec 𝑅 ↦→

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
isomorphism classes of (E𝑜, 𝜈𝑜) where
E𝑜 is a 𝐺-torsor over Spec 𝑅[𝑧],
𝜈𝑜 : E𝑜 |Spec 𝑅 [𝑧,𝑧−1 ]

∼
−→ Spec 𝑅[𝑧, 𝑧−1] × 𝐺

is a trivialization

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
.

Let 𝜇 ∈ 𝑄∨. Denote by 𝑡𝜇 the SpecC-point ofG𝑟 represented by the trivial G-torsor with trivialization
(𝑧, 𝑔) ↦→ (𝑧, 𝜇(𝑧)𝑔). One checks easily that it is a T-fixed point of G𝑟 . It is known that if G is simply-
connected, every T-fixed point ofG𝑟 is of this form. DefineB := ev−1

𝑧=0(𝐵
−), where ev𝑧=0 : 𝐺 (C[[𝑧]]) →

𝐺 is the evaluation map at 𝑧 = 0. For any 𝜇 ∈ 𝑄∨, the orbit B · 𝑡𝜇 is isomorphic to an affine space,
and we call it an affine Schubert cell. In this paper, it is more convenient to index affine Schubert cells
by 𝑊−

𝑎 𝑓 instead of 𝑄∨. (See Section 2.1 for the definition of 𝑊−
𝑎 𝑓 .) For any 𝑤𝑡𝜆 ∈ 𝑊−

𝑎 𝑓 , we define the
affine Schubert class

𝜉𝑤𝑡𝜆 :=
[
B · 𝑡𝑤 (𝜆)

]
∈ 𝐻𝑇2ℓ (𝑤𝑡𝜆) (G𝑟).

Then {𝜉𝑤𝑡𝜆 }𝑤𝑡𝜆∈𝑊 −
𝑎 𝑓

is an 𝐻•
𝑇 (pt)-basis of the T-equivariant homology 𝐻𝑇• (G𝑟) of G𝑟 .

Denote by L𝐺 the loop group functor Spec 𝑅 ↦→ 𝐺 (𝑅((𝑧))). We have a natural group action

L𝐺 × G𝑟 → G𝑟

defined by

𝜑 · (E𝑜, 𝜈𝑜) := (E𝑜, 𝜑 · 𝜈𝑜) (2.2)

for any 𝜑 ∈ 𝐺 (𝑅((𝑧))) and Spec 𝑅-point [(E𝑜, 𝜈𝑜)] ofG𝑟 , where 𝜑·𝜈𝑜 (𝑝) := (𝑥, 𝜑(𝑧)𝑔) ∈ Spec 𝑅((𝑧))×
𝐺 for 𝜈𝑜 (𝑝) = (𝑥, 𝑔).

For any 𝛼 ∈ 𝑅 and 𝑘 ∈ Z, denote by 𝑈𝛼,𝑘 ⊂ L𝐺 the affine root group exp(𝑧𝑘𝔤𝛼) 
 G𝑎.
Definition 2.3. Let H be a subgroup of G. A morphism 𝑓 : Γ → G𝑟 from a variety Γ to G𝑟 is said to
be H-good if Γ has an algebraic H-action and an algebraic 𝑈𝛼,𝑘 -action for each 𝛼 ∈ 𝑅 and 𝑘 > 0 such
that f is equivariant with respect to these group actions.
Lemma 2.4. For any𝑤𝑡𝜆 ∈ 𝑊−

𝑎 𝑓 , there exists a 𝐵−-good morphism 𝑓 : Γ → G𝑟 which is the composition

of a resolution Γ → B · 𝑡𝑤 (𝜆) and the inclusion B · 𝑡𝑤 (𝜆) ↩→ G𝑟 .
Proof. Notice that for H = 𝐵− or 𝑈𝛼,𝑘 with 𝛼 ∈ 𝑅 and 𝑘 > 0, the H-action on G𝑟 induces an H-action
on B · 𝑡𝑤 (𝜆) such that the inclusion 𝜄 : B · 𝑡𝑤 (𝜆) ↩→ G𝑟 is H-equivariant.

By [14, Proposition 3.9.1 & Theorem 3.26], there exists a resolution 𝑟 : Γ → B · 𝑡𝑤 (𝜆) such that
every algebraic group action on B · 𝑡𝑤 (𝜆) lifts to an algebraic group action on Γ. It follows that the
composition 𝑓 := 𝜄 ◦ 𝑟 is a 𝐵−-good morphism.

Alternatively, one can take a Bott-Samelson-Demazure-Hansen resolution of B · 𝑡𝑤 (𝜆) . See, for
example, [24, Section 8] for the construction. �

Definition 2.5. For each 𝑤𝑡𝜆 ∈ 𝑊−
𝑎 𝑓 , fix a 𝐵−-good morphism

𝑓G𝑟 ,𝑤𝑡𝜆 : Γ𝑤𝑡𝜆 → G𝑟

which is the composition of a resolution Γ𝑤𝑡𝜆 → B · 𝑡𝑤 (𝜆) and the inclusion B · 𝑡𝑤 (𝜆) ↩→ G𝑟 .
Let K be a maximal compact subgroup of G such that𝑇𝐾 := 𝑇∩𝐾 is a maximal torus of K. LetΩ𝑝𝑜𝑙𝐾

be the space of polynomial based loops in K. It is well known that the canonical map Ω𝑝𝑜𝑙𝐾 → G𝑟 is
a 𝑇𝐾 -equivariant homeomorphism. See [31, Theorem 1.6.1] for an exposition of the proof of this result
and the references cited therein – namely, [22, Section 4] and [25, Section 8.3]. Notice that Ω𝑝𝑜𝑙𝐾
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is a group. Its group structure thus induces an 𝐻•
𝑇 (pt)-algebra structure on 𝐻𝑇• (G𝑟). It is called the

Pontryagin product. By definition, we have

[𝑡𝜇1 ] • [𝑡𝜇2] = [𝑡𝜇1+𝜇2] for any 𝜇1, 𝜇2 ∈ 𝑄∨. (2.3)

Since {[𝑡𝜇]}𝜇∈𝑄∨ is a basis of 𝐻𝑇• (G𝑟) ⊗𝐻 •
𝑇 (pt) Frac(𝐻•

𝑇 (pt)), these equalities determine the Pontryagin
product completely.

3. The Savelyev-Seidel homomorphism

3.1. 𝐺/𝑃-bundles

Let 𝑓 : Γ → G𝑟 be a morphism where Γ is a variety. It is represented by a pair (E𝑜𝑓 , 𝜈𝑜𝑓 ) where E𝑜𝑓 is
a G-torsor over A1

𝑧 × Γ and 𝜈𝑜𝑓 : E𝑜𝑓 |(A1
𝑧\0)×Γ

∼
−→ (A1

𝑧 \ 0) × Γ × 𝐺 is a trivialization. To see this, take a
covering {𝑈𝑖}𝑖 of Γ by affine open subsets. By the definition of G𝑟 , each 𝑓 |𝑈𝑖 is represented by a pair
(E𝑜
𝑓 |𝑈𝑖

, 𝜈𝑜
𝑓 |𝑈𝑖

). Since in general, every pair (E𝑜, 𝜈𝑜) has no nontrivial automorphism (essentially due to
the trivialization 𝜈𝑜), it follows that we can glue (E𝑜

𝑓 |𝑈𝑖
, 𝜈𝑜
𝑓 |𝑈𝑖

) to form the desired pair (E𝑜𝑓 , 𝜈𝑜𝑓 ).
IdentifyA1

𝑧 with P1\∞. Glue E𝑜𝑓 and (P1\0)×Γ×𝐺 using 𝜈𝑜𝑓 . The resulting variety is a G-torsor over
P1 × Γ with a trivialization over (P1 \ 0) × Γ. We denote the G-torsor by E 𝑓 and the trivialization by 𝜈 𝑓 .

Remark 3.1. There is a parallel story in the analytic category. In [25], Pressley and Segal defined G𝑟
to be the based loop group Ω𝐾 with respect to various topologies and showed [25, Theorem 8.10.2]
that there is a bijective correspondence between the set of holomorphic maps 𝑓 : Γ → G𝑟 and the
set of isomorphism classes of holomorphic principal G-bundles over P1 × Γ with trivializations over
(P1 \ {|𝑧 | � 1}) × Γ.

Lemma 3.2. The associated fiber bundle

E 𝑓 (𝐺/𝑃) := E 𝑓 ×𝐺 𝐺/𝑃

exists as a variety. The canonical projection

𝜋 𝑓 : E 𝑓 (𝐺/𝑃) → P1 × Γ

is smooth and projective. In particular, E 𝑓 (𝐺/𝑃) is smooth (resp. projective) if Γ is.

Proof. By the existence of a G-linearized ample line bundle on 𝐺/𝑃 and the descent theory for quasi-
coherent sheaves, E 𝑓 (𝐺/𝑃) exists as a scheme. In fact, it is a closed subscheme of a projective bundle
over P1 × Γ. In particular, E 𝑓 (𝐺/𝑃) is separated and of finite type over C, and 𝜋 𝑓 is projective.
Observe that E 𝑓 (𝐺/𝑃) becomes a trivial 𝐺/𝑃-bundle after a faithfully flat base change. This implies
that E 𝑓 (𝐺/𝑃) is reduced, as it is the flat image of a reduced scheme, and that 𝜋 𝑓 is smooth, as it
becomes so after a faithfully flat base change. Finally, E 𝑓 (𝐺/𝑃) is irreducible because 𝜋 𝑓 is smooth
and has irreducible base and geometric fibers. �

Let 𝜌 ∈ (𝑄∨/𝑄∨
𝑃)

∗. Recall the G-linearized line bundle 𝐿𝜌 := 𝐺 ×𝑃 C−𝜌 on 𝐺/𝑃. Let pr2 :
E 𝑓 ×𝐺/𝑃 → 𝐺/𝑃 denote the canonical projection. Then pr∗2 𝐿𝜌 is naturally a G-linearized line bundle
on E 𝑓 ×𝐺/𝑃 with respect to the diagonal G-action, and hence, it descends to a line bundle on E 𝑓 (𝐺/𝑃)
which we denote by L𝜌. It has a property that its restriction to every fiber of 𝜋 𝑓 is isomorphic to 𝐿𝜌.

Definition 3.3. We call 𝛽 ∈ 𝐻2 (E 𝑓 (𝐺/𝑃)) a section class of E 𝑓 (𝐺/𝑃) if (𝜋 𝑓 )∗𝛽 = [P1 × 𝛾0] for some
𝛾0 ∈ Γ.

Definition 3.4. Define a function

𝑐 : {section classes of E 𝑓 (𝐺/𝑃)} → 𝑄∨/𝑄∨
𝑃
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characterized by the property that for any 𝜌 ∈ (𝑄∨/𝑄∨
𝑃)

∗,

〈𝛽, 𝑐1 (L𝜌)〉 = 〈𝑐(𝛽), 𝜌〉.

Let H be a subgroup of G. Suppose Γ has an H-action. Then we have an obvious H-action on
(P1 \ 0) × Γ × 𝐺:

ℎ · (𝑧, 𝛾, 𝑔) := (𝑧, ℎ · 𝛾, ℎ𝑔). (3.1)

Lemma 3.5. Suppose f is H-equivariant. Then the H-action on E 𝑓 |(P1\0)×Γ defined by (3.1) via 𝜈 𝑓
extends to E 𝑓 and hence defines an H-action on E 𝑓 (𝐺/𝑃).
Proof. Denote by

𝑎 : 𝐻 × Γ → Γ and prΓ : 𝐻 × Γ → Γ

the action morphism and the canonical projection, respectively. Consider the following two 𝐻×Γ-points
of G𝑟: (

(idA1
𝑧
×𝑎)∗E𝑜𝑓 , (idA1

𝑧
×𝑎)∗𝜈𝑜𝑓

)
and

(
(idA1

𝑧
× prΓ)∗E𝑜𝑓 , 𝜈̃𝑜𝑓

)
,

where 𝜈̃𝑜𝑓 is the trivialization of (idA1
𝑧
× prΓ)∗E𝑜𝑓 |(A1

𝑧\0)×𝐻×Γ 
 𝐻 × E𝑜𝑓 |(A1
𝑧\0)×Γ defined by

𝜈̃𝑜𝑓 (ℎ, 𝑝) := (ℎ, 𝑧, 𝛾, ℎ𝑔) for 𝜈𝑜𝑓 (𝑝) = (𝑧, 𝛾, 𝑔).

By the assumption that f is H-equivariant, these two𝐻×Γ-points are equal. In other words, there exists an
isomorphism between the underlying G-torsors which is compatible with the underlying trivializations.
Therefore, the composition

𝐻 × E𝑜𝑓 
 (idA1
𝑧
× prΓ)∗E𝑜𝑓

∼
−→ (idA1

𝑧
×𝑎)∗E𝑜𝑓 → E𝑜𝑓

gives the desired extension, where the last arrow is the canonical projection. �

3.2. Moduli of sections

Let 𝑓 : Γ → G𝑟 be a morphism where Γ is a smooth projective variety. Then E 𝑓 (𝐺/𝑃) is a smooth
projective variety by Lemma 3.2. The subvariety 𝐷 𝑓 ,∞ := 𝜋−1

𝑓 (∞× Γ) is a smooth divisor of E 𝑓 (𝐺/𝑃)

and is identified with Γ × 𝐺/𝑃 via the trivialization 𝜈 𝑓 . Denote by 𝜄 𝑓 ,∞ : 𝐷 𝑓 ,∞ ↩→ E 𝑓 (𝐺/𝑃) the
inclusion.
Definition 3.6. Let 𝜂 ∈ 𝑄∨/𝑄∨

𝑃 .
1. Define

M( 𝑓 , 𝜂) :=
⋃
𝛽

M0,1(E 𝑓 (𝐺/𝑃), 𝛽) ×(ev1 , 𝜄 𝑓 ,∞) 𝐷 𝑓 ,∞,

where 𝛽 runs over all section classes of E 𝑓 (𝐺/𝑃) such that 𝑐(𝛽) = 𝜂 (c is defined in Definition 3.4).
2. Define

ev : M( 𝑓 , 𝜂) → 𝐺/𝑃

to be the composition

M( 𝑓 , 𝜂) → 𝐷 𝑓 ,∞ 
 Γ × 𝐺/𝑃 → 𝐺/𝑃

of the morphism induced by ev1, the isomorphism induced by 𝜈 𝑓 and the canonical projection.

Lemma 3.7. The virtual dimension of M( 𝑓 , 𝜂) is equal to dim Γ + dim𝐺/𝑃 +
∑
𝛼∈𝑅+\𝑅+

𝑃
𝛼(𝜂).
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Proof. Denote by vdimM( 𝑓 , 𝜂) the virtual dimension ofM( 𝑓 , 𝜂). Let 𝛽 be a section class of E 𝑓 (𝐺/𝑃)
such that 𝑐(𝛽) = 𝜂. We have

vdimM( 𝑓 , 𝜂) = dim E 𝑓 (𝐺/𝑃) + 〈𝛽, 𝑐1 (TE 𝑓 (𝐺/𝑃) )〉 − 3. (3.2)

Since E 𝑓 (𝐺/𝑃) is a 𝐺/𝑃-bundle over P1 ×Γ and 𝛽 is a section class, the equality (3.2) can be simplified
to

vdimM( 𝑓 , 𝜂) = dim Γ + dim𝐺/𝑃 + 〈𝛽, 𝑐1(T 𝑣𝑒𝑟𝑡𝜋 𝑓
)〉,

where T 𝑣𝑒𝑟𝑡𝜋 𝑓
is the vertical tangent bundle of 𝜋 𝑓 .

It remains to show 〈𝛽, 𝑐1 (T 𝑣𝑒𝑟𝑡𝜋 𝑓
)〉 =

∑
𝛼∈𝑅+\𝑅+

𝑃
𝛼(𝜂). Recall

∧𝑡𝑜𝑝 T𝐺/𝑃 
 𝐿𝜌𝑃 as G-linearized line
bundles, where 𝜌𝑃 :=

∑
𝛼∈𝑅+\𝑅+

𝑃
𝛼. It follows that

∧𝑡𝑜𝑝 T 𝑣𝑒𝑟𝑡𝜋 𝑓

 L𝜌𝑃 , and hence,

〈𝛽, 𝑐1 (T 𝑣𝑒𝑟𝑡𝜋 𝑓
)〉 = 〈𝛽, 𝑐1 (

∧𝑡𝑜𝑝T 𝑣𝑒𝑟𝑡𝜋 𝑓
)〉 = 〈𝛽, 𝑐1 (L𝜌𝑃 )〉 = 〈𝜂, 𝜌𝑃〉 =

∑
𝛼∈𝑅+\𝑅+

𝑃

𝛼(𝜂).

�

Lemma 3.8. Let H be a subgroup of G. Suppose Γ has an H-action and f is H-equivariant. Then for
any 𝜂 ∈ 𝑄∨/𝑄∨

𝑃 , the stack M( 𝑓 , 𝜂) has a natural H-action such that ev is H-equivariant.

Proof. This follows immediately from Lemma 3.5. �

Definition 3.9.

1. For any 𝑤𝑡𝜆 ∈ 𝑊−
𝑎 𝑓 , define M(𝑤𝑡𝜆, 𝜂) to be the moduli space M( 𝑓 , 𝜂) in Definition 3.6 by taking

𝑓 = 𝑓G𝑟 ,𝑤𝑡𝜆 (Definition 2.5).
2. For any 𝜇 ∈ 𝑄∨, define M(𝜇, 𝜂) to be the moduli space M( 𝑓 , 𝜂) in Definition 3.6 by taking 𝑓 = 𝑡𝜇

(point map).

By Lemma 3.8, M(𝑤𝑡𝜆, 𝜂) (resp. M(𝜇, 𝜂)) has a natural 𝐵−-action (resp. T-action) such that ev is
𝐵−-equivariant (resp. T-equivariant).

3.3. Construction of the Savelyev-Seidel homomorphism

Definition 3.10. Define an 𝐻•
𝑇 (pt)-linear map

Φ𝑆𝑆 : 𝐻𝑇−•(G𝑟) → 𝑄𝐻•
𝑇 (𝐺/𝑃) [𝑞−1

𝑖 | 𝑖 ∈ 𝐼 \ 𝐼𝑃]

𝜉𝑤𝑡𝜆 ↦→
∑
𝑣 ∈𝑊 𝑃

∑
𝜂∈𝑄∨/𝑄∨

𝑃

𝑞𝜂
(∫

[M(𝑤𝑡𝜆 ,𝜂) ]𝑣𝑖𝑟
ev∗ 𝜎𝑣

)
𝜎𝑣

.

Remark 3.11. At this stage, we should take the coefficient ring to be Q. But we will prove at the end
that we can actually take it to be Z. See Theorem 4.9.

Proposition 3.12. Φ𝑆𝑆 is a graded homomorphism of 𝐻•
𝑇 (pt)-algebras.

Proof. Let us first show thatΦ𝑆𝑆 is graded. Let𝑤𝑡𝜆 ∈ 𝑊−
𝑎 𝑓 . Then 𝜉𝑤𝑡𝜆 has degree−2ℓ(𝑤𝑡𝜆) in𝐻𝑇−•(G𝑟).

By Lemma 3.7, the integral
∫
[M(𝑤𝑡𝜆 ,𝜂) ]𝑣𝑖𝑟

ev∗ 𝜎𝑣 is nonzero only if

dim𝐺/𝑃 − ℓ(𝑣) = ℓ(𝑤𝑡𝜆) + dim𝐺/𝑃 +
∑

𝛼∈𝑅+\𝑅+
𝑃

𝛼(𝜂).

By definition, 𝑞𝜂 has degree 2
∑
𝛼∈𝑅+\𝑅+

𝑃
𝛼(𝜂). This shows that Φ𝑆𝑆 (𝜉𝑤𝑡𝜆 ) has degree −2ℓ(𝑤𝑡𝜆), as

desired.
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It remains to show that Φ𝑆𝑆 is an algebra homomorphism. Define a Frac(𝐻•
𝑇 (pt))-linear map

Φ′
𝑆𝑆 : 𝐻𝑇−•(G𝑟)𝑙𝑜𝑐 → 𝑄𝐻•

𝑇 (𝐺/𝑃) [𝑞−1
𝑖 | 𝑖 ∈ 𝐼 \ 𝐼𝑃]𝑙𝑜𝑐

[𝑡𝜇] ↦→
∑
𝑣 ∈𝑊 𝑃

∑
𝜂∈𝑄∨/𝑄∨

𝑃

𝑞𝜂
(∫

[M(𝜇,𝜂) ]𝑣𝑖𝑟
ev∗ 𝜎𝑣

)
𝜎𝑣 ,

(3.3)

where the subscript 𝑙𝑜𝑐 denotes the localization − ⊗𝐻 •
𝑇 (pt) Frac(𝐻•

𝑇 (pt)). By (2.3) and Lemma 3.14
below, it suffices to show

Φ𝑆𝑆 (𝜉𝑤𝑡𝜆) = Φ′
𝑆𝑆 (𝜉𝑤𝑡𝜆)

for any 𝑤𝑡𝜆 ∈ 𝑊−
𝑎 𝑓 . Put Γ := Γ𝑤𝑡𝜆 , the source of 𝑓G𝑟 ,𝑤𝑡𝜆 . To simplify the exposition, assume Γ𝑇 is

discrete.2 By the classical localization formula and the assumption that 𝑓G𝑟 ,𝑤𝑡𝜆 is the composition of a
T-equivariant resolution Γ → B · 𝑡𝑤 (𝜆) and the inclusion B · 𝑡𝑤 (𝜆) ↩→ G𝑟 , we have

𝜉𝑤𝑡𝜆 = ( 𝑓G𝑟 ,𝑤𝑡𝜆)∗ [Γ] =
∑
𝛾∈Γ𝑇

1
𝑒𝑇 (𝑇𝛾Γ)

[𝑡𝜇𝛾 ],

where 𝜇𝛾 ∈ 𝑄∨ satisfies 𝑓G𝑟 ,𝑤𝑡𝜆 ◦ 𝛾 = 𝑡𝜇𝛾 . (Here, 𝛾 and 𝑡𝜇𝛾 are viewed as morphisms from SpecC
to Γ and G𝑟 , respectively.) Put M := M(𝑤𝑡𝜆, 𝜂) and M𝛾 := M( 𝑓G𝑟 ,𝑤𝑡𝜆 ◦ 𝛾, 𝜂) 
 M(𝜇𝛾 , 𝜂). Let
{𝐹𝛾, 𝑗 } 𝑗∈𝐽𝛾 be the set of components of the fixed-point substack M𝑇

𝛾 . We have

M𝑇
=
⋃
𝛾∈Γ𝑇

M𝑇

𝛾 =
⋃
𝛾∈Γ𝑇

⋃
𝑗∈𝐽𝛾

𝐹𝛾, 𝑗 .

Applying the virtual localization formula [11] twice, we get

[M]𝑣𝑖𝑟 =
∑
𝛾∈Γ𝑇

∑
𝑗∈𝐽𝛾

[𝐹𝛾, 𝑗 ]
𝑣𝑖𝑟

𝑒𝑇 (𝑁 𝑣𝑖𝑟
𝐹𝛾, 𝑗/M

)
=
∑
𝛾∈Γ𝑇

1
𝑒𝑇 (𝑇𝛾Γ)

��

∑
𝑗∈𝐽𝛾

[𝐹𝛾, 𝑗 ]
𝑣𝑖𝑟

𝑒𝑇 (𝑁 𝑣𝑖𝑟
𝐹𝛾, 𝑗/M𝛾

)

��� =
∑
𝛾∈Γ𝑇

1
𝑒𝑇 (𝑇𝛾Γ)

[M𝛾]
𝑣𝑖𝑟 .

It follows that

Φ𝑆𝑆 (𝜉𝑤𝑡𝜆 ) =
∑
𝑣 ∈𝑊 𝑃

∑
𝜂∈𝑄∨/𝑄∨

𝑃

𝑞𝜂
(∫

[M(𝑤𝑡𝜆 ,𝜂) ]𝑣𝑖𝑟
ev∗ 𝜎𝑣

)
𝜎𝑣

=
∑
𝑣 ∈𝑊 𝑃

∑
𝜂∈𝑄∨/𝑄∨

𝑃

∑
𝛾∈Γ𝑇

𝑞𝜂

𝑒𝑇 (𝑇𝛾Γ)

(∫
[M𝛾 ]𝑣𝑖𝑟

ev∗ 𝜎𝑣
)
𝜎𝑣

=
∑
𝛾∈Γ𝑇

1
𝑒𝑇 (𝑇𝛾Γ)

∑
𝑣 ∈𝑊 𝑃

∑
𝜂∈𝑄∨/𝑄∨

𝑃

𝑞𝜂

(∫
[M(𝜇𝛾 ,𝜂) ]𝑣𝑖𝑟

ev∗ 𝜎𝑣
)
𝜎𝑣

=
∑
𝛾∈Γ𝑇

1
𝑒𝑇 (𝑇𝛾Γ)

Φ′
𝑆𝑆 ([𝑡

𝜇𝛾 ])

= Φ′
𝑆𝑆
��

∑
𝛾∈Γ𝑇

1
𝑒𝑇 (𝑇𝛾Γ)

[𝑡𝜇𝛾 ]
��� = Φ′

𝑆𝑆 (𝜉𝑤𝑡𝜆),

as desired. �

2This indeed suffices for our application because we can take 𝑓G𝑟,𝑤𝑡𝜆 to be a Bott-Samelson-Demazure-Hansen resolution
which satisfies this assumption. See the proof of Lemma 2.4.
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Remark 3.13. In the proof of Proposition 3.12, we have used the fact that 𝜋∗ [𝑋] = [𝑌 ] ∈ 𝐻𝑇𝐵𝑀,dimR𝑌 (𝑌 )
for any T-equivariant proper birational morphism 𝜋 : 𝑋 → 𝑌 between possibly singular T-varieties
over C. For reader’s convenience, we provide a proof.

Let us first deal with the non-equivariant case. Since 𝜋 is proper, the pushforward map 𝜋∗ : 𝐴•(𝑋) →
𝐴•(𝑌 ) between Chow groups exists. Since 𝜋 is birational, it has degree one, and hence, 𝜋∗ [𝑋] = [𝑌 ],
where [𝑋] ∈ 𝐴𝑛 (𝑋) and [𝑌 ] ∈ 𝐴𝑛 (𝑌 ) (𝑛 := dimC 𝑋 = dimC𝑌 ) are the fundamental cycles. The desired
equality (in Borel-Moore homology) now follows from this equality, the existence of the cycle map
𝑐ℓ : 𝐴•(−) → 𝐻𝐵𝑀,2•(−) and the fact that 𝑐ℓ commutes with 𝜋∗. See [1, Chapter 17] or [7] for more
details.

For the equivariant case, apply the above result to the morphism 𝑋 ×𝑇 𝑈 → 𝑌 ×𝑇 𝑈 for a suitable
finite dimensional approximation 𝑈 → 𝑈/𝑇 of the classifying bundle 𝐸𝑇 → 𝐵𝑇 . See [6, Section 2.2]
for more details.

Lemma 3.14. The map Φ′
𝑆𝑆 defined in (3.3) satisfies

Φ′
𝑆𝑆 ([𝑡

𝜇1+𝜇2]) = Φ′
𝑆𝑆 ([𝑡

𝜇1]) ★Φ′
𝑆𝑆 ([𝑡

𝜇2 ]) (3.4)

for any 𝜇1, 𝜇2 ∈ 𝑄∨.

Proof. Notice that each Φ′
𝑆𝑆 ([𝑡

𝜇]) is a T-equivariant Seidel element. Seidel elements are originally
introduced by Seidel in [29]. Their T-equivariant generalizations are introduced in [3, 13, 20, 23] in
algebraic geometry and in [10, 19] in symplectic geometry.

Consider the one 𝑆𝜇 (0) := 𝑆𝜇 (𝜏) |𝜏=0 defined by Iritani in [13, Definition 3.17]. (More precisely,
what he defined are T-equivariant big Seidel elements. Since we are dealing with T-equivariant small
Seidel elements, we put 𝜏 = 0.) In terms of our notations, we have

𝑆𝜇 (0) :=
∑
𝑣 ∈𝑊 𝑃

∑
𝜂∈𝑄∨/𝑄∨

𝑃

𝑞𝜂−𝑐 ( [𝑢
𝑚𝑖𝑛
𝜇 ])

(∫
[M(𝜇,𝜂) ]𝑣𝑖𝑟

ev∗ 𝜎𝑣
)
𝜎𝑣 = 𝑞−𝑐 ( [𝑢

𝑚𝑖𝑛
𝜇 ])Φ′

𝑆𝑆 ([𝑡
𝜇]),

where 𝑢𝑚𝑖𝑛𝜇 is a minimal section of E𝑡𝜇 (𝐺/𝑃) which is defined between Lemma 3.5 and Lemma 3.6 in
op. cit. and c is the function defined in Definition 3.4 in the present paper.

By the discussion following [13, Definition 3.17], we have

𝑞𝑐 ( [𝑢
𝑚𝑖𝑛
𝜇1+𝜇2 ]−[𝑢

𝑚𝑖𝑛
𝜇1 ]#[𝑢𝑚𝑖𝑛

𝜇2 ])𝑆𝜇1+𝜇2 (0) = 𝑆𝜇1 (0) ★ 𝑆𝜇2 (0),

where [𝑢𝑚𝑖𝑛𝜇1 ]#[𝑢𝑚𝑖𝑛𝜇2 ] is the section class of E𝑡𝜇1+𝜇2 (𝐺/𝑃) obtained by gluing the sections 𝑢𝑚𝑖𝑛𝜇1 and 𝑢𝑚𝑖𝑛𝜇2
through the following ‘degeneration’ (see the proof of [13, Corollary 3.16])

E𝜇1 ,𝜇2 :=
(
(A2
𝑎1 ,𝑎2 \ 0) × (A2

𝑏1 ,𝑏2
\ 0) × 𝐺/𝑃

)
/G𝑚 × G𝑚

Here, the G𝑚 × G𝑚-action is defined by

(𝑧1, 𝑧2) · ((𝑎1, 𝑎2), (𝑏1, 𝑏2), 𝑦) := ((𝑧−1
1 𝑎1, 𝑧

−1
1 𝑎2), (𝑧

−1
2 𝑏1, 𝑧

−1
2 𝑏2), 𝜇1(𝑧1)𝜇2(𝑧2) · 𝑦).

(We call E𝜇1 ,𝜇2 a degeneration because it is a 𝐺/𝑃-bundle over P1 × P1 and satisfies

E𝜇1 ,𝜇2 |P1×[1:0] 
 E𝑡𝜇1 (𝐺/𝑃), E𝜇1 ,𝜇2 |P1×[0:1] 
 E𝑡𝜇2 (𝐺/𝑃) and E𝜇1 ,𝜇2 |Δ 
 E𝑡𝜇1+𝜇2 (𝐺/𝑃),

where Δ ⊂ P1 × P1 is the diagonal.)
The equality (3.4) will be proved if we can show

𝑐([𝑢𝑚𝑖𝑛𝜇1 ]#[𝑢𝑚𝑖𝑛𝜇2 ]) = 𝑐([𝑢𝑚𝑖𝑛𝜇1 ]) + 𝑐([𝑢𝑚𝑖𝑛𝜇2 ]).

https://doi.org/10.1017/fms.2025.24 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.24


Forum of Mathematics, Sigma 11

This follows from the observation that for each 𝜌 ∈ (𝑄∨/𝑄∨
𝑃)

∗, the line bundle(
(A2
𝑎1 ,𝑎2 \ 0) × (A2

𝑏1 ,𝑏2
\ 0) × 𝐿𝜌

)
/G𝑚 × G𝑚

on E𝜇1 ,𝜇2 restricts to L𝜌 over E𝜇1 ,𝜇2 |P1×[1:0] , E𝜇1 ,𝜇2 |P1×[0:1] and E𝜇1 ,𝜇2 |Δ . �

Remark 3.15. The author of the present paper did not know Iritani’s result until he read a paper
of González, Mak and Pomerleano [10]. In the original version, Lemma 3.14 was proved using Li’s
degeneration formula [17, 18]. The degeneration used was essentially the fiber bundle E𝜇1 ,𝜇2 constructed
by Iritani. Notice, however, that Iritani’s proof does not rely on the degeneration formula but virtual
localization formula.

4. Proof of main result

4.1. T-invariant sections

Let 𝜇 ∈ 𝑄∨. Recall E𝑡𝜇 (𝐺/𝑃) is the 𝐺/𝑃-bundle E 𝑓 (𝐺/𝑃) where we take 𝑓 = 𝑡𝜇. By definition, we
have

E𝑡𝜇 (𝐺/𝑃) 

(
A1
𝑧 × 𝐺/𝑃 × {0,∞}

)
/(𝑧,𝑦,0) ∼ (𝑧−1 ,𝜇 (𝑧) ·𝑦,∞) . (4.1)

Every 𝑣 ∈ 𝑊𝑃 gives rise to a T-invariant section 𝑢𝜇,𝑣 of E𝑡𝜇 (𝐺/𝑃) defined by

𝑢𝜇,𝑣 ([𝑧1 : 𝑧2]) := [𝑧1/𝑧2, 𝑦𝑣 , 0] = [𝑧2/𝑧1, 𝑦𝑣 ,∞], [𝑧1 : 𝑧2] ∈ P
1.

It is easy to see that all T-invariant sections of E𝑡𝜇 (𝐺/𝑃) arise in this way.
Let 𝑣 ∈ 𝑊𝑃 . By linearizing the G-action on 𝐺/𝑃 at 𝑦𝑣 , we obtain an isomorphism

𝑇𝑦𝑣 (𝐺/𝑃) 

⊕

𝛼∈−𝑣 (𝑅+\𝑅+
𝑃)

𝔤𝛼

of T-modules.

Lemma 4.1. Let T 𝑣𝑒𝑟𝑡 be the vertical tangent bundle of the 𝐺/𝑃-bundle E𝑡𝜇 (𝐺/𝑃) → P1. Then
𝑢∗𝜇,𝑣T 𝑣𝑒𝑟𝑡 is defined by the transition matrix

𝐴(𝑧) :=
∑

𝛼∈−𝑣 (𝑅+\𝑅+
𝑃)

𝑧𝛼(𝜇) id𝔤𝛼 ∈ End(𝑇𝑦𝑣 (𝐺/𝑃)) [𝑧, 𝑧−1] .

In particular, we have

𝑢∗𝜇,𝑣T 𝑣𝑒𝑟𝑡 

⊕

𝛼∈−𝑣 (𝑅+\𝑅+
𝑃)

OP1 (−𝛼(𝜇)).

Proof. This follows from the explicit construction (4.1) of E𝑡𝜇 (𝐺/𝑃). �

Recall the function c defined in Definition 3.4.

Lemma 4.2. For any 𝜇 ∈ 𝑄∨ and 𝑣 ∈ 𝑊𝑃 , we have 𝑐([𝑢𝜇,𝑣 ]) = 𝑣−1 (𝜇) +𝑄∨
𝑃 ∈ 𝑄∨/𝑄∨

𝑃 .

Proof. Write 𝑐([𝑢𝜇,𝑣 ]) = 𝜂 + 𝑄∨
𝑃 . Let 𝜌 ∈ (𝑄∨/𝑄∨

𝑃)
∗. By definition, 𝜌(𝜂) is the degree of the line

bundle 𝑢∗𝜇,𝑣L𝜌. From the explicit construction (4.1) of E𝑡𝜇 (𝐺/𝑃) and the definition of L𝜌, we see that
𝑢∗𝜇,𝑣L𝜌 is defined by the transition matrix −𝜌(𝑣−1 (𝜇)). It follows that the degree is equal to 𝜌(𝑣−1 (𝜇)).
Since 𝜌 is arbitrary, the result follows. �
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4.2. Regularity of the moduli

Recall the key reason for M0,𝑛 (𝐺/𝑃, 𝛽) to be regular is that 𝐺/𝑃 is convex; that is,

𝐻1 (𝐶; 𝑢∗T𝐺/𝑃) = 0 (4.2)

for any morphism 𝑢 : 𝐶 → 𝐺/𝑃, where C is a genus zero nodal curve. Surprisingly, E 𝑓G𝑟,𝑤𝑡𝜆
(𝐺/𝑃)

also satisfies this property, provided the morphisms in question represent section classes. The goal of
this subsection is to prove this fact. First, we show that it suffices to verify the analogue of (4.2) for a
smaller class of u. In what follows, C always denotes a genus zero nodal curve.

Definition 4.3. Let X be a variety with a T-action. A morphism 𝑢 : 𝐶 → 𝑋 is said to be T-invariant if
for any 𝑡 ∈ 𝑇 , there exists an automorphism 𝜙 : 𝐶 → 𝐶 such that 𝑡 · 𝑢 = 𝑢 ◦ 𝜙.

Lemma 4.4. Let X be a smooth projective variety with a T-action and 𝛽 ∈ 𝐻2 (𝑋). Suppose for any
T-invariant morphism 𝑢 : 𝐶 → 𝑋 representing 𝛽, we have 𝐻1 (𝐶; 𝑢∗T𝑋 ) = 0. Then the same is true for
any morphism representing 𝛽.

Proof. For a given morphism, choose 𝑛 ∈ Z�0 such that it becomes stable after adding n marked points
to its domain. Let 𝑀 := 𝑀0,𝑛 (𝑋, 𝛽) be the coarse moduli space of stable maps to X with n marked points
and representing 𝛽. This space is constructed and proved to be projective in [8, Theorem 1]. Denote by
V the set of [𝑢] ∈ 𝑀 such that 𝐻1(𝐶; 𝑢∗T𝑋 ) = 0. We have to prove 𝑀 = 𝑉 . Notice that T preserves V,
and hence, its complement 𝑀 \𝑉 . Let us assume for a while V is open so that 𝑀 \𝑉 is closed. Suppose
𝑀 \ 𝑉 ≠ ∅. By Borel fixed-point theorem, 𝑀 \ 𝑉 contains a T-fixed point [𝑢0]. Then 𝑢0 is T-invariant
and 𝐻1 (𝐶0; 𝑢∗0T𝑋 ) ≠ 0, in contradiction to our assumption stated in the lemma. Therefore, 𝑀 = 𝑉 , as
desired.

It remains to verify that V is open. Recall [8, Section 3 & 4] 𝑀 is a union of open subschemes,
each of which is a finite group quotient of the fine moduli U of stable maps to X with stable domains,
representing 𝛽 and satisfying a condition depending on a fixed set of generic Cartier divisors on X.
For each U, consider its universal family 𝜋 : C → 𝑈 and evaluation map ev : C → 𝑋 . Since 𝜋 is flat
and ev∗ T𝑋 is locally free, the set 𝑈 ′ of 𝑥 ∈ 𝑈 for which 𝐻1(C𝑥 ; ev∗ T𝑋 |C𝑥 ) = 0 is open, by the semi-
continuity theorem. Then 𝑈 ′ descends to an open subset 𝑈 ′′ of V. The proof is complete by varying U
and taking the union of 𝑈 ′′. �

Proposition 4.5. Let Γ be a smooth projective variety and 𝑓 : Γ → G𝑟 a morphism which is T-good
(see Definition 2.3). Then for any morphism 𝑢 : 𝐶 → E 𝑓 (𝐺/𝑃) which represents a section class of
E 𝑓 (𝐺/𝑃), we have 𝐻1 (𝐶; 𝑢∗TE 𝑓 (𝐺/𝑃) ) = 0.

Proof. Since f is T-good, E 𝑓 (𝐺/𝑃) has a T-action by Lemma 3.5, and hence, by Lemma 4.4, we may
assume u is T-invariant.

Consider the composition

prΓ ◦𝜋 𝑓 ◦ 𝑢 : 𝐶 → E 𝑓 (𝐺/𝑃) → P1 × Γ → Γ.

Since u represents a section class, we have (prΓ ◦𝜋 𝑓 ◦ 𝑢)∗ [𝐶] = 0. But Γ is projective so prΓ ◦𝜋 𝑓 ◦ 𝑢 is
constant, and hence, there exists a factorization

𝑢 : 𝐶 𝑢′

−→ E 𝑓 ◦𝛾 (𝐺/𝑃)
𝜄
↩−→ E 𝑓 (𝐺/𝑃)

for some morphisms 𝛾 : SpecC→ Γ and 𝑢′ : 𝐶 → E 𝑓 ◦𝛾 (𝐺/𝑃) where 𝜄 is the canonical inclusion.
Consider next the composition

prP1 ◦𝜋 𝑓 ◦𝛾 ◦ 𝑢
′ : 𝐶 → E 𝑓 ◦𝛾 (𝐺/𝑃) → P1 × SpecC ∼

−→ P1.
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Since u represents a section class, we have (prP1 ◦𝜋 𝑓 ◦𝛾 ◦ 𝑢
′)∗ [𝐶] = [P1]. It follows that we can write

𝐶 = 𝐶0 ∪ 𝐶1, where 𝐶0 
 P1 is an irreducible component of C and 𝐶1 is the union of the other
irreducible components, such that 𝑢′|𝐶0 is a section of E 𝑓 ◦𝛾 (𝐺/𝑃) after reparametrizing 𝐶0 and 𝑢′|𝐶1

factors through a finite union of the fibers of 𝜋 𝑓 ◦𝛾 .
Let us first deal with the case where 𝐶1 is absent. In what follows, we will identify 𝐶0 with P1 and

assume 𝑢′ = 𝑢′ |𝐶0=P1 is a section of E 𝑓 ◦𝛾 (𝐺/𝑃). Define F := 𝑢∗T 𝑣𝑒𝑟𝑡pr
P1 ◦𝜋 𝑓

, where T 𝑣𝑒𝑟𝑡pr
P1 ◦𝜋 𝑓

is the vertical
tangent bundle of the fiber bundle:

prP1 ◦𝜋 𝑓 : E 𝑓 (𝐺/𝑃) → P1 × Γ → P1.

Since 𝐻1(P1; TP1 ) = 0, it suffices to verify 𝐻1(P1;F) = 0. Define F ′ := 𝑢∗T 𝑣𝑒𝑟𝑡𝜋 𝑓
, where T 𝑣𝑒𝑟𝑡𝜋 𝑓

is the
vertical tangent bundle of 𝜋 𝑓 . We have an exact sequence of coherent sheaves over 𝐶0 = P1:

0 → F ′ → F → 𝑇𝛾Γ ⊗C OP1 → 0, (4.3)

where the morphism F → 𝑇𝛾Γ ⊗C OP1 is given by the projection. By looking at the associated long
exact sequence, it suffices to show

dim𝐻1(P1;F ′) � dim coker(𝐻0 (P1;F) → 𝑇𝛾Γ). (4.4)

Let us look at F ′ closely. Since u is T-invariant, we have 𝛾 ∈ Γ𝑇 , and so 𝑓 ◦𝛾 = 𝑡𝜇 for some 𝜇 ∈ 𝑄∨.
By the discussion in Section 4.1, we have 𝑢′ = 𝑢𝜇,𝑣 for some 𝑣 ∈ 𝑊𝑃 (after identifying E 𝑓 ◦𝛾 (𝐺/𝑃)
with E𝑡𝜇 (𝐺/𝑃)). Put 𝑅𝑣 := −𝑣(𝑅+ \ 𝑅+

𝑃). Then by Lemma 4.1, F ′ is defined by the transition matrix

𝐴(𝑧) :=
∑
𝛼∈𝑅𝑣

𝑧𝛼(𝜇) id𝔤𝛼 ∈ End(𝑇𝑦𝑣 (𝐺/𝑃)) [𝑧, 𝑧−1] (4.5)

and, in particular, F ′ 

⊕

𝛼∈𝑅𝑣
OP1 (−𝛼(𝜇)). (Recall we have identified 𝑇𝑦𝑣 (𝐺/𝑃) with

⊕
𝛼∈𝑅𝑣

𝔤𝛼
via the linearization of the G-action on 𝐺/𝑃 at 𝑦𝑣 .) Since for any 𝑚 ∈ Z

dim𝐻1(P1,O(𝑚)) = #{𝑘 ∈ Z| − 𝑚 > 𝑘 > 0},

it follows that

dim𝐻1(P1;F ′) = #{(𝛼, 𝑘) ∈ 𝑅𝑣 × Z| 𝛼(𝜇) > 𝑘 > 0}. (4.6)

Let us now look at F . By (4.3), F is defined by a transition matrix of the form[
𝐴(𝑧) 𝐵(𝑧)

0 id

]
for some 𝐵(𝑧) ∈ Hom(𝑇𝛾Γ, 𝑇𝑦𝑣 (𝐺/𝑃)) [𝑧, 𝑧−1]. It follows that every element of 𝐻0 (P1;F) is given by
a pair of polynomial maps

𝑢1 : A1 → 𝑇𝑦𝑣 (𝐺/𝑃) and 𝑢2 : A1 → 𝑇𝛾Γ

such that the Laurent polynomials

𝐴(𝑧)𝑢1(𝑧) + 𝐵(𝑧)𝑢2(𝑧) and 𝑢2(𝑧)

are polynomials in 𝑧−1. It is clear that 𝑢2 (𝑧) ≡ 𝜁 for some constant 𝜁 ∈ 𝑇𝛾Γ. Write 𝑢1(𝑧) =∑
𝛼∈𝑅𝑣

𝑢1,𝛼 (𝑧), where 𝑢1,𝛼 : A1 → 𝔤𝛼; and 𝐵(𝑧) =
∑
𝛼∈𝑅𝑣

∑
𝑘∈Z 𝑧

𝑘𝐵𝛼,𝑘 where 𝐵𝛼,𝑘 : 𝑇𝛾Γ → 𝔤𝛼 is
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linear. The above condition for 𝐴(𝑧)𝑢1(𝑧) + 𝐵(𝑧)𝑢2(𝑧) is equivalent, given 𝑢2(𝑧) ≡ 𝜁 , to the one that
for any 𝛼 ∈ 𝑅𝑣 , the Laurent polynomial

𝑧𝛼(𝜇)𝑢1,𝛼 (𝑧) +
∑
𝑘∈Z

𝑧𝑘𝐵𝛼,𝑘 (𝜁) (4.7)

is a polynomial in 𝑧−1. Since 𝑧𝑘𝐵𝛼,𝑘 (𝜁) cannot cancel any term from 𝑧𝛼(𝜇)𝑢1,𝛼 (𝑧) for any k such that
𝛼(𝜇) > 𝑘 , the above condition for (4.7) implies that for any 𝛼 ∈ 𝑅𝑣 and 𝛼(𝜇) > 𝑘 > 0, we have
𝐵𝛼,𝑘 (𝜁) = 0.

Define h to be the composition

𝑇𝛾Γ
𝐵 (𝑧)
−−−−→ 𝑇𝑦𝑣 (𝐺/𝑃) [𝑧, 𝑧−1] 


⊕
𝛼∈𝑅𝑣
𝑘∈Z

𝑧𝑘𝔤𝛼 →
⊕
𝛼∈𝑅𝑣

𝛼(𝜇)>𝑘>0

𝑧𝑘𝔤𝛼, (4.8)

where the last arrow is the canonical projection. The discussion in the last paragraph implies that the
composition

𝐻0(P1;F) → 𝑇𝛾Γ
ℎ
−→

⊕
𝛼∈𝑅𝑣

𝛼(𝜇)>𝑘>0

𝑧𝑘𝔤𝛼 (4.9)

is zero. By Lemma 4.6 below, which says that h is surjective, we have

#{(𝛼, 𝑘) ∈ 𝑅𝑣 × Z| 𝛼(𝜇) > 𝑘 > 0} = dim(RHS of (4.9)) � dim coker(𝐻0(P1;F) → 𝑇𝛾Γ). (4.10)

But the LHS of (4.10) is equal to dim𝐻1(P1;F ′) by (4.6). This gives inequality (4.4). Hence, the proof
for the case where 𝐶1 is absent is complete.

Finally, we deal with the general case. By the normalization sequence (e.g., [5]), it suffices to show

1. 𝐻1 (𝐶0; 𝑢∗TE 𝑓 (𝐺/𝑃) |𝐶0) = 𝐻1 (𝐶1; 𝑢∗TE 𝑓 (𝐺/𝑃) |𝐶1 ) = 0; and
2. the evaluation map 𝐻0(𝐶1; 𝑢∗TE 𝑓 (𝐺/𝑃) |𝐶1) →

⊕
𝑖 𝑇𝑢 (𝑝𝑖)E 𝑓 (𝐺/𝑃) at the intersection points {𝑝𝑖} of

𝐶0 and 𝐶1 is surjective.

We have proved 𝐻1(𝐶0; 𝑢∗TE 𝑓 (𝐺/𝑃) |𝐶0 ) = 0. Observe that 𝑢∗TE 𝑓 (𝐺/𝑃) |𝐶1 is an extension of a trivial
bundle by (𝑢 |𝐶1)

∗T 𝑣𝑒𝑟𝑡𝜋 𝑓
. The rest of the statements then follow from the well-known fact that T𝐺/𝑃 is

globally generated. The proof of Proposition 4.5 is complete. �

Lemma 4.6. The map h defined in (4.8) is surjective.

Proof. Let 𝛼 ∈ 𝑅𝑣 and 𝛼(𝜇) > 𝑘 > 0. Pick a nonzero vector 𝑋𝛼 ∈ 𝔤𝛼. Define 𝑟𝛼,𝑘 : A1
𝑠 → Γ by

𝑠 ↦→ exp(𝑠𝑧𝑘𝑋𝛼) · 𝛾 where the action is the given 𝑈𝛼,𝑘 -action on Γ. The surjectivity of h follows if we
can show that h sends 𝑣 := 𝐷𝑠=0𝑟𝛼,𝑘 (1) ∈ 𝑇𝛾Γ to 𝑧𝑘𝑋𝛼 ∈ 𝑧𝑘𝔤𝛼.

Consider the 𝐺/𝑃-bundle E 𝑓 ◦𝑟𝛼,𝑘 (𝐺/𝑃) over P1 × A1
𝑠 . Notice that u naturally factors through a

morphism 𝑢′′ : 𝐶0 = P1 → E 𝑓 ◦𝑟𝛼,𝑘 (𝐺/𝑃). Since f is T-good and in particular 𝑈𝛼,𝑘 -equivariant,
𝑓 ◦ 𝑟𝛼,𝑘 is equal to the morphism 𝑠 ↦→ exp(𝑠𝑧𝑘𝑋𝛼) · 𝑡𝜇. By the definition of the𝑈𝛼,𝑘 -action on G𝑟 (see
(2.2)), we have

E 𝑓 ◦𝑟𝛼,𝑘 (𝐺/𝑃) 

(
A1
𝑧 × A

1
𝑠 × 𝐺/𝑃 × {0,∞}

)
/(𝑧,𝑠,𝑦,0) ∼ (𝑧−1 ,𝑠,exp(𝑠𝑧𝑘𝑋𝛼)𝜇 (𝑧) ·𝑦,∞) .

From this explicit construction, we see that the vector bundle (𝑢′′)∗T 𝑣𝑒𝑟𝑡pr
P1 ◦𝜋 𝑓 ◦𝑟𝛼,𝑘

is defined by a transition
matrix of the form [

𝐴(𝑧) 𝑧𝑘𝑋𝛼
0 id

]
,
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where 𝐴(𝑧) is the same as the one defined in (4.5). Since the transition matrix[
𝐴(𝑧) 𝐵(𝑧)𝑣

0 id

]
also defines the same vector bundle, these two matrices differ by a gauge transformation. A straightfor-
ward computation shows that the difference 𝐵(𝑧)𝑣 − 𝑧𝑘𝑋𝛼 lies in the sum of 𝑧𝑘′𝔤𝛼′ with 𝛼′ ∈ 𝑅𝑣 and
𝑘 ′ � 0 or 𝑘 ′ � 𝛼′(𝜇). Since 𝛼(𝜇) > 𝑘 > 0, we have ℎ(𝑣) = 𝑧𝑘𝑋𝛼, as desired. �

Let 𝑤𝑡𝜆 ∈ 𝑊−
𝑎 𝑓 . Recall

𝑓G𝑟 ,𝑤𝑡𝜆 : Γ𝑤𝑡𝜆 → G𝑟

is the 𝐵−-good morphism fixed in Definition 2.5. Clearly, it is T-good. It follows that the condition in
Proposition 4.5 is satisfied, and hence,M(𝑤𝑡𝜆, 𝜂) is regular for any 𝜂 ∈ 𝑄∨/𝑄∨

𝑃 . Moreover, since 𝑓G𝑟 ,𝑤𝑡𝜆
is 𝐵−-equivariant, it follows that by Lemma 3.8,M(𝑤𝑡𝜆, 𝜂) has a 𝐵−-action and ev : M(𝑤𝑡𝜆, 𝜂) → 𝐺/𝑃
is 𝐵−-equivariant.

Now let 𝑣 ∈ 𝑊𝑃 . Recall
𝑓𝐺/𝑃,𝑣 : Γ𝑣 → 𝐺/𝑃

is the 𝐵+-equivariant morphism fixed in Definition 2.2. By Lemma 2.1, 𝑓𝐺/𝑃,𝑣 is transverse to ev :
M(𝑤𝑡𝜆, 𝜂) → 𝐺/𝑃 (i.e., the sum of the images of the tangent maps of these morphisms is equal to the
tangent space of the common target). It follows that the stack

M(𝑤𝑡𝜆, 𝑣, 𝜂) := M(𝑤𝑡𝜆, 𝜂) ×(ev, 𝑓𝐺/𝑃,𝑣 ) Γ𝑣

is regular. Notice that there is still a T-action on M(𝑤𝑡𝜆, 𝑣, 𝜂), since 𝑇 = 𝐵− ∩ 𝐵+.
Lemma 4.7. Suppose M(𝑤𝑡𝜆, 𝑣, 𝜂) ≠ ∅. The dimension of M(𝑤𝑡𝜆, 𝑣, 𝜂) is equal to ℓ(𝑤𝑡𝜆) + ℓ(𝑣) +∑
𝛼∈𝑅+\𝑅+

𝑃
𝛼(𝜂).

Proof. By Lemma 3.7, the virtual dimension of M(𝑤𝑡𝜆, 𝜂) is equal to ℓ(𝑤𝑡𝜆) + dim𝐺/𝑃 +∑
𝛼∈𝑅+\𝑅+

𝑃
𝛼(𝜂). It follows that the virtual dimension of M(𝑤𝑡𝜆, 𝑣, 𝜂) is equal to

��
ℓ(𝑤𝑡𝜆) + dim𝐺/𝑃 +
∑

𝛼∈𝑅+\𝑅+
𝑃

𝛼(𝜂)
��� + ℓ(𝑣) − dim𝐺/𝑃

= ℓ(𝑤𝑡𝜆) + ℓ(𝑣) +
∑

𝛼∈𝑅+\𝑅+
𝑃

𝛼(𝜂).

Since M(𝑤𝑡𝜆, 𝑣, 𝜂) is regular, its dimension is equal to its virtual dimension. The proof is complete. �

4.3. Zero-dimensional components

Let 𝑤𝑡𝜆 ∈ 𝑊−
𝑎 𝑓 , 𝑣 ∈ 𝑊𝑃 and 𝜂 ∈ 𝑄∨/𝑄∨

𝑃 . Put M := M(𝑤𝑡𝜆, 𝑣, 𝜂), the stack defined at the end of
Section 4.2.
Proposition 4.8. The stack M is nonempty and zero-dimensional if and only if 𝑣 ∈ 𝑤𝑊𝑃 , 𝜂 = 𝜆 + 𝑄∨

𝑃
and the following set of conditions, which we denote by 𝐶 (𝑤𝑡𝜆), holds:{

𝛼 ∈ (−𝑤𝑅+
𝑃) ∩ 𝑅+ =⇒ 𝛼(𝑤(𝜆)) = 1

𝛼 ∈ (−𝑤𝑅+
𝑃) ∩ (−𝑅+) =⇒ 𝛼(𝑤(𝜆)) = 0 .

In this case, M is a one-point stack with trivial stabilizer.
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Proof. SupposeM ≠ ∅ and dimM = 0. Notice that the boundary ofM is stratified by the moduli spaces
of stable maps satisfying the same conditions as those imposed on points of M, plus the condition that
their domain curves are reducible and have fixed combinatorial types. Arguing as before, we conclude
that these strata are smooth and of expected dimension. Since dimM = 0, they are empty, and hence,
every point of M is represented by a stable map u to E 𝑓G𝑟,𝑤𝑡𝜆

(𝐺/𝑃) which factors through a section
𝑢′ of E 𝑓G𝑟,𝑤𝑡𝜆◦𝛾

(𝐺/𝑃) for some 𝛾 : SpecC → Γ𝑤𝑡𝜆 . This section is necessarily T-invariant because
M is zero-dimensional and has a T-action. It follows that 𝛾 ∈ Γ𝑇𝑤𝑡𝜆 , and hence, 𝑓G𝑟 ,𝑤𝑡𝜆 ◦ 𝛾 = 𝑡𝜇𝛾 for
some 𝜇𝛾 ∈ 𝑄∨. Thus, we have 𝑢′ = 𝑢𝜇𝛾 ,𝑣′ for some 𝑣′ ∈ 𝑊𝑃 , after identifying E 𝑓G𝑟,𝑤𝑡𝜆◦𝛾

(𝐺/𝑃) with
E𝑡𝜇 (𝐺/𝑃).

Let us show 𝜇𝛾 = 𝑤(𝜆). Let 𝑤′𝑡𝜆′ ∈ 𝑊−
𝑎 𝑓 be the unique element such that 𝜇𝛾 = 𝑤′(𝜆′). Since

𝑡𝜇𝛾 ∈ B · 𝑡𝑤 (𝜆) , we have ℓ(𝑤′𝑡𝜆′ ) � ℓ(𝑤𝑡𝜆), and the equality holds if and only if 𝑤𝑡𝜆 = 𝑤′𝑡𝜆′ . Observe
that the section 𝑢𝜇𝛾 ,𝑣′ also represents a point of M′

:= M(𝑤′𝑡𝜆′ , 𝑣, 𝜂). It follows that M′
≠ ∅, and

hence, by the regularity, we have dimM′
� 0. But by Lemma 4.7,

0 = dimM = ℓ(𝑤𝑡𝜆) + ℓ(𝑣) +
∑

𝛼∈𝑅+\𝑅+
𝑃

𝛼(𝜂) � ℓ(𝑤′𝑡𝜆′ ) + ℓ(𝑣) +
∑

𝛼∈𝑅+\𝑅+
𝑃

𝛼(𝜂) = dimM′
� 0.

It follows that ℓ(𝑤𝑡𝜆) = ℓ(𝑤′𝑡𝜆′ ), and hence, 𝑤𝑡𝜆 = 𝑤′𝑡𝜆′ as desired.
By a similar argument, we have 𝑣′ = 𝑣.
To finish the proof, we need the following explicit formulae for the terms ℓ(𝑤𝑡𝜆), ℓ(𝑣) and∑
𝛼∈𝑅+\𝑅+

𝑃
𝛼(𝜂) = 〈[P1], 𝑐1 (𝑢

∗
𝑤 (𝜆) ,𝑣

T 𝑣𝑒𝑟𝑡 )〉, where T 𝑣𝑒𝑟𝑡 is the vertical tangent bundle of the fiber
bundle E𝑡𝑤 (𝜆) (𝐺/𝑃) → P1. To formulate them, pick a regular dominant element 𝑎 ∈ 𝔱R := 𝑄∨ ⊗Z R

which is sufficiently close to the origin and a dominant element 𝑏 ∈ 𝔱R which determines the parabolic
type of P (i.e., 𝛼𝑖 (𝑏) = 0 if 𝛼𝑖 ∈ 𝑅+

𝑃 and 𝛼𝑖 (𝑏) > 0 otherwise). We have

ℓ(𝑤𝑡𝜆) =
∑

𝛼(𝑤 (𝜆)−𝑎)>0
�𝛼(𝑤(𝜆) − 𝑎)� (4.11)

ℓ(𝑣) = −
∑

𝛼(𝑣 ·𝑏)<0
�𝛼(−𝑎)�

〈[P1], 𝑐1 (𝑢
∗
𝑤 (𝜆) ,𝑣T

𝑣𝑒𝑟𝑡 )〉 = −
∑

𝛼(𝑣 ·𝑏)<0
𝛼(𝑤(𝜆)),

where the summations are taken over 𝛼 ∈ 𝑅 satisfying the stated conditions. The first formula will be
proved below, the second is obvious, and the last follows from Lemma 4.1. Summing up these equations
and using the assumption dimM = 0, we obtain∑

𝛼(𝑤 (𝜆)−𝑎)>0
�𝛼(𝑤(𝜆) − 𝑎)� −

∑
𝛼(𝑣 ·𝑏)<0

�𝛼(𝑤(𝜆) − 𝑎)� = dimM = 0.

The last equation can be written as∑
𝛼(𝑤 (𝜆)−𝑎)>0

(1 − 𝐴(𝛼, 𝑣)) �𝛼(𝑤(𝜆) − 𝑎)� + 𝐵(𝛼, 𝑣) = 0, (4.12)

where

𝐴(𝛼, 𝑣) :=
⎧⎪⎪⎨⎪⎪⎩
−1 𝛼(𝑣 · 𝑏) > 0
0 𝛼(𝑣 · 𝑏) = 0
1 𝛼(𝑣 · 𝑏) < 0

and 𝐵(𝛼, 𝑣) :=
{

0 𝛼(𝑣 · 𝑏) � 0
1 𝛼(𝑣 · 𝑏) > 0 .
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Observe that each of the summands of the LHS of (4.12) is non-negative. It follows that they are all
equal to 0. This holds precisely when the following conditions are satisfied:⎧⎪⎪⎨⎪⎪⎩

𝛼 ∈ 𝑣(𝑅+ \ 𝑅+
𝑃) =⇒ 𝛼 ∈ 𝑤𝑅+

𝛼 ∈ 𝑣𝑅𝑃 ∩ (−𝑤𝑅+) ∩ 𝑅+ =⇒ 𝛼(𝑤(𝜆)) = 1
𝛼 ∈ 𝑣𝑅𝑃 ∩ (−𝑤𝑅+) ∩ (−𝑅+) =⇒ 𝛼(𝑤(𝜆)) = 0

.

Here, we have used the assumption 𝑤𝑡𝜆 ∈ 𝑊−
𝑎 𝑓 , which implies −𝑤(𝜆) + 𝑎 ∈ 𝑤Λ̊, where Λ̊ is the interior

of the dominant chamber. Notice that the first condition is equivalent to 𝑣 ∈ 𝑤𝑊𝑃 , and the conjunction
of the other two is equivalent, given the first condition, to 𝐶 (𝑤𝑡𝜆), since 𝑣𝑅𝑃 ∩ (−𝑤𝑅+) = −𝑤𝑅+

𝑃
if 𝑣 ∈ 𝑤𝑊𝑃 . By Lemma 4.2 and the fact that every element of 𝑊𝑃 descends to the identity in the
quotient 𝑄∨/𝑄∨

𝑃 , we have 𝜂 = 𝑐([𝑢𝑤 (𝜆) ,𝑣 ]) = 𝑣−1𝑤(𝜆) + 𝑄∨
𝑃 = 𝜆 + 𝑄∨

𝑃 . This proves one direction of
Proposition 4.8. The other direction is clear from the above discussion.

The last assertion follows from the above discussion and the fact that

# 𝑓 −1
G𝑟 ,𝑤𝑡𝜆 (𝑡

𝑤 (𝜆) ) = 1 and # 𝑓 −1
𝐺/𝑃,𝑣 (𝑦𝑣 ) = 1.

�

Proof of formula (4.11). Denote by Δ0 the dominant alcove. Since 𝑤𝑡𝜆 is a minimal length coset
representative, the line segment joining 𝑤(𝜆) and a intersects the interior of 𝑤𝑡𝜆 (Δ0). Therefore, ℓ(𝑤𝑡𝜆)
is equal to the number of affine walls intersecting the interior of this line segment which is easily seen
to be the RHS of (4.11). �

4.4. Final step

Following [16, Lemma 10.2], we define (𝑊𝑃)𝑎 𝑓 to be the set of 𝑤𝑡𝜆 ∈ 𝑊𝑎 𝑓 such that{
𝛼 ∈ 𝑅+

𝑃 ∩ (−𝑤−1𝑅+) =⇒ 𝛼(𝜆) = −1
𝛼 ∈ 𝑅+

𝑃 ∩ 𝑤−1𝑅+ =⇒ 𝛼(𝜆) = 0 . (4.13)

Theorem 4.9. The 𝐻•
𝑇 (pt)-algebra homomorphism Φ𝑆𝑆 defined in Definition 3.10 satisfies

Φ𝑆𝑆 (𝜉𝑤𝑡𝜆 ) =

{
𝑞𝜆+𝑄

∨
𝑃𝜎𝑤 𝑤𝑡𝜆 ∈ (𝑊𝑃)𝑎 𝑓

0 otherwise

for any 𝑤𝑡𝜆 ∈ 𝑊−
𝑎 𝑓 , where 𝑤 ∈ 𝑊𝑃 is the minimal length representative of the coset 𝑤𝑊𝑃 .

Proof. Write Φ𝑆𝑆 (𝜉𝑤𝑡𝜆 ) =
∑
𝑣 ∈𝑊 𝑃

∑
𝜂∈𝑄∨/𝑄∨

𝑃
𝑞𝜂𝑐𝜂,𝑣𝜎𝑣 . Since M(𝑤𝑡𝜆, 𝑣, 𝜂) is regular and 𝑓𝐺/𝑃,𝑣 is

the composition of a T-equivariant resolution Γ𝑣 → 𝐵+ · 𝑦𝑣 and the inclusion 𝐵+ · 𝑦𝑣 ↩→ 𝐺/𝑃, we have

𝑐𝜂,𝑣 =
∫
M(𝑤𝑡𝜆 ,𝑣 ,𝜂)

1 ∈ 𝐻•
𝑇 (pt),

which is zero unless M(𝑤𝑡𝜆, 𝑣, 𝜂) is nonempty and zero-dimensional. By Proposition 4.8, the last
condition is equivalent to 𝑣 ∈ 𝑤𝑊𝑃 , 𝜂 = 𝜆 +𝑄∨

𝑃 and the condition 𝐶 (𝑤𝑡𝜆), and in this case, 𝑐𝜂,𝑣 = 1. It
remains to show that 𝐶 (𝑤𝑡𝜆) is equivalent to the condition 𝑤𝑡𝜆 ∈ (𝑊𝑃)𝑎 𝑓 . This is proved by replacing
𝛼 in (4.13) with −𝑤−1𝛼. �
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