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Abstract

In light of the recent work by Maynard and Tao on the Dickson k-tuples conjecture, we show that with
a small improvement in the known bounds for this conjecture, we would be able to prove that for some
fixed R, there are infinitely many Carmichael numbers with exactly R factors for some fixed R. In fact,
we show that there are infinitely many such R.
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1. Introduction

Recall that a Carmichael number [Ca] is a composite number n for which

an ≡ a mod n

for every a ∈ Z.
Although Carmichael numbers were proven to be infinite in number in 1994 in a

paper by Alford et al. [AGP], there are still many open conjectures about Carmichael
numbers that we cannot begin to address. Chief among those conjectures is the
following theorem.

Conjecture. For any R ∈ N with R ≥ 3, there exist infinitely many Carmichael
numbers with R prime factors.

In fact, specific conjectures [GP] have been made about the number of Carmichael
numbers up to x with specific numbers of prime factors.

Granville–Pomerance conjecture. For any R ∈ N with R ≥ 3, let CR(x) denote the
number of Carmichael numbers up to x with exactly R factors. Then

CR(x) = x(1/R)+oR(1).

c© 2015 Australian Mathematical Publishing Association Inc. 1446-7887/2015 $16.00

421

https://doi.org/10.1017/S1446788715000427 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788715000427


422 T. Wright [2]

Up to this point, most of the work done on this conjecture has focused on upper
bounds. The only affirmative results that we have been able to prove about lower
bounds for the number of factors of a given Carmichael number are that (a) there exist
Carmichael numbers with arbitrarily large numbers of factors, (b) for any a and M,
there are infinitely many Carmichael numbers where the number of prime factors is
congruent to a mod M, and (c) for any k with 3 ≤ k ≤ 19 565 220, there exists at least
one Carmichael number with k prime factors [AGHS]. Most other statements about
Carmichael numbers with fixed numbers of prime factors have been considered to be
beyond current methods.

In this paper, we show that recent progress on the Dickson k-tuples conjecture has
almost got us to the point where we can prove a lower bound for least one (and, in
fact, for infinitely many) values of R. In the next section, we introduce the Dickson
conjecture and show how it can be used in the study of Carmichael numbers.

1.1. The k-tuples conjecture. Before we state Dickson’s conjecture, we must first
note an important criterion for determining whether a number is Carmichael. In 1899,
Korselt [Ko] posed the following necessary and sufficient condition for determining
whether a number is a Carmichael number.

Korselt’s Criterion. A natural number n is a Carmichael number if and only if n is
square-free and composite and for every prime p that divides n, p − 1|n − 1.

Now let us define the Dickson k-tuples conjecture. For a set D = {a1z + b1, a2z +

b2, . . . , akz + bk} of distinct linear forms with all ai > 0, we will call the set admissible
if it contains no local obstructions, that is, for any p, there exists a z ∈ N such that

p -
k∏

i=1

(aiz + bi).

Dickson’s conjecture can now be stated as follows.

Dickson’s k-tuple conjecture. Let D = {a1z + b1, a2z + b2, . . . , akz + bk} be an
admissible set of k linear forms. If k ≥ 2, then there exist infinitely many z for which
all of the forms in D are simultaneously prime.

Note that in the case of k = 1, the above is not a conjecture but rather Dirichlet’s
theorem.

Many years ago, mathematicians began to realize that the search for Carmichael
numbers would be made easier if Dickson’s conjecture were true. The first to come
to this realization was Chernick [Ch], who in 1939 noted that if all three of 6z + 1,
12z + 1, 18z + 1 are simultaneously prime, then

(6z + 1)(12z + 1)(18z + 1)

https://doi.org/10.1017/S1446788715000427 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788715000427


[3] Factors of Carmichael numbers and a weak k-tuples conjecture 423

is a Carmichael number by Korselt’s criterion. Chernick listed a number of other tuples
that could be converted into Carmichael numbers as well, including

(12z + 5)(36z + 13)(48z + 17),
(30z + 7)(60z + 13)(150z + 31),

(180z + 7)(300z + 11)(360z + 13)(1200z + 41),

and so on. It is an easy exercise to prove that the assumption of Chernick’s conjecture
would prove the Granville–Pomerance conjecture with the correct lower bounds.

Of course, using Chernick’s methods to prove that there are infinitely many
Carmichael numbers would require the full version of Dickson’s conjecture for some
tuple, which still seems to be a good distance from fruition. Recently, though,
weaker versions of Dickson’s conjecture have actually become available to us; in 2013,
Maynard and Tao [May] proved the following result.

Maynard–Tao theorem. Let D = {z + b1, z + b2, . . . , z + bk} be a set of k admissible
linear forms. For any m ≥ 2, there exists a constant C such that if k > Ce8m then m of
the forms in D are prime infinitely often.

Recent improvements by the Polymath project have reduced this bound to
approximately Ce4m (as of this writing).

Unfortunately, a relationship between m and k with k roughly equal to e4m does not
quite appear to be strong enough to help us in the search for Carmichael numbers. In
this paper, we determine how much further these results need to go.

1.2. Main theorem. For the results of this paper to hold, we would need the
following strengthening of the Maynard–Tao theorem (or weakening of Dickson’s
conjecture).

Weak Version of k-tuple conjecture. As before, let D = {a1z + b1, a2z + b2, . . . , akz +

bk} be a set of k admissible linear forms. There exists a fixed constant T ≥ 1 such that
for any m ≥ 2, if k ≥ mT , then m of the forms in D are prime infinitely often.

The full conjecture, of course, would be for T = 1.
We note here that the exact value of T is irrelevant; for this result to hold, we only

require that the relationship between m and k be polynomial and not exponential1. If
this statement were known to be true, we would immediately have the following result.

Main theorem. Assume that the k-tuples conjecture above is true. Let CR(x) denote
the number of Carmichael numbers up to x with exactly R prime factors. Then there
exists an R for which CR(x)→∞ as x→∞. In fact, there are infinitely many R for
which CR(x)→∞ as x→∞.

1Our methods can actually be extended slightly—but only slightly—beyond polynomial. If the
conjecture replaced kT with e(log k)θ−ε for some ε < θ (and ε > 0) with θ as defined in Lemma 3.1, the
methods below would still work.
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If we are given a specific T , we can actually calculate an upper bound for the
smallest R for which CR(x)→∞ as x→∞. Here, we show that if T is large then
this upper bound can be given by

2T 3/(θ−1)/ log(T 3/(θ−1)), (1.1)
where θ is the constant defined in Lemma 3.1.

2. Sketch of proof
Traditionally, a proof of infinitely many Carmichael numbers follows the following

rubric, which was originally posed in [AGP]. First, we prove that there are many
integers L for which λ(L), the maximum order of an element mod L, is small relative
to L. For each L, we prove that there exists some z for which there are many primes of
the form dz + 1 with d|L. Having found sufficiently many of these primes, we prove
that some subsets of these primes multiply to 1 mod zL; hence, each of these subsets
is such that the product of all primes in a given subset yields a Carmichael number.
Since we can prove that there are infinitely many choices of L (and since we can prove
that choosing a larger L will generate new Carmichael numbers), there are infinitely
many Carmichael numbers.

While this method can be successfully used to prove that there are infinitely many
Carmichael numbers, it lacks the ability to prove anything about Carmichael numbers
with a fixed number of factors. The reason is that we have no control over the size of
L and, as L grows larger, the number of primes dz + 1 required to guarantee a product
of 1 mod zL grows larger as well. This ever-growing L is the reason that we have been
able to prove the existence of Carmichael numbers with arbitrarily large numbers of
factors; however, it is of no help for fixed numbers of factors.

The conjecture stated above, however, allows for a significant simplification of the
argument in [AGP]. In particular, for a given L, we can now prove that there are an
infinitude of z such that dz + 1 is prime for many values of d|L; for each of these z, we
can then prove that there exist Carmichael numbers where all prime factors are of this
form dz + 1. As such, we can show that there are infinitely many Carmichael numbers
for a single choice of L. Since each choice of L and z will have a limited number
of possible factors, we can see that there will be some fixed number R that has many
Carmichael numbers with R prime factors. By strategically changing our L, we can
change R as well and thus we see that there are infinitely many such R.

Unfortunately, we are still well short of being able to pin down an exact value for
R. This is a result of the fact that the weakened k-tuples conjecture above is similarly
ambiguous; if the full strength of the k-tuples conjecture were realized, one could
prove our theorem for every fixed R ≥ 3.

It is interesting to note that, using the original methods of [AGP], one can very
quickly prove that there are infinitely many Carmichael numbers n for which the
number of prime factors of n is at most e(log log n)1/θ

(where θ is as in Lemma 3.1).
It may be possible that the new Maynard–Tao results would yield an improvement in
this bound. We plan to take this issue up in a future paper.
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3. Finding an L

First, we must find an L for which it is suitable to set up our k-tuple. For this, we
recall the following result.

Let 1 < θ < 2 and let P(q − 1) be the size of the largest prime divisor of q − 1. Define
the set Q to be

Q =

{
q prime :

yθ

log y
≤ q ≤ yθ, P(q − 1) ≤ y

}
.

Throughout this paper, we will assume that y is greater than some constant Y , where
Y is chosen such that bounds on the density of smooth primes can be invoked and that
yθ grows sufficiently large relative to constants. This constant could undoubtedly be
made effective with some work; we do not do so here.

With this caveat, the following result can be easily shown.

Lemma 3.1. For Q as above, there exists a constant γθ such that

|Q| ≥ γθ
yθ

log(yθ)
.

Proof. The proof is merely an application of Bombieri–Vinogradov; it appears
in [AGP, Ma, Wr] and others.

For v < z, let us denote by π(z, v) the number of primes q less than z such that
P(q − 1) ≤ v. Let 1

2 < α <
2
3 and define ε = ε(α) < α − 1

2 . Note that if q ≤ z is such that
q can be written as q = 1 + q′k for some prime q′ ∈ [z1−α, z(1/2)−ε], then P(q − 1) ≤ zα;
each q has at most two such representations. So,

π(z, zα) ≥
1
2

∑
q′∈P,z1−α≤q′≤z(1/2)−ε

#
{
q prime,

z
log z

≤ q ≤ z, q ≡ 1 mod q′
}
.

Since q is sufficiently large relative to q′, we may use Bombieri–Vinogradov to find
that

π(z, zα) ≥
∑

q′∈P,z1−α≤q′≤z(1/2)−ε

z
φ(q′) log z

≥ log
( 1

2 − ε

1 − α

) z
log z

.

The lemma then follows by letting z = yθ, α = min{(1/θ), 3
5 }, and γ = log((1/2 −

ε)/(1 − α)). �

We note that this is not the best possible bound; however, we do not require best
possible here, and this proof is relatively straightforward.

From this, we let
L =

∏
q∈Q

q.
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4. The size of λ(L)

In this section, we determine the size of λ(L) and how large we would like our tuple
to be.

To begin, we state a theorem that appears in the paper of Alford et al. [AGP,
Proposition 1.2]. For an abelian group G, n(G) will denote the smallest number such
that a collection of at least n(G) elements must contain some subset whose product is
the identity. From van Emde Boas and Kruyswijk [EK] and Meshulam [Me],

n(G) ≤ λ(G)
(
1 +

log|G|
λ(G)

)
.

With this notation, we now state the theorem.

Theorem 4.1. Let G be a finite abelian group and let s > t > n = n(G) be integers.
Then any sequence of s elements of G contains at least

(r
t
)
/
(r
n
)

distinct subsequences of
length at most t and at least t − n whose product is the identity.

This theorem is proven elsewhere, so we do not give the proof here; the interested
reader can consult the references given above.

In order to invoke our theorem, we must now compute the size of λ(L). To this end,
we have the following result.

Lemma 4.2. We have λ(L) ≤ e2θy.

Proof. We recall that, by construction, any prime factor of L is at most y. Since any
prime factor of λ(L) must divide q − 1 for some q|L, we see that any prime factor of
λ(L) must be less than y as well. Let aq be the largest power of q such that qaq ≤ yθ. It
follows, then, that

λ(L) ≤
∏
q≤y

qaq ≤ yθπ(y) ≤ e2θy. �

By abuse of notation, we will use n(L) to denote n(G) for the group (Z/LZ)×. We
may now combine Lemma 4.2 and Theorem 4.1 to find the following result.

Lemma 4.3. We have
2n(L) ≤ e3θy.

5. Our k-tuple and the size of λ(L)

Finally, we define our admissible set and prove that it is sufficiently large to generate
a Carmichael number. Let our set D be as follows:

D = {dz + 1 : 1 ≤ d ≤ L, d|L}.

For those who have seen [AGP], this is a familiar construction; however, in the present
case we are not forced to make any requirement that the dz + 1 be prime (as the
conjecture will take care of that for us).

The size of D is of course determined by the number of factors of L.
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Lemma 5.1. For the set D defined as above,

|D| ≥ 2γ(yθ/ log yθ).

Let us assume the conjecture for some value of T . We will choose a y (and hence
an L) large enough to trigger the conjecture. Letting

W = max
{
T,

10θ
γ(θ − 1) ln 2

}
,

we define
y = max{W3/(θ−1),Y}.

Theorem 5.2. Assuming the weak version of the k-tuples conjecture as stated in the
introduction, there exists a set D of linear forms that has more than 2n(L) primes
infinitely often. In other words, there are infinitely many Carmichael numbers with a
fixed number R of prime factors, where

R ≤ |D| ≤ max{2W3/(θ−1)/ log(W3/(θ−1)), 2Yθ/ log Yθ

}.

Clearly, if T is large, the first of the terms in the max will be the relevant one; this
is the bound given in (1.1).

Proof. We prove this theorem by comparing |D| to 2n(L). To do this, we examine the
ratio of the logarithms of the two terms. First, if W3/(θ−1) > Y , then

log |D|
log(2n(L))T ≥

(ln 2)γ W3θ/(θ−1)(
3
θ−1

)
log W

3θ(W3/(θ−1))W

≥
(ln 2)γ(θ − 1)

9θ
W2

log W

>
(ln 2)γ(θ − 1)

9θ
W

> 1.

If W3/(θ−1) > Y , then T < Y (θ−1)/3 and hence

log |D|
log(2n(L))T ≥

(ln 2)γ Yθ

θ log Y

3θYT

≥

(
γ ln 2

3θ2 log Y

)
Y (2/3)(θ−1)

> 1.

In both cases, |D| > (2n(L))T . So, if |D| = M, then there exist infinitely many z for
which D has at least 2n(L) primes simultaneously.

Let z ∈ N be such that D has at least 2n(L) primes. By [AGP, Theorem 1], this
means that some subset of those primes will multiply to 1 mod L.
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Let p1, p2, . . . , pr be such a subset. Since each pi is also congruent to 1 mod z,

m = p1 p2 . . . pr ≡ 1 mod Lz.

This means that for each pi, we have pi − 1|Lz|m − 1. Thus, by Korselt’s criterion, m is
a Carmichael number. Since there are infinitely many such z, there are infinitely many
Carmichael numbers where the number of factors is ≤ |D|; thus, there must exist an
R ≤ |D| such that infinitely many Carmichael numbers have exactly R factors.

For the upper bound on D, we note simply that

|D| ≤ 2yθ/log yθ .

The bound in the theorem is then found by replacing y with its definition. �

From here, it is small step to the proof that there are infinitely many such R.

Theorem 5.3. Assuming our weak version of Dickson’s conjecture, CR(x)→ ∞ as
x→∞ for infinitely many choices of R.

Proof. Assume not. Then there is some bound J such that if there are infinitely many
Carmichael numbers with R prime factors, then R < J.

Choose a y (and, consequently, an L) such that

log|D| > 2T J.

From our conjecture, we know that there exist infinitely many z for which the number
of primes in D is > 2J. Also, from the work above, we know that the number of
primes in D is > 2n(L). Thus, if we choose t ≥max{2J,2n(L)}, Theorem 4.1 says that a
Carmichael number generated by our method will have at least t − n(L) factors. Since
t − n(L) > n(L) and t − n(L) ≥ (t/2) ≥ J, there are infinitely many such Carmichael
numbers with at least J and at most |D| factors, contradicting our assumption. �
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