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CREEP BUCKLING OF ICE SHELVES AND THE FORMATION OF 
PRESSURE ROLLERS 

By I. F . COLLI NS and I. R. M CCRAE 

(Department of Theoretical and Applied Mechanics, University of Auckland, Auckland, New Zealand) 

ABSTRACT. Much of the surface of an ice shelf is 
covered with series of undulations. These undulations or 
"pressure rollers" are particularly noticeable in the 
neighbourhood of ice rises or ice streams. To date, there is 
no satisfactory theoretical model explaining the formation of 
these waves. As a contribution to understanding this 
phenomenon, this paper investigates the stability of ice 
shelves to perturbations in the background stress and 
strain-rate distributions. 

The perturbation analysis is based on Glen's creep law 
and leads to a continuous eigenvalue problem for the 
wavelength of the disturbance as a function of growth-rate. 
It is shown that, provided these strain-rates are sufficiently 
compressive, waves of the type observed can be expected to 
form. It is shown that lateral extensional strain-rates have a 
destabilizing effect and pressure rollers are more likely to 
form when these are present. Comparison of predicted 
wavelengths is made with available field data. 

RESUME. Flambage des shells et developpement des 
vagues de pression. La surface des shelfs est en grande 
partie couverte d'ondulations. Celles-ci, encore appelees 
"vagues de press ion" , sont particulierement developpees au 
voisinage des domes ou des courants de glace. On ne 
dispose pas actuellement de modele theorique expliquant ces 
ondulations de maniere satisfaisante. Pour mieux comprendre 
ce phenomene, nous etudions la stabilite des shelfs aux 
perturbations des champs moyens de contraintes et de 
vitesses de deformation. 

L 'analyse des perturbations est basee sur la loi de 
fluage de Glen; elle conduit it un probleme aux valeurs 

INTRODUCTION 

Series of undulations or depressions often called 
"pressure ridges" , "pressure rollers", "ice rumples", or "folds" 
are common features of ice shelves. This phenomenon is 
particularly noticeable up-stream from ice rises where the 
shelf runs aground, and in other regions where the ice is 
moving close to land, on the edges of ice streams flowing 
into the main body of a shelf and at a shelf's seaward 
edge. In his review of ice shelves, Thomas (1979) 
commented that, whilst the surface of an ice shelf appears 
completely flat , detailed measurements show that it is in 
fact undulated with wavelengths of 1-10 km and wave 
heights of up to 5 m. Swithinbank (1957) also mentioned a 
similar subdued wave system with amplitudes of 3-5 m and 
wavelengths of about 4 km on the Maudheim Is-shelf. 

Often, in regions where the larger waves form such as 
near an ice rise, there are significant stresses in the ice in 
addition to those caused by the shelf creeping under its 
own weight. However, this is not obviously so for the 
waves observed at the seaward edge of a shelf. Robin 
(1979) has suggested that in this case these undulations are 
probably caused by the ice flow diverging laterally as it 
approaches the sea, because the ice shelf is no longer 
restricted by the confines of the bay. This lateral flow 
produces large extensional strain-rates parallel to the ice 
front which causes the waves to form by a type of 
"necking" process. 
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propres continu pour la longueur d 'onde de la perturbation 
en fonction de la vitesse de croissance. On montre que si 
les vitesses de deformation sont suffisamment compressives, 
on peut s'attendre it voir apparaitre des ondulations 
comparables it celles que I'on observe . On montre egalement 
que les extensions laterales ont un effet destabilisateur et 
que les vagues de pression ont plus de chance de se former 
lorsqu'elles existent. Les longueurs d'onde prevues sont 
comparees aux donnees de terrain existantes. 

ZUSAMMENFASSUNG. Kriech-Aulwolbungen von Sche/feisen 
und die Hildung von Druckwalzen. Ein Grossteil der 
OberfHiche von Schelfeisen ist mit Serien von Undulationen 
bedeck!. Diese Undulationen oder "Druckwalzen" treten vor 
allem in der Umgebung von EisaufwOlbungen oder 
Eisstr()men auf. Bis heute gibt es noch kein befriedigendes 
theoretisches Modell , das die Bildung dieser Wellen erkHiren 
konnte. Als Beitrag fiir das Verstlindnis des Phlinomens 
untersucht diese Arbeit die Stabilitlit von Schelfeisen 
gegeniiber StOrungen in der Hintergrundsspannung und in 
der Verteilung der Verformungen. 

Die Analyse der StOrungen beruht auf dem Glen'schen 
Fliessgesetz und fiihrt auf ein kontinuierliches 
Eigenwertproblem fiir die Wellenllinge der StOrung als 
Funktion der Wachstumsrate. Es wird gezeigt, dass bei 
ausreichend kompressiven Verformungen die Bildung von 
Wellen des beobachteten Typs erwartet werden kann. Weiter 
zeigt sich, dass seitliche Dehnungsverformungen eine 
destabilisierende Wirkung haben und dass Druckwalzen sich 
bei deren Anwensenheit eher bilden. Die vorausberechneten 
WellenHlngen werden mit verfiigbaren Felddaten verglichen. 

The wavelengths and amplitudes of the pressure rollers 
can vary considerably. Near Scott Base, the McMurdo Ice 
Shelf is forced against Ross Island (Fig. I) and the 
undulations, when forming, have wavelengths of 91 :t: 2 m. 
They grow to amplitudes of 3 m and reduced wavelengths 
of 35 m due to the compressive strain-rates, before splitting 
of the crests and overthrusting occurs (Holdsworth and 
Heine, 1979). 

Several parties travelling in Antarctica have reported 
encountering pressure rollers caused by ice streams thrusting 
into ice shelves. These have been summarized by 
Swithinbank (1957). Sightings were reported by Wright and 
Priestley (1922) 50 miles [80.5 km] from the mouth of 
Beardmore Glacier of waves approaching 40 ft [12.2 m] in 
height with a wavelength of some 2 miles [3.2 km]. Gould 
(1935) and Wild, writing in Mawson (1915), referred to 
undulations on the Shackleton Ice Shelf as having a 
wavelength of 3/ 4 mile [1.2 km] and an amplitude of 30 ft 
[9.1 m]. Undulations on the seaward margin of the ice 
shelves of west Dronning Maud Land, with wavelengths of 
I km and amplitudes of 10 m have been reported by 
Swithinbank (1957). Kehle (1964) described a detailed study 
of the vicinity of Camp Michigan near the front of the 
Ross Ice Shelf. The pressure rollers in this area have 
amplitudes of 12-15 m and wavelengths of 180-<i50 m. 

The orientation of the ridges of the rollers relative to 
the flow direction can vary significantly. At Pram Point, 
the velocity vectors are at 10- 20 0 to the principal direction 
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PRAM POINT 

Fig . 1. Pressure rollers at Pram Poillt Ileal' Scott Base. 
Alltarctica. 

of maximum compressive strain-rate, which is normal to the 
axes of the ridges . Where the rollers are formed by a pure 
shearing action, the ridges are aligned at approximately 45

0 

to the flow direction (Thomas, 1979). 
Previous attemr>ts to model the formation of rollers 

have assumed that the buckling of the shelf is either an 
elastic phenomenon as in Hochstein (1967) or Hughes 
(1983), or a linearly visco-elastic effect as in the analysis of 
Kehle (1964). However, in view of the time-scale of the 
formation process, it would seem more likely that the 
formation of these rollers is a consequence of creep 
instabilities of the type familiar in metals at elevated 
temperatures (Odqvist, 1966) and which will be governed by 
the well-known power creep law of ice, i.e . Glen's law. In 
his analysis, Hochstein (1967) showed that the force needed 
to produce elastic buckling was 103 times larger than that 
which caused significant plastic (creep) flow and hence 
concluded that the buckling could not be an elastic 
phenomenon. 

In this paper we study theoretically the growth of 
wave-like instabilities in an idealized ice shelf. Initially, the 
base solution will be taken to be that given by Weertman 
(1957) for a parallel-faced ice shelf deforming under plane
strain conditions. The influence of lateral straining analysed 
by Thomas (1973) is discussed in a later section. We 
imagine the waves to form as a result of the presence of 
some small superposed stresses . The precise cause of these 
perturbation stresses is not modelled but they could well be 
due to the presence of ice rises or of infiltrating ice 
streams. 

The mathematical model used is similar to that which 
has been used to study the formation of folds in the rock 
strata in the Earth's crust. The similarity between the 
folding of rock layers and ice shelves was emphasized by 
Kehle (1964). A number of studies of buckling instabilities 
based on power-law creep models of layered rocks have 
been made by Fletcher (1974), Smith (1975, 1977, 1979), 
and Neurath and Smith (1982). The particular mathematical 
procedure used in this paper is similar to that used by 
Smith (1977) to analyse the creep buckling of a rock layer 
embedded between two less-competent, semi-infinite layers, 
when subjected to longitudinal compression. 

As will be seen, the wavelength of the instabilities is a 
continuous function of the growth-rate and we shall assume 
that the waves which will actually form will be those 
possessing the maximum growth-rate. This hypothesis is due 
to Biot (1965), though with reference to linear visco-elastic 
instabilities. 

MATHEMATICAL MODEL OF CREEP BUCKLING OF 
ICE SHELVES 

COllstitutive equatiolls 
We shall write Glen's law in the form 

(I) 

Col/ill S alld ,\/cCrae: Creep bucklillg of ice shelves 

where 0' I ij = O'ij + p6ij is the deviatoric stress tensor 
formed by subtracting the mean normal (hydrostatic) 
pressure p6ij from the actual stress tensor O'ij' and eij is 
the strain-rate tensor. The generalized viscosity 1.1. IS a 
function of e, the second strain-rate invariant defined by 

(2) 

9 is related to T, the second invariant of the deviatoric 
stress, defined by 

(3) 

by the power-law relation 

(4) 

where the power Il is a constant .. 3, whilst B is a 
function of temperature. It follows from Equations (I) to 
(4) that the viscosity function is given by 

1.1. = B9(1-II) / II. (5) 

When Il > I, the power law represents a strain-rate 
softening material and so 1.1. is a decreasing function of 9. 
Estimated values of B, averaged through the ice thickness, 
have recently been given by Thomas and MacAyeal (1982) 
for the Ross Ice Shelf. 

The zeroth-order solutioll 
Weertman's (1957) analysis assumes an ice shelf of 

constant thickness h, with parallel top and bottom surfaces, 
deforming under plane-strain conditions. The bottom surface 
is at a depth Pih/ Pw below mean sea-level where P' and 
P w are the (mean) densities of ice and sea-~ater, 
respectively. Weertman demonstrated the existence of a 
simple steady-state solution in which the strain-rate 
components are uniform. This is going to be our 
zeroth-order solution about which we will consider small 
perturbations. With the notation of Figure 2, the 
zeroth-order strain-rates 

e (0) = K e (0) = 0 e (0) = - K xx . yy 'zz . (6 

The constant creep-rate K is positive if the ice shelf is 
extending and negative if it is compressing in the flow 
direction. The zeroth-order strain-rate invari"nt e(o) = I KI. 
The plane-strain assumption requires 0' (0) = (0' (0) + 
O'z/0» / 2 from Equati9n (I), so that theY~eroth-ord:rx stress 
invariant TO = t I 0' lO) - 0' (0) I xx zz' 

Thus from Equations (4) and (5) 

Since the X-, .1'-, and z-directions are principal stress 
directions, 

0' (0) = 0' (0) = 0' (0) = 0 
xz yz xy 

and the equilibrium equations reduce to 

n 

9 -

h 
z 1 I f ,h/ f w 

./( x , tl 1 
O 

____ ~~x--~~--------L_--~---- ~ 

"'" Fig. 2. Notatioll. 

(8) 

sea 

level 
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Solving Equations (7) and (8)/ and using the stress-bou,(d)ry 
conditions on the upper (azz\O)(h) = 0) and lower (azz ° (0) 

Pigh) surfaces, gives 

aX)O) = 21JoK - Pig(h - z), 

azZ<°) = - Pig(h - z). 

(9) 

This solution will be assumed to describe the local 
background stress and strain-rate states in the ice shelf. The 
resultant compressive force acting through the shelf is 

-I: 'x)') d< - - 2",Kh + "igh' . (10) 

Weertman equated this to the total force of the sea-water 
on the ice front, i.e. to pfgh2/2Pw' and so obtained an 
expression for the creep-rate K. However, here we will 
follow Thomas (1979) and allow for the addition of a "back 
pressure" P which arises from the resistance of ice rises and 
the shelf margins. So from Equation (10) the creep-rate K 
is given by 

sign (K) KI l n = (Pidpgh - 2P)/4B (I1) 

where Ap = (1 - pj/ PW>. When P = 0, K is positive and 
the shelf is extending; compressive flows will occur however 
when the back pressure exceeds !Pidpgh. Thomas and 
MacAyeal (1982) have plotted contours of the resisting force 
F = Ph on the Ross Ice Shelf obtained from the RIGGS 
data. 

Perturbation equations 
The stress and strain-rate fields in the buckled ice 

shelf will be regarded as the sum of the above zeroth-order 
solution together with perturbed fields denoted by uij and 
eij. The viscosity function is hence 

where 1Jo' stands for dJ.lld9 evaluated at 9 
from Equation (5) is given by 

(12) 

9(0), which 

(13) 

The first-order perturbed stress and strain-rate fields 
are related by 

uh = lJoeij + 1Jo' eipre (14) 

using Equations (1) and (12). The perturbation in the 
second strain-rate invariant is 

using the standard Taylor series expansion; but 

obtained by differentiating Equation (2), so that 

e = e,jO) e kl/ 29(0). (15) 

In the zeroth-order solution all the strain-rate 
components are zero except for e x)O) = ...:e z}o) = K and 
in the perturbed solution exx = ...:ezz' since the deformation 
is still assumed plane strain, so that Equation (IS) can be 
rewritten 

9 sign (K) exx - sign (K) ezz. (IS' ) 

Finally, substituting from Equations (13) and (IS') into 
Equation (14) gives the perturbed stresses as 
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Uxx = - P + (lJo/n) exx' 

a ZZ = - jJ + (lJo/n) e zZ' {I 6) 

where p is the value of the hydrostatic stress in the 
perturbed stress field . 

The "shear viscosity" relative to the x,z-axes is 
hence 1-10, the value in the background state, but the 
"extensional viscosity" is reduced to IJoin due to the pure 
compression/ extension in the x,z-directions in the ground 
state. The ice will hence offer less resistance to further 
extension or compression in the horizontal and vertical 
directions than it will to shearing in the vertical plane. This 
kind of "stress- induced anisotropy" is of course a 
characteristic feature of non-linear materials. 

Since the perturbed deformation is isochoric, we can 
introduce a stream function IjI{x,z) such that the velocity 
components are (u ,w) where 

u = ""Z and w = - ""x· (17) 

The strain-rate components are found by differentiation and 
when substituted in Equations (16) gives the stress 
components 

Uxx = - P + (lJo/n) ""xz' 

(18) 

Substituting these expressions in the perturbed equilibrium 
equations 

(19) 

yields the following expressions for the pressure gradients 

IJo ~ - i]"" xxz + ~1Jo""zzz' 

P,z = - IJo ~ - ~]""xzz - ~I-Io""xxx. 
Finally, eliminating p gives the fourth-order equation 

(20) 

""XXXX + 2 [~ - 1 ]""xxzz + ""ZZZZ = 0 (21) 

for the stream function ",. This is the anisotropic 
biharmonic equation which governs the plane-response 
behaviour of anisotropic elastic solids (see Biot, 1965). It 
reduces to the ordinary bih :" "Ionic equation V2(V2

",) = 0 for 
a Newtonian viscous modt' I "Ith n = I. 

Boundary conditions 
The perturbed shape and motion of the shelf will be 

obtained by solving Equation (21), subject to suitable 
boundary conditions on the upper and lower surfaces, which 
we shall denote by z = h + Hx,t) and z = II(X,t) 
respectively (Fig. 2), where I ~ 1,1111« h. 

The normal and shear-traction components on the 
upper surface are zero, so choosing local normal and 
tangential coordinates (Fig. 2) 

(22) 

The x,z stress components can be obtained by the usual 
rules for the rotation of stress components and can be 
written in terms of the only non-zero local direct stress at(: 

axx 
2 

U tt sin29 (23) 

where 9 = ~'x is the surface slope. Working to first order 
in 9, we see that 

Uzz = 0 and uxz = uxx9. (23' ) 

Applying the first of these conditions az}O) + uzz = 0 on 
the deformtng surface z = h + ~ and using the Equations 
(9) for U z}O), we obtain the boundary condition 

(24) 
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Similarly, the second condition in Equations (23') gives the 
boundary condition in the shear stress 

(25) 

These conditions can be put in terms of the stream function 
'" by using Equations (18) 

and 
P + (J.lo/n) ""xz = Pig~ 

("" zz - ""xx) = 4K~,x' 

(24' ) 

(25 ') 

Differentiating Equation (24') with respect to x, eliminating 
p,1' from the equilibrium Equation (20), and finally 
eliminating ~'x from Equation (25') gives one boundary 
condition on '" on the upper surface, Z = h: 

4 
(I / ha)(""zz - ""xx) + (1 - -)""xxz - "" zzz = 0 (26) 

n 

where a is the dimensionless stress coefficient defined by 

a = 
~ = 2B sign (K) IKln 
Pigh Pigh 

(27) 

An analogous argument can be used to find a bound
ary condition on the lower surface. The presence of the 
sea-water pressure means that Equation (24) is replaced by 
azz = (pw - Pi)gll. The rest of the derivation goes through 
similarly and Equation (26) is replaced by 

- (Ap/ha(1 - Ap» (""zz - ""xx) + 

4 
+ (I - - }IjI,xxz - ""zzz = 0 on z = 0 

n 
(28) 

where Ap = (I - PiPw)' (29) 
The remaining two boundary conditions come from the 

usual kinematic condition in linear wave problems, namely, 
that the rate of change of surface elevation is equal to the 
vertical velocity component on each surface, i.e. 

{ ~'t on Z = h] 
w = - ""x = . 

lI,t on Z = 0 
(30) 

Following Biot (1965) and Smith (1977), we now look for 
disturbances which are growing exponentially with a 
growth-rate G. So that 

~(X,/) = f(x) exp(G/) and lI(x,/) = g(x) exp(Gt) (31) 

where / and g are amplitude functions, and 

(32) 

so that the kinematic conditions in Equation (30) become 

""X + G~ = 0 on z = h and ""x + GII = 0 on Z = O. 
(30' ) 

Finally, differentiating these expressions with respect to X 

and eliminating ~ or 11 from Equations (25'), we obtain the 
remaining two boundary conditions on '" 

(1 - 4K/G)""xx = ""ZZ on Z = 0 and Z = h. (33) 

We thus have a determinate problem for the perturbed 
motion: to solve the anisotropic biharmonic Equation (21) 
for '" subject to boundary conditions in Equations (26), 
(28), and (33). 

Wave solutions 
We now seek solutions to this system of equations in 

the form of a uniform train of waves with wave number k 
so that ~, 11, "', and all the other perturbation variable~ 
vary with x as exp(ikx). In particular, 

Ij/(x,Z) = e(z) exp(ikx). (34) 

Col/ins and McCrae: Creep buckling 0/ ice shelves 

We assume k is real so that the wave train is not damped. 
In effect we are solving the problem for an infinitely long 
shelf. Substituting Equation (34) into the governing Equation 
(21) gives a linear fourth-order ordinary differential 
equation for cll(z) with solutions of the form exp(vkz) where 
v satisfies the quartic equation 

(35) 

where w = (2 
Vj . j = 1,2,3,4; 

n)n, so that v takes one of the four values 

(36) 

For n < I, these roots are all real and distinct, for n = I 
there are two repeated roots (:t: I) and for n > 1 there are 
two sets of complex conjugate roots. In the limit as n ... "', 
corresponding to a perfectly plastic material, Equation (36) 
has two repeated pure imaginary roots (t I). For ice with n 
.. 3 the variation of '" through the shelf thickness is hence 
the sum of four damped oscillations. 

Ij/(x, z) 

4 

exp (ikx) 2 aj exp(kvjz). 

j=l 

Determination 0/ wavelengths 

(37) 

Substituting Equation (37) into the four boundary con
ditions in Equations (26), (28), nd (33) yields a set of four 
linear homogeneous equations for the vector a of 
coefficients aj of the form 

Ba - 0 (38) 

where the elements of the rows of the (4 x 4) matrix B 
are 

«G/ K)(I + vj) - 4) 

«G/K)(I + v]) - 4) exp (hkvj) 
(39) 

« I - ahkv}(l + vj) + 4 ahkv In) exp (hkv} 

( - «Ap/( I - Ap) + ahkv /)(1 + vj) + 4 akhv /n) 

for j = 1,2,3,4. 
The ice shelf can buckle and waves form if Equation 

(38) has a non-zero solution for a, i.e. if B is singular and 

det B - O. (40) 

This can be regarded as an equation determining the non
dimensional growth rate y = G / I K I as a function of 

(i) 

(ii) 

(iii) 

(iv) 

i.e. 

dimensionless wavelength ~ = 2nlkh. 

stress coefficient a = 2J.!oK/ Pigh, 

density ratio Ap = (I - pj/pw) 

the creep-law index n, 

y - f(~, a, Ap, n). (41 ) 

Equation (40) is quadratic in (GIK) , so that the 
equation could be constructed by evaluating det B (which is 
always real) for three different growth-rates and then solved 
analytically. It was found that the roots for y were always 
real and either both negative or with one root negative and 
the other positive. A negative growth-rate implies that the 
disturbance dies away and the ice shelf is stable. We are 
herfe principally concerned with the positive growth- rate 
solution. 

Critical stress regimes 
The variation of growth-rate with stress coefficient for 

various wavelengths is illustrated in Figure 3. Three separate 
regimes can be distinguished. 

245 

https://doi.org/10.3189/S0022143000006572 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000006572


Journal of Glaciology 

~~----------------r---------~ 

~~, ---""" 
Cl) 
-E~ t---__ _ 

""8 
..c. .., 
:> 
0 0 

~ : r:::~~~~:::::::~~;~;~~~~~+~~~~~A~=~7'~5;;;1 cil ~ 

> 

o 
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~ Stress (Non-DcmensconoLJ 

Fig. 3. Variation of non-dimensional growth rate y with 
stress coefficient 1: for various values of non-dimensio~al 
wavelength n. (n = 3 and pi/ pw = 0.75). The crlllcal 
formation wavelength for a given value of a is that with 
the largest growth-rate and hence is given by the envelope 
to the above curves. 

(i) For sufficiently small stress coefficients in the range 
a < a < ae the growth- rate is always negative irrespect

ive cof the wavelength. Thus in this regime the ice shelf is 
stable and all disturbances will be damped out. 

(ii) In an extending flow region with a > ae, positive 
growth-rates occur, but these are a monotonically increasing 
function of wavelength. Thus the wavelength with the 
largest growth-rate is theoretically infinite. This means that 
the ice shelf will tend to respond to perturbations by 
thinning or thickening uniformly over its entire length. Thus 
again in this regime one would not expect waves to grow. 

(iii) For a sufficiently large compressive stress 
coefficient, so a < - ac' the growth-rates are positive and 
have a maximum at a definite critical wavelength which 
depends on the value of a. Thus in this regime one would 
expect waves of a definite finite wavelength to form. It is 
to be noted that even in this regime waves with a 
non-dimensional wavelength less than about 2 have negative 
growth-rates, so that this theory predicts that only waves 
whose initial wavelength is greater than about twice the 
local ice thickness can form under any circumstances. As 
shown in Figure 4, the critical formation wavelength 

~'~------------------------------------------------~ 

o 

7+-----~------,------.-----.------'1~5----~1~0----:-O;.;5~ -i.O -3 .5 -3.0 -2.5 -2.0 - . - . 
Stress (Non-Di..mensl.onoLl 

Fig. 4. Variation of non-dimensional growth rate y with 
stress coefficient a (for negative a) for various values of 
non-dimensional wavelength). (n = 3 and pi/ pw = 0.75). 
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Fig. 5. a. Variation of critical formation wavelength with 
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n. 
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Fig. 6. Variation of critical stress coefficient -ac ' at which 
waves can first form, with density ratio Pi/ P

w 
for 

various values of creep index n. 

increases from around 2 when a = -ac - - 0.3 to 6 when 
a = - 2.0 and 8 when a = - 4.0. As shown in Figures 5 
and 6, the critical wavelength has only a slight dependence 
on n but the value of the critical stress coefficient a c de
creases significantly as n or the density ratio p/ Pw is 
increased. 

Critical back pressures 
The stress coefficient a is a measure of the deviatoric 

stress in the shelf. It is related to the "back pressure" P by 
the formula 

(42) 
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which is obtained by eliminating the strain- rate K between 
Equations (11) and (27). Thus for waves to form the back 
pressure must exceed the critical value pc. where 

(43) 

Estimates of the values of the stress coefficient u in 
the Ross Ice Shelf can be made from the data on back 
pressure given by Thomas and MacAyeal (1982) and ice 
thickness by Bentley and others (\ 979). Values vary from 
0.08 at the ice front. where the back pressure P = 0 to 
around 0.00 at Crary Ice Rise or behind Roosevelt Island, 
where the retarding force F = Ph - 2 x 108 N m-I and 
the ice thickness is 500-550 m. These estimates of u are 
hence never compressive; they are however obtained by 
averaging data over a relatively large area. Here we require 
more localized information obtained from the neighbourhood 
of pressure ridges.For the two folds near Camp Michigan, 
Kehle (1964) estimated the value of the stress coefficient to 
be -1.9, which is well into the region where waves can be 
expected to form (Figs 3 or 4). Similarly, preliminary 
estimates (see later) in the region where the Pram Point 
pressure ridges are forming on the McMurdo Ice Shelf give 
compressive stress coefficients of the order of -1.3 . 

The above analysis is two-dimensional assuming the 
ice shelf is deforming under plane-strain conditions. 
However. as will be shown in the next section, the presence 
of lateral strain-rates can have a significant effect on the 
stability of the shelf. Further discussion of the comparison 
of the theory with available field data is hence delayed 
until after this extension of the theory has been presented. 

A note on the impossibility of wave propagation 
In the above analysis it has been shown that, if one 

looks for solutions which vary as exp(Gt) with time and 
exp(ikx), then the growth-rate G and wave number k are 
simultaneously real. Similarly, solutions which are periodic in 
time, varying as exp(iUll), have real exponential variations 
with distance. It is hence impossible to find propagating 
wave solutions, varying as exp i(wt - kx). This is not 
surprising in view of the quasi-static nature of the theory. 
As noted by Thompson (1979), it would be necessary to 
include the inertia terms in the equation of motion in order 
to study the possible development of progressive waves. This 
has not been attempted here. 

THE EFFECT OF LATERAL STRAINING 

Zeroth-order solution 
Thomas (1973) generalized Weertman's steady-state 

solution to allow for lateral straining the in the y-direction. 
The zeroth-order strain-rates in Equation (6) are now 
replaced by 

e (0) = K e (0) = aK, e (0) 
xx ' yy zz - (1 + a)K (46) 

where a e (0) /e (0) is the ratio of lateral to .. yy xx 
longltudmal stram-rates. The previous theory can be 
modified to study the effect of lateral strain-rates on the 
growth of wave instabilities. The axes of the waves are still 
assumed to be normal to the x-principal strain-rate 
direction. The second strain-rate invariant is now 

(47) 

and the zeroth-order viscosity is 

(48) 

From the flow rule in Equation (I) the principal stress 
difference 

(49) 

Since uz /O) is still given by Equation (9) by equilibrium, 

(50) 
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Integrating through the ice thickness and introducing the 
back pressure P and stress coefficient u as before, we 
obtain the modified form of Equation (42): 

(I + ta)u = tt.p - P/Pigh. (51) 

The effect of lateral spreading is hence to introduce the 
(I + ta) term on the left-hand side. It is important to note 
that if a < - 2, a will have the opposite sign to the 
right-hand side of Equation (51). For example, at the 
seaward edge of an ice shelf, where P = 0, it is possible to 
have a compressive strain-rate (K < 0) in the x-direction 
(normal to the ice front) provided the magnitude of the 
lateral extensional strain-rate in the y-direction is greater 
than 21KI. 

Perturbation analysis 
The perturbation analysis proceeds in exactly the same 

way as before. Since the magnitudes of the zeroth-order 
strain-rates in the x- and z-directions are no longer equal, 
the "effective viscosities" for superposed deformations in 
these directions are now different. The perturbed 
stress/strain-rate Equations (16) are replaced by 

where 

"x = 110(2 + (\ + n)a + 2n(2)/2n(\ + a + ( 2
), 

I1 z = J.Io(2 + (3 - n)a + (I + n)a2 )/2n(\ + a + 

} (52) 

(53) 

Both expressions reduce to J.Io/n when a - 0 and to 110 
when n = 1. 

Introducing a stream function and substituting in the 
equilibrium equations, we again arrive at the an,isotropic 
biharmonic Equation (21) but with n replaced by n , where 

n' = (l + Q + a')j(l + a + a2 (1 + 3n)/4). (54) 

The anisotropies introduced by the non-linear power law 
and the different background strain-rates are hence 
combined in the single parameter n'. The derivation of the 
boundary conditions proceeds as before and again it is 
found that the only modification to Equations (26) and (28) 
is that n replaced by n'. 

The variation of n' with a for various values of n, as 
given by Equation (54), is shown in Figure 7. As a 
increases from zero, the value of n' decreases monotonically 
to 4n/(3 + n) when a - I and tends a,symptotically to 
4n/(1 + 3n) as a -- CD. The value of n also decreases 
initially for negative values of ex, reducing to 4n/(1 + 3n) 
when a = -I and to I (for all n) when a = -2; it then 
increases again slightly to 4n/(I + 3n) as a .. - CD. In no 
case is the value of n' less than unity. 

Destabilizing effect of lateral straining 
The variation of the critical stress coefficient at which 

buckling occurs U c with a can be determined by combining 
Fi&ures 6 and 7. In general. the value of Uc increases with 
I al. However, the effect of lateral straining on the onset 
of buckling is best illustrated in Figure 8 where the value 
of the non-dimensional critical back pressure P c/ Pigh. given 
by Equation (51), is plotted against -et for n = 3 and for 
various density ratios. For a in the range 0 to -I there is 
only a small decrease in the critical back pressure. This is 
because the reduction in Pc caused by the (1 + ta) term in 
Equation (51) is more or less balanced b'y the increase in 
the value of Uc caused by the increase in I al. However, the 
first effect is dominant when a < -I and Pc/pigh decreases 
to tt.p when a = -2 and then becomes zero at some value 
between -2.3 and -2.5 depending on the density ratio. 
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Fig. 7. Variation of "effective" creep jndex n' with lateral 
straining coefficient Cl =' ey/O) /exx(O) for various values 
of creep index n. 

Pc/Mh 

0,6 

0,4 

0,2 

o 

r--_ 0,7 

0,8 

0,9 

1.0 
-DC 

Fig. 8. Variation of critical back pressure Pc' at which 
waves can be expected to form, with the lateral straining 
coefficient ex for various density ratios Pi/ Pw-

The presence of extensional lateral strain-rates (Cl < 0) 
hence has a strong destabilizing effect and folds will form 
at a lower back pressure. In particular, on the seaward edge 
of an ice shelf where the back pressure is zero, the theory 
predicts that folds will still form provided the ratio of 
lateral extensional strain-rates to longitudinal compressive 
ones exceeds 2.3. This prediction hence supports, in general 
terms, Robin's (1979) hypothesis that these waves are caused 
by excessive lateral extensional strain-rates. 

If both the x and y strain-rates are compressive (Cl > 
0), then the value of the critical back pressure is increased. 
For example, if Cl = I, so that the strain-rates are 
transversely isotropic in the plane of the shelf, the value of 
Pc/pigh is increased from 0.41, for plane strain with Cl = 0, 
to 0.50 (for p/ Pw - 0.8 and n - 3). Lateral compressive 
strain-rates hence have a stabilizing effect. 

Possible formation of oblique rollers 
Up to now it has been assumed that the axis of the 

train of rollers is at right-angles to a principal strain-rate 
direction. Intuitively this would seem to be necessary since 
the strain-rates achieve their maximum value in the 
principal directions. The limited amount of available field 
data also supports this conjecture. However, it proves a 
relatively simple matter to investigate the formation of 
waves aligned at an angle to the principal strain-rate 
directions. 
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Suppose as before that the x- and y-axes are the 
principal strain-rate directions with strain-rates K and etK (Cl 

( 1), but that the train of folds forms with axes aligned 
perpendicular and parallel to the x' - and y' -axes, which 
are inclined at an angle e to the principal axes. The 
strain-rates referred to the primed axes are hence 

e' xx = K(cos
2
e + Cl sin

2
e) = K', 1 

e' yy = K(cxeos2e + sin2e) = Cl' K', 
, 

e xy = -(1 - Cl) cose sina. 

(55) 

" , . h h Since e e = 0 and e xy does not enter elt er t e 
zeroth-o;!er solu{~n or the subsequent perturbation analysis, 
the above results apply equally well to the x', y', z system 
of axes. The only change is that ex and K are replaced by 
0:' and K' as defined in Equations (55). The new 
strain-rate ratio 0:' e' yyle' xx is expressed in terms of Cl 

and e by 

(56) 

and the modified anisotropy parameter n' by Equation (54) 
but with Cl replaced by Cl'. The resulting critical compres
sive stress coefficient a;(e) defined in terms of K' can 
then be found from Figures 6 and 7. FinaJly, the critical 
compressive-stress coefficient, referred to the principal x
and y-axes is obtained from a; by 

l
a/a) = a;(e)(K/K '(e))n . (57) 

In order to deduce the orientation at which waves are likely 
to form, we look for the value of a which gives the lowest 
value of ac- It is found that whilst a;(e) can ~ncrease ~r 
decrease with a depending on the value of Cl, thiS effect IS 

always outweighed by the fact that (K/K' (e))l/n increases 
with e, so that in all cases ac obtains its minimum at a .= 
O. This confirms our previous assumption that waves wlil 
develop normal to the maximum compressive strain-rate 
direction. 

THE EFFECT OF THROUGH-THICKNESS TEMPERA
TURE VARIATIONS 

So far the model used has neglected the variation of 
the effective viscosity through the thickness of the ice due 
to temperature and density gradients. If instead of being 
assumed constant the viscosity is regarded as a known 
function of the through-thickness variable z, then the 
Equation (21) for the perturbation stream function is 
modified to 

2 
""'xxxx+ 2( 

11 
1) "" xxzz + ",,'zzzz' 

(58) 

where J.Io(z) is the zeroth-order viscosity. The derivation of 
this equation is given in the Appendix, where it is also 
shown how the four boundary conditions (24) to (26) are 
modified. 

In view of the way in which J.Io and its derivatives 
enter Equations (58), it is convenient to assume an 
exponential variation of viscosity with depth, i.e. 

J.Io(z) = 110(0) exp (sz/h) (59) 

where s is a dimensionless "decay constant which is a 
measure of the specific viscosity gradient J.Io/1fo = s/h. Its 
value can be deduced from estimated values of the viscosity 
on the top and bottom surfaces: 

(60) 
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With this choice of viscosity function the governing 
Equation (58) and associated boundary conditions are still 
linear with constant coefficients and the techniques of 
classical stability analysis can still be employed. 

The actual variations of viscosity with depth arise 
from the dependence of the flow-law parameter B with 
temperature (cf. Equation (5» given by the Arrhenius 
relationship 

B(T) = Bo exp(Q/nRT) (61 ) 

where T is absolute temperature, Q is the activation energy, 
and R is the gas constant. Comparison between Equation 
(61) and the assumed exponential distribution for the 
McMurdo Ice Shelf in the area of the Pram Point pressure 
rollers shows good agreement as illustrated in Figure 9. 
Thomas and MacAyeal (1982) have suggested that the 
van at IOn of viscosity with density is linear and can be 
modelled by the relation 

B(z) = B(T)(p(z) -p(h»/(Pi - p(h» (62) 

where p (z) is the firn density at a height z. This can 
have a large effect on the variation of B in a thin ice 
shelf, as at Pram Point, as shown in Figure 9. No attempt 
has been made to model the effect of density variations 
here however, as such a variation would mean that Equation 
(58) would no longer have constant coefficients. 

N 

E 
::I: <X> 
t-
a.. 
u.J 

Cl~ 

Linear Dependence of 
B upon density 

2 4 6 8 10 

Exponential fitted 
to B 

12 14 16 18 20 

B (x 107
) - F low Law Parameter 

Fig. 9. Estimation of the variation of flow-law parameter B 
(Nm- 2 s 1/3) with depth for McMurdo Ice Shelf at Pram 
Point; (a) assuming exponential law (Equation (59)), (b) 
using the Arrhenius relationship (Equation (61)). and (e) 
allowing for density variations through Thomas and 
MacAyeal's equation (Equation (62)). 

The variation of wavelength and growth··rate with 
stress coefficient was found to be very insensitive to 
variations in temperature gradient, provided the stress 
coefficient was taken to be a, the mean value 
averaged through the ice thickness. Since a is proportional 
to the viscosity, a too varies exponentially through the ice 
thickness, so that 

a ~ a(h)(1 - e-s)/s = o(O)(es - I)s . (63) 

On the bottom surface of the ice shelf the temperature 
is -1.5 ·C. A top-surface temperature of -20·C corresponds 
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to a value of s of around unity. The computed graphs of 
wavelength ). and growth-rate G/ K against mean stress 
coefficient ii with s = I were found to be indistinguishable 
from those in Figure 5 for s = 0, although the value of a 
was found to increase (Fig. 10). c 

1.00 0.86 0.111 0.. 0." 
I1EAN ICE SHELf' DENS ITY 

0.75 

Fig. 10. Effect of exponential viscosity gradient on critical 
stress -ae at which waves form (n = 3). 

COMPARISON OF THEORETICAL PREDICTIONS WITH 
FIELD DATA 

Summary of theoretical predictions 
The classical linear-stability analysis presented in the 

previous sections has led to the following predictions: 

(a) The ice shelf will be unstable to small perturbations and 
will begin to buckle and form waves when the horizontal 
strain-rate K is sufficiently compressive for the 
dimensionless stress coefficient a - 2J1.oK/p·gh to be less 
than some critical value -ae. The value of a decreases 
with increasing mean density ratio pj/ Pw anl creep-law 
index n (Fig. 6), whilst the formation growth-rate and 
wavelength increases with the magnitude of the stress 
coefficient (Fig. 5). The instability criterion can 
alternatively be expressed in terms of a critical back 
pressure Pc (Equation (43». 

(b) Local lateral extensional strain-rates have a destabilizing 
effect in that waves will form at lower values of 
compressive strain-rate or back pressure (Fig. 8). By 
contrast, lateral compressive strain-rates have a stabilizing 
influence. Waves will always form with their ridges at 
right-angles to the local compressive strain-rate direction. 

(c) The through-thickness variation of viscosity resulting 
from temperature gradients can be adequately modelled by 
treating the viscosity as uniform and equal to its mean 
value. The variation in viscosity due to density variations 
has not been studied. 

Camp Michigan pressure rollers 
To date one of the most extensively studied sets of 

pressure rollers is those occurring in the Bay of Whales area 
of the Ross Ice Shelf near Camp Michigan. These have 
been described and analyzed by Zumberge and others (1960) 
and Kehle (1964). The strain-rate measurements reported by 
Kehle in Zumberge and others (1960) show that, when they 
form, these rollers have their ridges at right-angles to the 
direction of maximum compressive strain-rate. In many 
cases the lateral strain-rates are extensional, producing heavy 
crevassing at right-angles to the lines of the ridges. Kehle 
(1964) discussed two such rollers in detail, which have 
wavelength/thickness ratios of 4.4 and 5.8. Kehle also 
presented a theory for predicting these wavelengths based 
on BioI's (1965) model of folding of rock strata. In this 
theory, which is based on plate theory, the material is 
modelled by a linear visco-elastic material, although in the 
application to ice shelves Kehle put the elastic moduli to 
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zero and so, in effect, used a linear viscous model (n = I). 
He argued that this is a reasonable approximation to the 
real behaviour of ice provided the strain-rates do not 
change significantly over the distance of several wavelengths. 
However, the present more detailed analysis has shown that 
this assumption is false, since the non-Newtonian behaviour 
results in the effective viscosities for the perturbed flow in 
extension or compression being different to that in shear, 
which in turn means that the power- law index n has a 
significant influence on the onset of buckling, particularly 
on the initial growth-rate. 

Kehle estimated that the stress coefficients a in the 
region of the two rollers are, in the present notation, 
- 1.91 ± 0.05 and - 1.90 ± 0.1. With n = 3, such a stress 
coefficient gives a non-dimensional wavelength of 5.7 . The 
excellent agreement with the second fold is fortuitous. As 
emphasized by Kehle, the instability analysis only predicts 
the formation wavelength of the folds. Once formed, the 
wavelength of a fold will decrease and its amplitude 
increase as it moves fo rward through a region of 
compressive strain-rates. Thus, in order to compare the 
theoretical predictions with field data it is necessary to 
study a train of waves from the point at which the waves 
form. 

Pram Point pressure rollers 
The train of pressure rollers covering an area of 1.2 

km by 1.8 km situated about 1.5 km north-east of Scott 
Base (Fig. 11) has been described by many writers 
including Stuart and Bull (1963), Hochstein (1967), and 
Holdsworth and Heine (1979). Recently, McCrae (1984) has 
presented a summary and analysis of glaciological 
measurements made in this area between 1960 and 1984. 

The pressure rollers form in an area in which the ice 
is moving directly towards the land on Hut Point peninsula. 
In fact, McCrae (1984) observed that recent pole 
measurements indicate that the ice moves right up to the 
coastline, instead of turning towards the open sea as 
previously thought, so that the ice must all be lost by 
bottom melting. The rollers become visible at just over I 
km from Ross Island. Field measurements reported by 
Holdsworth and Heine (1979) revealed that the f irst 
detectable wave had a wavelength of 91 ± 2 m. From then 
on the wave-length decreased to 35 m whilst the amplitude 
increased from about 1 m to 3 m . 

Hochstein (1967) gave two surface-elevation profiles 
across the pressure ridges. Although these profiles were 
measured along lines (approximately) at right-angles to the 
ridges, their direction deviated by up to 40 0 from the 
stream-line direction. This is because the rollers do not 

I 
N 

I 

MCMURDO 
ICE 

SHELF 

Fig. 11. Location of Pram Point pressure rollers on 
McMurdo Ice Shelf near Scott Base. 
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remain parallel as they move across the shelf due to 
shearing in the horizontal plane. In an idealized shelf in 
which the deformation is plane strain with no cross 
shearing, the wavelength of the rollers should decrease 
linearly with distance. This can be seen as follows: assuming 
that, once formed, the waves remain embedded in the ice, 
their wavelength decreases at a rate equal to the 
compressive strain- rate, so 

d>. 

>. 
- IKI dt 

du 
(64) 

u 

where u is the local speed of the ice. If Uo is the speed of 
the shelf at the point where a wave first forms, with 
wavelength >'0 say, then this wave will have a wavelength 
given by 

when it has travelled a distance x in time t. This epression 
is obtained by integrating Equation (64). Regression fi ts to 
the data given by Hochstein (1976) are shown in Figure 12 
and show reasonable agreement with the linear law despite 
the deviation from the idealized plane-strain assumption. 
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~+--IIXI~."'" -:c .. ~.,--,..,,.,..,... , - .. ~.,"""""":-:.,-",,:r-:.,-',,,:r:c., -:::! ... , 
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Fig. 12. Linear regres sion fits to wavelengths of profiles of 
Pram Point pressure rollers given by Hochstein ( 1967) . 

Clearly one of the major problems in comparing the 
predictions of the instability analysis with field data is in 
actually identifying the point at which the wave train 
forms. In an area, such as the McMurdo Ice Shelf where 
the strain- rates are becoming progressively more compressive 
as the ice approaches a land mass, it could be argued that 
the first wave should form at the point where the stress 
coefficient a is equal to -ac (- - 0.3), since from the 
theory this corresponds to the lowest value of compressive 
strain-rate at which a wave can form. However, as shown 
in Figure 5b, the growth-rate of such a wave is extremely 
small and will produce vertical velocities small compared 
with the local accumulation rate. The accumulation rate on 
this area of the shelf is about 0.4 m/year, whilst the 
compressive strain-rate is of the order of 0.06/year 
(McCrae, 1984). With these figures it would require a wave 
amplitude of 7 m for the vertical velocity to equal the 
accumulation rate if the non-dimensional growth-rate G/ K = 
1, but only an amplitude of 0.7 m if G/K = 10. We 
conclude from Figure 5b therefore that it is unlikely that 
any forming wave could be detected in a region in which 
the magnitude of the stress coefficient is less than around 
unity. 

The stress coefficient is given by a = - 2BIKll/n/Pigh 
(cr. Equation (27» and so is relatively insensitive to the 
value of the strain-rate K. However, its value does depend 
critically on accurate knowledge of the mean value of the 
flow-law parameter B, of the mean density, and of the ice 
thickness. McCrae (1984) has given several estimates of the 
mean 'value of B for the Pram Point area, using either 
Thomas and MacAyeal's formula (Equation (62» or values 
of B(n for pure ice given by Paterson (1981). When due 
account is taken of the variation of B with density, as in 
Equation (62), and using the density and temperature 
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profiles obtained by Hochstein and Risk (1967), estimates of 
7.7 :t: 0.2 x 107 N m-2 s i for the mean value of B were 
obtained from the above two sources. This figure, together 
with a strain-rate of 0.06/year, mean density of 0.71 x IOs 

kg/mS, and an estimated ice thickness of 20 m, gives a 
value for a of -1.3. The ice-thickness estimate is that given 
by Holdsworth and Heine (1979) for the area in which the 
rollers are forming and is calculated from the known 
free board of the shelf and the depth of the brine layer. It 
is compatible with the figure of 19 :t: 5 m given by 
Hochstein (1967) obtained by d.c. resistivity measurements. 
Hochstein also obtained a thickness value of 16.5 m from a 
drill site on the crest of the sixth roller. A stress 
coefficient of -1.3 corresponds to a non-dimensional 
wavelength of 4.2 m and an actual wavelength of 84 m, 
which is hence in good agreement with the observed value 
of 91 :t: 2 m. Thicknesses of 18 m or 22 m would give 
predicted wavelengths of 78 and 88 m, respectively. (Note 
that since the non-dimensional wavelength varies 
approximately linearly with a, the actual wavelength is 
rather less sensitive to uncertainties in the shelf thickness.) 
In view of the uncertainties in the values of the various 
quantities needed to calculate the stress coefficient, 
obtaining predicted wavelengths within 10% of observed 
values is held to be a reasonable validation of the theory. 
In this area the lateral strain-rate, which is extensional, is 
only - 10% of the longitudinal value and hence has an 
insignificant effect on the stability of the shelf. 

DISCUSSIONS AND CONCLUSIONS 

The theoretical model used here to study the instability 
of floating ice shelves paralles that used by Smith (1977) to 
study the growth of folds in rock strata. The main 
difference between the two analyses is in the boundary 
conditions, which here describe the stress conditions on the 
upper free surface and lower sea-ice interface. In contrast, 
in Smith's analyses the buckling layer is confined between 
two semi-infinite layers with different viscosities. Smith 
found that the instabilities could sometimes be "fold-like" 
and sometimes be of "pinch-and-swell" type, as in a 
"boudinage", depending on the relative viscosities of the 
layers. In the ice-shelf problem, however, the analysis 
always predicts a "fold-like" instability, with the top and 
bottom waves being in phase but with a slightly larger 
amplitude on the bottom surface (typically by 5%). 

The appropriateness of Smith's analysis to the ice-shelf 
problem w~ recognized by Holdsworth and Heine (1979), 
who also dIscussed the relative merits of the two types of 
wave topographies. Field evidence of the "fold-like" nature 
of pressure rollers is needed to finally confirm the 
appropriateness of the analysis. 

The theoretical model developed in this paper provides 
much potentially valuable information on the buckling 
instability of ice shelves. However, there is a major problem 
of interpretation in that it is not clear when a forming 
wave will have a sufficiently large growth-rate to be 
detectable. The first observable wave of the Pram Point 
train has an amplitude of - I m with a theoretical growth
rate of 0.35 m/year. The local surface accumulation is about 
0.4 m/year which suggests that these two figures should be 
comparable before a developing wave will be observed. The 
predictions of the pressure-roller wavelengths, both at Camp 
Michigan and Pram Point, are encouraging and it is hoped 
that the availability of this theory will stimulate further, 
more detailed, field observations in these and other areas. 

The basic theory has been successfully extended to 
cope with three-dimensional effects such as lateral 
stra.in?-rates and with the through-thickness viscosity 
vanatlOns caused by temperature gradients. The theory does 
not ~ yet include the influence of through-thickness density 
gradIents, apart from when working out the mean effective 
viscosity. Such density variations may well be important in 
areas where the ice shelf is thin as at Pram Point. The 
pres~nt theory is purely mechanical and makes no attempt 
to .. mclude the effect of thermo-mechanical coupling. 
Wllhams and Hutter (1983) have shown that this coupling 
can produce instabilities in ice shelves. 
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APPENDIX 

Effect of viscosity varla/lOns 
The development of the theory presented in the text 

must be modified when the viscosity varies through the ice 
thickness. We assume that the viscosity in the base solution 
110 is a known function of z. The zeroth-order background 
stresses are still given by Equation (9) and the perturbation 
stress/strain-rate relations are of the form of Equation (16). 
However, some extra terms arise when these stresses are 
substituted in the equilibrium equations, and Equations (20) 
giving the pressure gradients are modified to 

[
I I] I 

p'x· /Jo ;;- - 2" ""xxz + 2 11oljl,zzz + 

I , 
+ 2/Jo (IjI, zz - IjI, xx) (AI) 

where ~ == dllo/ dz. 

Eliminating p between these relations gives the modified 
equation for the stream function 

IjI, xxxx + 2~ - I]"" xxzz + IjI, zzzz + 

(A2) 

Two out of the four boundary conditions also have to be 
modified. The perturbation stresses on the top surface are 
still given by Equations (24) and (25), with 110 being 
evaluated at z - h but, after being expressed in terms of 
the stream function and pressure, the elimination of p,x 
from Equations (A.I) yields an extra term involving the 
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viscosity gradient z = h. In consequence the boundary con
dition in Equation (26) is replaced by 

(A3) 
+ (I - 4l n)IjI,xxz - ""zzz Z 0 

where a(h) is the value of the stress coefficient, defined by 
Equation (27), but evaluated on the upper surface of the 
shelf. Similarly, the boundary condition in Equation (28) on 
the lower surface becomes 

(A4) 
+ (I - 41n) IjI,xxz - ""zzz = O. 

The two kinematic boundary conditions in Equation (33) are 
unaltered. 

When the viscosity variation is taken to be exponential 

J.Io(z) .. 110(0) exp(sz/h), (A5) 

the ratio ~//Jo = s/h is constant through the ice thickness 
whilst a(h)/ a( 0) - exp(s). 

Wave solutions of Equation (A2) of the form 
exp(ikx) exp(vkz) exist, provided v is a root of the quartic 
equation 

(A6) 

where w = (2 - nand S z sikh. This equation reduces to 
Equation (35) when s z O. Denoting the four roots of this 
equation by v j' the first two rows of the fundamental 
matrix B in Equation (40) are still as in Equation (39) but 
the last two rows are modified to 

((1 - a(h)hk(S + v}XI + vj) + 4a(h)hkv/n) exp(hkv} 

and (A7) 

( - «Ap/(I - Ap» exp(hkS) + a(h)hk(S + vj»(1 + vj) + 

+ 4a(h)hkv in). 
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