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The disease- and mortality-related difference between biological age based on DNA methylation and
chronological age (�age) has been found to have approximately 40% heritability by assuming that the
familial correlation is only explained by additive genetic factors. We calculated two different �age measures
for 132 middle-aged female twin pairs (66 monozygotic and 66 dizygotic twin pairs) and their 215 sisters
using DNA methylation data measured by the Infinium HumanMethylation450 BeadChip arrays. For each
�age measure, and their combined measure, we estimated the familial correlation for MZ, DZ and sibling
pairs using the multivariate normal model for pedigree analysis. We also pooled our estimates with those
from a former study to estimate weighted average correlations. For both �age measures, there was familial
correlation that varied across different types of relatives. No evidence of a difference was found between
the MZ and DZ pair correlations, or between the DZ and sibling pair correlations. The only difference was
between the MZ and sibling pair correlations (p < .01), and there was marginal evidence that the MZ pair
correlation was greater than twice the sibling pair correlation (p < .08). For weighted average correlation,
there was evidence that the MZ pair correlation was greater than the DZ pair correlation (p < .03), and
marginally greater than twice the sibling pair correlation (p < .08). The varied familial correlation of �age
is not explained by additive genetic factors alone, implying the existence of shared non-genetic factors
explaining variation in �age for middle-aged women.
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DNA methylation, one type of epigenetic modification
mainly occurring at the CpG dinucleotide, is associated
with the regulation of gene expression. DNA methylation
does not remain constant over time (Fraga et al., 2005;
Wong et al., 2010), even in early infancy (Martino et al.,
2013). Previous studies suggest there are age-sensitive sites
of DNA methylation (Alisch et al., 2012; Bell et al., 2012;
Bocklandt et al., 2011; Florath et al., 2014; Hannum et al.,
2013; Johansson et al., 2013; Rakyan et al., 2010).

Six studies have developed algorithms that use DNA
methylation to predict chronological age (Bocklandt et al.,
2011; Florath et al., 2014; Hannum et al., 2013; Horvath,
2013; Koch & Wagner, 2011; Weidner et al., 2014). The pre-
dicted value is regarded as the methylation-based biological

age (mage) for the corresponding tissue. In particular, Han-
num and colleagues developed an age predictor based on
methylation levels at 71 probes from the Illumina 450K
Methylation arrays using data from whole blood (Hannum
et al., 2013). Another age predictor based on methylation
levels at 353 probes common to the Illumina 450K and 27K
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Methylation arrays using data from multiple tissues and cell
types was developed by Horvath (2013).

Methylation age acceleration index, defined as �age
= mage — chronological age (Horvath, 2013), represents
the inconsistency between methylation-based biological age
and chronological age. There is now evidence that both the
�age measures from the Hannum and Horvath predictors
are associated with risks of some diseases, and of all-cause
mortality (Horvath et al., 2014, 2015; Marioni et al., 2015).

Both the Hannum �age and the Horvarth �age were
found to be correlated in adolescent twin pairs and their
family members (Marioni et al., 2015), and Horvarth �age
was also found to be correlated in a small number of middle-
aged twin pairs (Horvath, 2013). The heritability of �age
was estimated to be 40%, based on assuming that the vari-
ance is composed of an additive genetic variance (A) and
an individual-specific variance (E) (i.e., non-shared envi-
ronmental factors) only. However, this assumption was not
tested.

Of the six published studies using DNA methylation to
predict chronological age, two (Bocklandt et al., 2011; Flo-
rath et al., 2014) did not provide the identifiers and coef-
ficients of probes used in their regression models, and we
did not get this information from contacting the authors
so could not apply their predictors to our dataset. The mage

measured by the predictors from the Koch study (Koch &
Wagner, 2011) and the Weidner study (Weidner et al., 2014)
had a low correlation with chronological age in our dataset
(r = 0.31 for the Koch predictor; r = 0.38 for the Weidner
predictor), so we excluded these two predictors to measure
mage. We therefore used the two predictors from the Han-
num study (Hannum et al., 2013) and the Horvath study
(Horvath, 2013) for analysis.

In this study, we estimated the familial correlation of
�age measured by the Hannum and Horvath predictors us-
ing blood samples donated by 132 middle-aged female twin
pairs and 215 of their sisters participating in a twin fam-
ily study of mammographic density, a risk factor for breast
cancer, to explore possible causes of variation in �age.

Materials and Methods
Subjects

Subjects were from the Australian Mammographic Density
Twins and Sisters Study (AMDTSS; Odefrey et al., 2010;
Stone et al., 2007), in which female twins and their sisters
were recruited between 2004 and 2009. When recruited,
the participants were breast cancer free. The study was ap-
proved by the Human Research Ethics Committee of The
University of Melbourne, and all participants gave writ-
ten informed consent. Participants completed question-
naire surveys through telephone-administered interviews
and donated blood samples. Questionnaires collected de-
mographic information and self-reported weight, height,
and other known and putative breast cancer risk factors.

TABLE 1

Summary of Twin Family Structures

Family size Family type Number

3 MZ pair + 1 sister 28
3 DZ pair + 1 sister 35
4 MZ pair + 2 sisters 26
4 DZ pair + 2 sisters 23
4 2 DZ pairs 1
5 MZ pair + 3 sisters 6
5 DZ pair + 3 sisters 5
5 2 MZ pairs + 1 sister 1
6 MZ pair + 4 sisters 4
6 DZ pair + 4 sisters 1

Note: MZ = monozygotic twins, DZ = dizygotic twins.

Blood samples were couriered to the laboratory within 48
hours of collection, and were processed to generate dried
blood spot Guthrie cards.

In this study, in which we oversampled twin families with
one or more sisters, 479 women comprising 66 MZ pairs, 66
DZ pairs, and 215 sisters from 130 families were selected for
DNA methylation measurement. The mean chronological
age was 56 years (range 40–78 years; standard deviation 8
years). There were a total of 552 sibling pairings (including
twin-sister pairs). Table 1 shows that the majority of families
(87%) had three or four members, with 48% containing one
twin pair and one sister, and 38% containing one twin pair
and two sisters.

DNA Methylation Measurement

DNA was extracted in batches of 192 samples from dried
blood spots using a method developed in-house (Joo et al.,
2013). Briefly, for each sample, 20 blood spot punches 3.2
mm in diameter were added to 180 �l phosphate buffered
saline and 20 �l protease. After an overnight incubation at
56°C, the blood spots were homogenized twice using the
TissueLyser II (Qiagen, Hilden, Germany) at 25 hertz for
30 seconds. The resulting supernatant was transferred to
clean collection microtubes and DNA was extracted using
the QIAamp

R©
96 DNA blood protocol as per manufacturers’

instructions (Qiagen, Hilden, Germany). DNA quantity was
assessed using the Quant-iTTM Picogreen R© dsDNA assay
(Life Technologies, Grand Island, NY) measured on the
EnSpire

R©
Multimode Plate Reader (PerkinElmer, Waltham,

Massachusetts).
One microgram of DNA was sodium bisulfite converted

using the EZ DNA Methylation-Gold protocol as per man-
ufacturers’ instructions (Zymo Research, Irvine, CA) and
eluted in 20 �l elution buffer. The success of bisulfite con-
version and the presence of DNA after bisulfite conversion
were evaluated using an in-house bisulfite-specific quanti-
tative PCR (Wong et al., 2015). Bisulfite-specific primers
(forward sequence: 5′ tAA GGT AtA ATt AGA GGA TGG
GAG GGA t; reverse sequence: 5′ aaC AAA CTC Aaa TAa
AAT TCT TCC TC) were designed to amplify a 134 bp
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region within breast cancer susceptibility gene BRCA1 (Gen-
bank: L78833.1). Lower-case letters correspond to bisulfite
converted cytosines.

Each reaction consisted of 1X SYBR Green I Master
(Roche, Basel, Switzerland), 300 pM each of forward and
reverse primers (Integrated DNA Technologies, Coralville,
IA), and 3 �l diluted bisulfite converted DNA (diluted 1:3
in nuclease free water). The reaction was equilibrated to
10 �l with nuclease free water (Life Technologies, Carls-
bad, CA). The bisulfite-specific qPCR assay was performed
on the LightCycler

R©
480 System (Roche, Basel, Switzer-

land) with the following cycling conditions: initial poly-
merase activation for 5 minutes at 95°C followed by
40 cycles of DNA denaturation for 10 seconds at 95°C,
primer annealing for 30 seconds at 60°C and extension
for 90 seconds at 72°C. Subsequent melting of the am-
plified product was performed from 97°C to 65°C for
60 seconds with fluorescent data acquired on the green
channel.

All DNA samples were assayed in duplicate. Good qual-
ity (non-degraded), non-bisulfite converted DNA extracted
from the U266 multiple myeloma cell line was used as a
negative control. Only DNA samples that amplified at least
five quantitation cycles earlier than the negative control
(Cq >5) were assayed on the Infinium HumanMethyla-
tion450 BeadChip array.

Epigenome-wide methylation was assessed using the In-
finium HumanMethylation450 BeadChip arrays (Sandoval
et al., 2011) in accordance with the manufacturer’s instruc-
tions. Briefly, a total of 200 ng of bisulfite converted DNA
was whole genome amplified and hybridized onto the Bead-
Chips. The TECAN automated liquid handler (Tecan Group
Ltd, Mannedorf, Switzerland) was used for the single-base
extension and staining steps. DNA samples extracted from
members of the same family were assayed on the same
beadchip to minimize potential beadchip batch effects. Ad-
ditionally, two randomly selected technical replicates (one
plate included three replicates) and two U266 cell line DNA
samples were included on each plate.

Methylation Data Processing

Raw methylation data was processed by Bioconductor minfi
package (Aryee et al., 2014), which includes normaliza-
tion of data using Illumina’s reference factor-based normal-
ization methods (preprocessIllumina) and subset-quantile
within array normalization (SWAN) for type I and II probe
bias correction (preprocessSWAN; Maksimovic et al., 2012).
An empirical Bayes batch-effects removal method, ComBat
(Johnson et al., 2007), was applied to minimize the technical
variation across batches. A total of 65 probes corresponding
to known single nucleotide polymorphisms, the identifiers
of which start with ‘rs’, were excluded. Probes with detection
p value higher than .01 were assigned as missing. Samples
with more than 5% missing probes were excluded, as were

probes having a missing value in one or more samples. After
cleaning, 479,957 probes for all 479 samples remained.

Statistical Methods

Analyses were based on beta values, defined as the ratio of
the methylated probe intensity to the sum of methylated
and non-methylated probe intensities. Ranging from 0 to
1, beta values approximate the percentage of methylation.

We calculated Spearman correlation coefficients for 11
replicate sample pairs and 119,794 non-replicate sample
pairs, and compared the coefficients using Wilcoxon rank
test to test if the observed variation in methylation was
due to biological causes. In the main analyses, for the 11
replicate samples, the methylation measurement we used
was the average of the two measurements.

Chronological age was defined as the age when the
blood was collected. The Horvath mage was calculated
using the online calculator (http://labs.genetics.ucla.edu/
horvath/dnamage/). The Hannum mage was calculated as
the sum of beta values in our study multiplied by the cor-
responding regression coefficients as reported by Hannum
and colleagues. �age was estimated by the mage measures
above minus the chronological age.

The two �age measures both reflect the difference be-
tween mage and chronological age, and they were highly
correlated with each other. Therefore, we combined the
two measures together to get one measure for the difference
between mage and chronological age. The combined mea-
sure was calculated as the average of the two �age measures
after standardizing each to have mean = 0 and standard
deviation = 1.

For each�age measure and the combined�age measure,
we estimated the familial correlation for different types of
relatives (MZ, DZ, and sibling pairs) under asymptotic like-
lihood theory using a multivariate normal model and the
software FISHER (Hopper & Mathews, 1982, 1994; Lange
et al., 1987). The mean values were adjusted for age and es-
timated cellular composition (Houseman et al., 2012; Jaffe
& Irizarry, 2014) by linear regression to remove the fixed
effect of these covariates. Familial correlation for MZ pairs
(rMZ), DZ pairs (rDZ), and sibling pairs (including twin-
sister pairs; rSib) were estimated simultaneously. The cor-
relations between estimates of rMZ, rDZ, and rSib were also
estimated. In order to compare rMZ, rDZ, and rSib, we fitted
five models: (1) rMZ � rDZ � rSib; (2) rMZ = rDZ � rSib; (3)
rMZ � rDZ = rSib; (4) rMZ = rSib � rDZ; and (5) rMZ = rSib =
rDZ. The relative goodness of fit between nested models was
assessed using the likelihood ratio test. In this analysis, four
tests were performed for each measure. To control for Type
I error, we took p = .013 (0.05/4) as our nominal threshold
for statistical inference.

The study of Marioni et al. (2015) used a similar twin
family design to ours to estimate familial correlations of
the Hannum �age and the Horvath �age. We contacted
the authors to obtain their estimates and combined with
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TABLE 2

Summary of the Hannum and Horvarth Measures for mage and
Δage

Summary Hannum measures Horvath measures

Mean mage (SD) for all
participants

57.28 (6.37) 55.54 (6.46)

Mean �age (SD) for all
participants

0.86 (5.52) -0.88 (6.10)

Correlation of mage with age
for all participants

0.72 0.66

Mean �age (SD) for MZ
twins

0.68 (5.38) -0.83 (5.71)

Mean �age (SD) for DZ
twins

1.39 (5.66) -0.55 (6.41)

Mean �age (SD) for sisters 0.64 (5.52) -1.10 (6.17)

Note: SD = standard deviation, MZ = monozygotic twins, DZ = dizygotic
twins.

ours using the fixed-effect model in the metafor package
in R (Viechtbauer, 2010) to estimate the weighted average
correlations.

We examined the aspect of familial variance shared by
the Hannum �age and the Horvath �age. The correla-
tions between two �age measures were estimated (Hopper
& Mathews, 1994; Lange et al., 1983) and compared across
different types of relatives as for the individual �age mea-
sures.

Results
The median Spearman correlation in beta values for 11
duplicate sample pairs was 0.986 (range 0.980–0.990), larger
than 0.982 (range 0.964–0.990) for non-replicate samples.
The difference was significant (p= .003), consistent with the
observed variation in methylation being due to biological
causes.

Table 2 shows that, for both the Hannum and Horvarth
measures, there was no evidence of a difference between
the means of mage and chronological age (both p = .06).
The correlation was 0.80 between the two mage measures,

and 0.76 between the two �age measures. For both �age
measures, there was no evidence of a difference in means
between the three types of relatives (p = .4 for the Hannum
�age; p = .7 for the Horvath �age).

Familial Correlation of the Individual �Age Measure

Table 3 shows that for both �age measures there was fa-
milial correlation (model V), and comparing with model
I shows that the familial correlation varied across different
types of relatives. For both �age measures, the correlation
between the estimates of rMZ and rDZ in model I was approx-
imately 0.04, while the correlation between the estimates of
rSib and either rMZ or rDZ was approximately 0.10. This
means that the estimates of rMZ, rDZ, and rSib were virtually
independent of one another.

For both �age measures, although the MZ pair corre-
lation was greater than twice the DZ pair correlation, and
the DZ pair correlation was approximately twice the sibling
pair correlation (model I), there was no statistically signif-
icant difference between the MZ and DZ pair correlations
(model II vs. model I), nor between the DZ and sibling pair
correlations (model III vs. model I). The only statistically
significant difference was between the MZ and the sibling
pair correlations (model IV vs. model I; both p < .005). Fur-
thermore, there was marginal evidence that the MZ pair cor-
relation was greater than twice the sibling pair correlation
(p = .08 for Hannum �age; p = .05 for Horvath �age).

Familial Correlation of the Combined �Age Measure

Table 4 shows that for the combined �age measure there
was familial correlation (model V), and the correlation var-
ied across different types of relatives (model V vs. model
I). The DZ pair correlation was approximately halfway be-
tween the MZ and the sibling pair correlations (model I).
However, again there was no statistically significant dif-
ference between the MZ and DZ pair correlations (model
II vs. model I), nor between the DZ pair and sibling pair
correlations (model III vs. model I). The only statistically

TABLE 3

Familial Correlation of the Hannum and Horvarth Δage Measures

Model I Model II Model III Model IV Model V
Correlations rMZ � rDZ � rSib rMZ = rDZ � rSib rMZ � rDZ = rSib rMZ = rSib � rDZ rMZ = rDZ = rSib

Hannum �age
MZ pair correlation (SE) 0.54 (0.08) 0.38 (0.08) 0.56 (0.08) 0.18 (0.05) 0.19 (0.05)
DZ pair correlation (SE) 0.25 (0.11) 0.38 (0.08) 0.16 (0.05) 0.26 (0.11) 0.19 (0.05)
Sibling pair correlation (SE) 0.15 (0.06) 0.14 (0.06) 0.16 (0.05) 0.18 (0.05) 0.19 (0.05)
-2 log likelihood 0 4.37 0.66 11.18 11.57
p value Ref .04 .4 < .001 .003
Horvath �age
MZ pair correlation (SE) 0.45 (0.10) 0.30 (0.08) 0.45 (0.10) 0.11 (0.05) 0.12 (0.05)
DZ pair correlation (SE) 0.20 (0.11) 0.30 (0.08) 0.10 (0.05) 0.21 (0.11) 0.12 (0.05)
Sibling pair correlation (SE) 0.09 (0.05) 0.09 (0.05) 0.10 (0.05) 0.11 (0.05) 0.12 (0.05)
-2 log likelihood 0 2.68 0.89 7.75 8.44
p value Ref .10 .3 .005 .02

Note: MZ = monozygotic twins, DZ = dizygotic twins, SE = standard error; Ref = Reference.
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TABLE 4

Familial Correlation for Combining the Hannum and Horvarth Δage Measures

Model I Model II Model III Model IV Model V
Correlations rMZ � rDZ � rSib rMZ = rDZ � rSib rMZ � rDZ = rSib rMZ = rSib � rDZ rMZ = rDZ = rSib

MZ pair correlation (SE) 0.53 (0.09) 0.43 (0.07) 0.53 (0.09) 0.18 (0.05) 0.22 (0.05)
DZ pair correlation (SE) 0.34 (0.11) 0.43 (0.07) 0.19 (0.05) 0.33 (0.10) 0.22 (0.05)
Sibling pair correlation (SE) 0.17 (0.06) 0.17 (0.06) 0.19 (0.05) 0.18 (0.05) 0.22 (0.05)
-2 log likelihood 0 2.26 2.18 9.76 11.67
p value Ref .1 .1 .002 .003

Note: MZ = monozygotic twins, DZ = dizygotic twins, SE = standard error; Ref = Reference.

TABLE 5

Cross-Trait Correlation Between the Hannum and Horvarth Δage Measures Across Different Types of Relatives

Model I Model II Model III Model IV Model V
Correlations rMZ � rDZ � rSib rMZ = rDZ � rSib rMZ � rDZ = rSib rMZ = rSib � rDZ rMZ = rDZ = rSib

MZ pair correlation (SE) 0.36 (0.08) 0.33 (0.06) 0.37 (0.08) 0.15 (0.04) 0.17 (0.04)
DZ pair correlation (SE) 0.29 (0.09) 0.33 (0.06) 0.15 (0.04) 0.29 (0.09) 0.17 (0.04)
Sibling pair correlation (SE) 0.13 (0.05) 0.13 (0.05) 0.15 (0.04) 0.15 (0.04) 0.17 (0.04)
-2 log likelihood 0 0.60 2.74 7.90 8.25
p value Ref .4 .1 .005 .02

Note: MZ = monozygotic twins, DZ = dizygotic twins, SE = standard error; Ref = Reference.

significant difference was between the MZ and the sibling
pair correlations (model IV vs. model I; p = .002).

Weighted Average Correlations Across the Two Stud-
ies

For the Hannum �age, the weighted average correlations
were 0.48 (standard error [SE] = 0.07) for MZ pairs, 0.27
(SE = 0.07) for DZ pairs and 0.15 (SE = 0.03) for sibling
pairs. For the Horvath �age, the weighted average correla-
tions were 0.51 (SE = 0.07) for MZ pairs, 0.20 (SE = 0.07)
for DZ pairs and 0.13 (SE = 0.03) for sibling pairs.

Given the low correlations between the estimates of rMZ,
rDZ, and rSib observed in our study (see above), and as-
suming this almost independence of estimates also applies
to the study of Marioni et al., the difference between the
MZ and DZ pair weighted average correlations was signif-
icant for both measures (p = .03 for the Hannum �age; p
= .002 for the Horvath �age), and the difference between
the DZ and sibling pair weighted average correlations was
not significant for both measures (p = .14 for the Hannum
�age; p = .40 for the Horvath �age). Note that the sib-
ling pair correlation was one-third and one-fourth the MZ
pair correlation, respectively. The MZ pair correlation was
marginally greater than twice the sibling pair correlation (p
= .08 for the Hannum �age; p = .01 for the Horvath �age).

Correlation Between Two �Age Measures Across Dif-
ferent Types of Relatives

Table 5 shows that the cross-trait correlation between the
Hannum �age and the Horvath �age was familial (model
V), and varied across different types of relatives (model V
vs. model I). For DZ pairs, the cross-trait correlation was
greater than the sibling pair correlation, and similar to the
MZ correlation. After statistical testing, only the difference

between the MZ and the sibling pair cross-trait correlations
was significant.

Discussion
By studying middle-aged twins and their sisters, we found
that both the Hannum and Horvarth mortality-associated
methylation acceleration indices were correlated in differ-
ent types of relatives, consistent with the findings of previ-
ous studies (Horvath, 2013; Marioni et al., 2015). Familial
correlation implies there are genetic and/or shared environ-
mental causes of variation in the methylation acceleration
index.

The classical twin model assumes that for all the envi-
ronmental factors that influence the trait and are shared
or correlated within twins, their twin pair correlation and
strength of association with the trait are both exactly the
same for MZ pairs as they are for DZ pairs. Under this
assumption, any and all excess in the correlation between
MZ pairs compared with DZ pairs is attributable to genetic
causes of variation. This means that the classic twin model
gives an upper estimate of the role of genetic factors in trait
variation. It also means that if the MZ pair correlation is
not significantly greater than the DZ pair correlation, there
is no evidence for genetic factors influencing the trait vari-
ation, a point often overlooked in many twin studies that
estimate heritability directly without first testing twin pair
correlations. Furthermore, if there are only additive genetic
variance and individual-specific variance (i.e., non-shared
environment variance) for a trait — as assumed by Marioni
et al. (2015) — the MZ pair correlation is expected to be
twice the DZ pair correlation, and twice the sibling pair
correlation. However, with respect to the latter, we found
marginal evidence that the MZ pair correlation was greater
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than twice the sibling correlation for individual �age mea-
sure. Therefore, although the correlation across types of
relatives differed, they did not necessarily do so in strict
accordance with the expectation under the AE model.

The weighted average correlations were also not consis-
tent with the AE model. The weighted estimates for MZ and
DZ pairs were nominally statistically different, consistent
with a genetic cause of variation under the equal environ-
ment assumption. However, there was marginally evidence
that the MZ pair correlation was greater than twice the
sibling pair correlation, which brings questions to the pre-
sumption of the former twin family study (Marioni et al.,
2015). The result raises the possibility that there are other
shared non-genetic determinants. Therefore, the 40% pro-
portion of variance due to additive genetic factors is likely
overestimated by the former study, even without taking into
account the impact of any shared environment factor.

The same issue applies to the shared determinants of the
two highly correlated �age measures. Although there was a
difference in the cross-trait correlation across different types
of relatives, it is not possible to definitively pinpoint the rel-
evant differences, except that the cross-trait correlation for
MZ pairs was greater than that for sibling pairs. Therefore,
the shared determinants are most likely not genetic factors
alone.

The strength of this study is the use of twin families.
By also including sibling pairs, we can estimate the famil-
ial correlation for more types of relatives other than only
for twins, which provides more information than a study
including twins alone. The other strength is the use of the
multivariate normal model for pedigree analysis so as to en-
able efficient estimate of familial correlation across different
types of relatives. Although the sets of pairs of relatives are
not independent, with groups having come from the same
family, the statistical approach we have used takes this into
account. The major weakness of our study is that the sample
size is such that there is still considerable imprecision in the
estimate of familial correlation. Clearly, larger sample sizes
are needed.

In conclusion, our study does not find evidence that vari-
ation in methylation acceleration index is explained by addi-
tive genetic factors and individual-specific factors (i.e., non-
shared environmental factors) alone. Instead, there might
be substantial variance due to shared non-genetic factors.
Therefore, the proportion of variance due to unmeasured
genetic factors is likely less than 40% as estimated in the
previous study. More twin and family studies are needed to
clarify this issue.
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