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Introduction

Quoted biopsy rates which include fine needle aspira-
tion biopsy, core biopsy and excisional biopsy are
hard to find but a recent report [1] of 3.6 : 1
benign : malignant ratio for mammographic screening
is similar to our own institution and earlier reports of
7.3 : 1 [2] may well be an accurate reflection of biopsy
rates for symptomatic breast problems. These biopsy
rates reflect the situation where ultrasound is used as
an adjunct to mammography with a significant num-
ber of abnormal mammograms and abnormal clinical
findings. When ultrasound is used to screen the clini-
cally and mamographically dense but normal breast

some small occult cancers are detected but with a
benign; malignant ratio of almost 10 : 1 [3] rising to
almost 20 : 1 if complex cysts which need aspirating
are included plus follow up of more presumed benign
lesions [4].

Accurate assessment of breast cancer extent is
another area which is in need of improvement. Recent
publications report reoperation rates of 50% following
breast conserving local excision [5,6]. Magnetic reso-
nance (MR) is being recommended as the imaging
method of choice to assess extent of tumour within
the breast [7] but its greater cost than ultrasound
means that development of more accurate methods of
ultrasound measurement of tumour extent could pro-
vide significant cost savings by reducing reoperation
rates.

Elasticity imaging

Palpation is the oldest method available for the
detection of breast tumours. Before the advent of
diagnostic imaging it was the only non-invasive way
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that breast tumours could be diagnosed. The variety
of terms including rubbery, craggy or rock hard used
to describe tumours relate to the ease with which the
mass may be distorted by pressure. Such terms are a
very crude estimation of the elasticity (deformability) of
the tissues. Deformability (ease of changing shape) is
part of the algorithm to determine the likelihood of
malignancy in routine breast ultrasound but it only has
moderate sensitivity in many lesions except for semi
normal conditions such as gynaecomastia (benign
lesions are more easily deformed than malignant
lesions).

Measurement of tissue deformation, with applied
force, by analysis of the returning ultrasound echoes,
was described over 20 years ago [8,9]. Ultrasound tis-
sue elasticity has been an area of increasing research
for the last two decades [10–12] and has been applied
to many different clinical situations including breast,
prostate, skin [13], intra-operative brain imaging [14],
cardiac [15,16] and vascular imaging [17–19]. Though
most advanced in ultrasound, elasticity imaging is
also being explored in other modalities including MR
and computerised tomography (CT) [20].

The physics of elasticity, described by Hooke’s law,
Young’s modulus and Poisson’s ratio, is based in
mechanics and relates to the distortions which
occur when matter is subjected to an external force
or forces. Hooke’s law states that strain is propor-
tional to stress, and therefore the ratio of the two is a

constant that is commonly used to indicate the elas-
ticity of the substance. Young’s modulus is the elastic
modulus for small deformations and is the force per
unit cross-sectional area of the material divided by the
fractional increase/decrease in length resulting from
the stretching/compressing of a material. Because
compression along the line of the force results in dis-
tortions to the sides of that force line the ratio of the
(lateral plus elevational) strain to the axial strain is
defined as Poisson’s ratio. The elasticity or stiffness of
the tissues can be determined from changes in return-
ing ultrasound echoes when the tissues are subjected
to a load or force.

A wide variety of approaches can be used deter-
mine the elasticity of different tissues based on com-
paring whole frame raw ultrasound data (radio
frequency (RF) data) while changing the external force
applied to tissues. Changes in this RF data can be
recognised if there are distortions in some areas but
not in others. The distortions are a reflection of the
stiffness or elastic properties of the tissues under the
investigation. Several different methods are being
used to produce changes of pressure within tissues
for elastography imaging. These have ranged from
simple direct single compressive forces to well-
defined pressure waves with the use of external vibrat-
ing sources, which can be either pure mechanical or
sound generated, to forces generated by cardiac
and vessel pulsatile motion. A variety of techniques

Figure 1.
While using colour Doppler the patient is asked to say ‘Eeeeee’. The amount of vibration transmitted through the tissues is
related to the elasticity of the tissues. The tissue movement is detected by the power Doppler. The lesion which is demon-
strated is a fibroadenoma which is stiffer (and vibrates less) than the surrounding tissues.
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Figure 2.
A diagrammatic representation of the effect on a short segment of returning echo RF data from the small same region of tis-
sues before (A) and after (B) compression of the tissues. Kernels (short segments of RF data) do not compress as much
(and are therefore more recognisable on each line) then the gaps between the kernels. The high-amplitude pulses can be
recognised from both scan lines and the decrease in the gap between them indicates the distortion of that piece of tissue
which occurs when compression is applied. These distances will be dependent on the elasticity of that part of the tissue
being examined.

https://doi.org/10.1017/S1470903106002835 Published online by Cambridge University Press

https://doi.org/10.1017/S1470903106002835


Page 4 of 7 W. E. Svensson and D. Amiras

Stiff lesion

Soft lesion

Soft lesion

Uncompressed tissue

Returning
echoes 
(RF data)

Returning
echoes
(RF data)

Stiff lesion

(a) (b)

Compression

Figure 3.
A diagrammatic representation of an echogenic soft lesion and a less echogenic stiff lesion showing the change in RF data
lengths before (A) and after compression (B). As the tissues are slowly compressed scan lines through the same position
are compared in a temporal fashion. The change in kernel positions before and after compression allows comparative elas-
ticity differences between the two lesions and their surrounding tissue to be calculated. Comparing all scan lines in one
ultrasound B-mode frame with the next B-mode frame enables a strain map to be constructed for the entire B-mode frame.

Figure 4.
The B-Mode image shows that the fibroadenoma (within white arrows) is larger than the elasticity footprint (within white
arrows) demonstrated in the elasticity image on the right. The more yellow and orange the stiffer the region. Note the
greater stiffness of the pectoral muscles (red arrows) than the overlying breast tissue.
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are used for analysis including Doppler effects,
vibration propagation, tissue velocity measurement,
tissue displacement and A-line analysis and cross
correlation [21].

One of the earliest real time clinical descriptions of
demonstration of stiffness which could not be per-
ceived by simple compression was the utilisation of
the vibration of a patient’s voice (vocal fremitus) and its
effect on power Doppler images showing the Doppler
signals within malignant lesions but not in benign
lesions [22,23]. The vibrational characteristics of tis-
sues are also related to their elasticity. That vibration is
demonstrated by power Doppler. If the patient makes
a sound with a constant pitch such as that associated
with the ‘eeeeee!’ though very crude, and both opera-
tor, equipment and patient dependent, some idea of
variation in tissue elasticity could be demonstrated
(Fig. 1).

Pressure waves can be generated in tissues using
external low frequency (10–1000 Hz) mechanical or
acoustic vibration sources (dynamic vibrations) [24,25].
Using conventional linear array ultrasound probes,
high energy focused ultrasound can be used to pro-
duce a single pressure wave (pulsed excitation) [26].
The vibromechanical and acoustical methods have
the advantage of producing a uniform strain field but

have proved to be more complex and difficult to stan-
dardise (surprisingly) than simple mechanical free-
hand (static) compression [27,28].

Freehand comparative compression elastography
[29] uses changes on digitised echo lines from the tis-
sue region of interest before and during deformation to
determine differences in elasticity in adjacent tissues.
The returning pulse from a single sound wave gives a
line of high-frequency data, and much of the informa-
tion in this ultrasound data is currently not utilised for
producing the greyscale image. If the RF data line is
broken up into small segments, called kernels, it is
possible to identify unique waveforms which are spe-
cific for a very small area or depths of tissue. As tis-
sues are deformed these kernels will themselves not
change as much in length as the distances between
them (Fig. 2). Since the kernels have a unique wave-
form within them they can be identified along two
pulses which are fired in quick succession down the
same wave path or sound path. As tissues are
deformed the change in distance can be used to
determine the relative stiffness of the tissues (Fig. 3). If
it is known how much force has been used to com-
press those tissues an absolute measure of tissue
elasticity could, in principle, be calculated. With 
free hand compression in vivo it is not possible to

Figure 5.
B-mode of an intraductal cancer on the left, elasticity (strain) image on the right. White arrows indicate the tumour and its
elasticity footprint. Red arrows indicate pectoral muscle surface and its associated strain map.
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accurately estimate the forces involved so a 
comparative strain map of adjacent tissues is 
produced.

Freehand or compression elastography is the
method of sono-elastography imaging which is cur-
rently becoming available for real time use with the
present generation of new top end ultrasound
machines. Two systems are well advanced making
use of the RF signal of the returning ultrasound waves.
One uses motion tracking [30,31] while the other uses
a combined auto correlation method which uses
phase domain processing (similar to pulsed Doppler)
and correlation of the phase component of the signal
for displacement measurement [32–36]. The tissue
under investigation is compressed with the trans-
ducer while the scan line RF data is analysed and
compared with previous image frames. The same
region of interest is kept within the frame from image
to image, whist slowly deforming the tissues with the
probe. Small amounts of displacement of between
0.5 and 2% are necessary between frames to allow
estimation of stiffness [30,31].

Recent work has confirmed that cancers tend to
appear larger in a strain (elasticity) image than in the
typical ultrasound greyscale (B-mode) image (Fig. 4)
while the benign lesions tend to appear smaller in the
strain image than in the greyscale (B-mode) image
(Fig. 5) [37,38]. The extent of the strain image of can-
cers may be more accurate in demonstrating tumour
size than the greyscale (B-mode) image [39].

Elasticity imaging adds useful diagnostic informa-
tion which can help clinical management. Particular
areas where it is showing promise are in the accu-
rate, unequivocal identification of lesions such as fat
islands, which can be a source of confusion, partic-
ularly for the less experienced breast sonographer.
The absence of any stiffness confirms the benign
nature of the ultrasound abnormality. Initial work
suggests that elasticity imaging may add to the
accuracy of ultrasound determined tumour extent as
it can demonstrate areas of tumour related stiffness
in adjacent tissue to the grey scale abnormality.
Elasticity or strain imaging is a very different method,
technique and image to learn, but increasing skill in
interpretation appears to be providing greater accu-
racy in diagnosis. Like colour Doppler, used as a stand
alone method of differentiating benign from malignant,
it is reasonably sensitive and specific, but taken with
other observations within breast ultrasound imag-
ing, it can help to improve diagnostic accuracy.
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