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1. Introduction. Let T(N) be the least integer such that one can assign ±l's to any
N points in the unit square so that the sum of these values in any rectangle with sides
parallel to those of the square have absolute value at most T(N). In [1] Beck showed,
among other results, that (for Ns=2)

log N « T ( N ) « (log N)4. (1.1)

The lower bound asserts the existence of a set <3> of N points p in the square such that
if "weights" A(p), where A(p) = ± l , are freely assigned to the points p of 0>, there is a
rectangle B with sides parallel to those of the square such that

A(p) »(\ogN)N~1 X l^(p)l- (1-2)

Beck deduced the existence of such a set 9 from a theorem of Wolfgang Schmidt [2].
In the present paper we use a direct application of a variant of Halasz's method [4] for
proving Schmidt's theorem to show that a certain type of set, which is easy to construct,
has the above property given an entirely unrestricted set of real weights A(p).

We use U to denote the unit interval (0,1]. If a = (a b a2), P = (01; /32) are two points
in the unit square U2, the sum a. + P denotes the point in U2 obtained by interpreting the
vector addition modulo 1 in each coordinate.

Let SP be a finite set of points in U2 and suppose that a real number A (p) is assigned
to each p in 0*. We write

Z(a;x) = I A(p) (1.3)

where the summation is over those p of & for which

a + p lies in the rectangle (0, JCJX (0, x2]. (1.4)

For v = (u1; u2) we write d(v) = ||u1||. ||u2||, where ||/3|| is the distance of |3 from the
nearest integer.

SEPARATION PROPERTY. We say that 3> is well-separated with respect to the non-
negative integer n if, subject to the additional condition p'^p",

inf d(p'-p")&2-". (1.5)

We shall prove the following result.
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THEOREM. If <3> is well-separated with respect to n, then there exist a, x such that

Z (1.6)

We note that, reserving J for subintervals of U of type (0, x ], the characteristic
function of the translated interval -a+J modulo 1 can (for given J) be represented in the
form ±Ja\v)±Ja\v)±JO)(v) where J(v\v) is the characteristic function on interval JM.
Thus (1.6) implies the existence of an x* in U2 such that

|Z(0; x*)| > 3~2(n +1)2—4 £ |Mp)|. (1-7)

To ensure that the right hand side of (1.6) is » the right hand side of (1.2) we need to
construct a set *3> of N points which satisfies the condition (1.5) for some n«logiV. For
this purpose we can, for example, make use of the well-known fact that if 0 is an irrational
number whose continued fraction has bounded partial quotients, then

m\\dm\\>c>0 (m = l ,2 , . . . ) ,

where c = c (6) depends only on 6. Thus the set

({dm'llm'N-1) (m' = 0,1, . . . ,2V-1)

has the desired property (where {<fi} denotes the fractional part of 4>).
In fact it is not hard to construct sets with the desired separation property without the

use of any results concerning Diophantine approximation, although we do not do so here.
The well-separation hypothesis is much more stringent than we require to obtain a

result of type (1.6) to within an absolute constant: the hypothesis can be relaxed in a
number of respects. We have chosen the strong form of the hypothesis partly because in
two dimensions it is easy to construct sets with this form of the hypothesis, but mainly to
present the method in its simplest form.

A particularly interesting feature of this variant of the Halasz method is that there are
no error terms to estimate; here all errors cancel.

2. Notation. We adopt a system of notation very closely related to that introduced
by Wolfgang Schmidt [3]. However, for technical reasons, we work with intervals closed at
the right hand end instead of at the left hand end as has been previously customary. This
change affects only sets of measure zero and is therefore inconsequential.

Every x in U has a unique representation

where the digits j3j(x) are 0 or 1, and where the set of j with j3j(x)= 1 is infinite. The
functions

Rr(.x) = (-l)fi»'M (r = 0, 1 , . . . )

are essentially the Rademacher functions.
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An r-interval will be an interval

where m is an integer in 0=£ m <2r. A Cr-function, where r is a non-negative integer, is a
function Cr(x) which is constant on every r-interval. If Cr(x) is a Cr-function, then the
product Cr(x)Rr(x) is said to be a modified Rr-function. Clearly the following holds.

LEMMA 1. If Mr(x) is a modified Rr-function, then

| Mr(x) = 0. (2.1)

We now consider k-dimensional space. Although in the present paper we will have
k = 2, we formulate definitions for general k for use in subsequent work.

Given a k-tuple r = ( r 1 ; . . . , rk) of non-negative integers, put

\t\ = ri + ... + rk. (2.2)
For x in Uk, write

Rr(x) = i?ri(Xi)... RTk(xk).

An r-box is defined as a box Ix x I2 x . . . x Ik where 7, is an r,-interval for j = 1, 2 , . . . , k. A
Cr-function is a function Cr(x) on Uk which is constant on every r-box. Note that, for
given r, the set of Cr functions is closed under multiplication. A modified RT-function is a
function of type Cr(x)Rr(x) where Cr(x) is a Cr-function. The following lemma is trivial.

LEMMA 2. For given x 1 ; . . . , xHl, x,-+1,..., xk, a modified Rr-function is a modified
Rrfunction in the variable x,.

3. Outline of the proof of the theorem. We may suppose without loss of generality
that

X A ( P ) 3 = 0 . (3.1)
peSP

Define e(p) to be +1 or - 1 according as A(p)s=O or A(p)<0. Then the numbers e(p)
satisfy

(e(p))2=l, e(p)A(p) = |A(p)| (pe0>). (3.2)

Henceforth we assume k = 2 when using the notation of §2.
Corresponding to each r we denote by sdr the set of all r-boxes. We use B(x) to

denote the characteristic function of the box B, so that

. , fl if xeB,
B ( x ) = l0 if x£B,

and define

gr(a; x) = Rr(x) I e(p) X B(a + p)B(x). (3.3)
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Let M =M(n) be the set of all r satisfying |r| = n (that is ri + r2
 = n, where n is the

parameter featuring in the "separation property" (1.5)), and let © = ®(n) to be the set of
all subsets Of of M (including the empty subset). We shall make use of the fact that there
are n +1 sets ¥ consisting of precisely one element.

The relevance of the "separation property" is that it ensures that, for given a, an
r-box with r e M contains at most one point a + p. In particular,

reM implies l + gr(ot;x)s=0. (3.4)

Using the key idea of Halasz [4], we define

F(o;x) = [I(1 + gr(«;x))= I D («; *), (3.5)
reM ye© y

where

n(<*;x)=ngr(«;x). (3.6)

In the final section we shall establish the following two lemmas.

LEMMA 3. Suppose Sf is non-empty. Then, for every a,

f [(a;x)dx = O. (3.7)

LEMMA 4. Let I = card SP be the number of elements of Sf. Then, writing

da\ n («; x)Z(a; x) dx, (3.8)
u2 Ju2 <f

we have

'I|A(P)| if l = h
pe3> (3.9)

if 1^2.

Despite our somewhat different auxiliary functions gr, Lemma 3 and its proof are in
essence exactly the same as for the corresponding result in Halasz's work. On the other
hand, Lemma 4 embodies a new feature of the present variant of Halasz's method. In
Halasz's work the terms corresponding to card £f 3= 2 gave rise to an error which needed to
be estimated.

We now deduce the theorem from Lemmas 3 and 4. By (3.4), (3.5) and Lemma 3,

j da\ |F(a;x)|dx=J da\ F(a;x)dx=l. (3.10)

On the other hand since for each x,

Z(a; x) da = xxx2 X A (p),
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it follows from (3.5), (3.1) and Lemma 4 that

f f -"-4 V

Comparison of (3.10) and (3.11) immediately yields the theorem. It now only remains
to prove Lemmas 3 and 4.

4. Completion of the proof. We consider a fixed non-empty set Sf. Suppose this Sf
consists of the I vectors

ri = (rn, r12), r2 = (r21, r 2 2) , . . . ,r, = (r(1, r12). (4.1)

Since rn + ri2= n for each /, we may suppose

r u < r 2 1 < . . . < r I 1 (4.2)

We write t = (tu t2) = (rn, n-rn) so that

t; = max(rlf, r2i,..., ri;) for i = 1, 2. (4.3)

It follows from the "separation property" of 0> that

if B is at-box then B(a+p) = 1 implies

B(x)grj(a;x) = e(p)B(x)Rri(x) (j = 1,2,.. .1).
Thus

), (4.5)

where, for each a, C* is a C, function such that

if B is a t-box then B(a+p) = 1 implies
( 4 6 )

Now

), (4.7)
reSf

where

Note that
Q(x) is a C, function, (4.8)

and (by Lemmas 1 and 2), since Q(x) is also a modified two dimensional R -function when
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We also note that (4.5), (4.6) and (4.7) yield

if B is a t-box then B(a + p) = 1 implies
(4.10)

B(x) [ I («; x) = (e(p))'B(x)Q(x)R,(x).

Since (4.7) is a modified i?,-function, so also is the function (4.5) for each fixed a.
Thus (3.7) holds, and Lemma 3 is proved. It remains to prove Lemma 4 by evaluating the
I<f defined in (3.8).

Let B be a fixed t-box. For a fixed value of a, we consider the integral

W « ) = j II («; x)Z(a; x) dx. (4.11)

Since (4.5) is a modified Rt function, we first evaluate

R,(x)Z(a;x)dx. (4.12)

Suppose the t-box B is given by mf2~'' <xt =s(mf +1)2"'' (i = l,2) and let B' be the
(smaller) box 0<xi«2~''~1 (i = l,2). Then the integral (4.12) is

JB' e,=0 e2=0

and here the integrand represents

X A(p)B'(a + p - m - y ) , (4.13)

namely the sum of the weights A(p) corresponding to points p for which a + p lies in the
box mf + yf < xt =£ mf + yf + 2~'i-1 (i = 1, 2). This latter box is contained in B for y e B ' so
that unless a + peB, the summand in (4.13) vanishes for all y in B'. Thus the integral
(4.12) is equal to

r
B'(a + p-m-y)<iy,

and only terms with a + p e B can contribute to this sum. In fact there is at most one such
term, in view of the "separation property" of <3>.

If the point a + p* lies in B, then (4.10) is applicable and

W a ) = (e(p*))'q(B) f i?,(x)Z(a; x) dx,
J B

where q(B) is the constant value of Q(x) in B: note that

f Q(x)dx, (4.14)

where V(B) is the volume of B. If there is no p such that a + p lies in B then (4.12)
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vanishes, and hence (recalling that (4.5) is a modified Rt function) the integral (4.11) also
vanishes. In either event, we have

i-y)dy. (4.15)

Since

f B'(
when / = 1 it follows from (4.14) that

f /y.B(a)da = 2—4X|A(p)|(e(p))1-1f Q(x) dx.
peS"

On summing over all boxes of type B,, the assertion (3.9) of Lemma 4 follows from (4.9).
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