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Abstract

We derive a new compound Poisson distribution with explicit parameters to approximate
the number of overlapping occurrences of any set of words in a Markovian sequence.
Using the Chen–Stein method, we provide a bound for the approximation error. This
error converges to 0 under the rare event condition, even for overlapping families, which
improves previous results. As a consequence, we also propose Poisson approximations
for the declumped count and the number of competing renewals.
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1. Introduction

Word statistics in random sequences of letters have been popular for a long time because
they arise in various application domains. With a huge number of biological sequences now
available, genome analysis is an important consumer of probabilistic and statistical results
on word occurrences (see [5, Chapter 6] or [9] for an overview). In particular, the number,
N , of occurrences of a given word in a DNA sequence is a quantity of special interest to
molecular biologists. Some words, called motifs, are recognized by proteins and occur in
various biological processes. Over- and under-represented motifs are then looked for in many
genomes. Moreover, biological motifs are often degenerated, i.e. some letters are ambiguous,
and should be treated as families of fixed words.

The most popular random sequence models are the Markov chain models. They are widely
used in genome analysis because they can be used to fit the composition of a DNA sequence
in short words of length 1 up to length m + 1, where m is the order of the Markov chain.
Various results have been published on the word count distribution in Markov chains. The
exact distribution can be obtained through its probability generating function [7] or by using
the distributions of both the waiting time till the first occurrence and the interarrival time
between two occurrences [2], [10]. Several approximations have also been proposed for long
sequences. The Gaussian distribution proposed in [6] appears to be a good approximation for
words (and word families) having a sufficiently large expected count [11]. For an expectedly
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Compound Poisson approximation for the count of word families 129

rare word w, i.e. one whose count, N(w), satisfies the rare event condition E(N(w)) = O(1)

as the length, n, of the sequence tends to ∞, Poisson approximations were first proposed [4],
but compound Poisson approximations appear to be better [12]. This result is based on the
fact that (i) occurrences of a given word occur in clumps, (ii) clumps asymptotically form a
Poisson process under the rare event condition, and (iii) the numbers of occurrences per clump
are asymptotically independent and identically distributed (with a geometric distribution). The
compound Poisson distribution reduces to a Poisson distribution for nonoverlapping words. For
an expectedly rare family of words W , the authors of [8] proposed that the compound Poisson
approximation of [12] be used for each count N(w), w ∈ W , and that N(W) = ∑

w∈W N(w)

be approximated by the sum of independent compound Poisson variables. Using the Chen–
Stein method, a bound for the approximation error was given which explicitly depends on the
degree of overlap between the words of the family W . Unfortunately, this error bound does not
converge to 0 given that there exists a couple of different words (w, w′) ∈ W2 which overlap.

Also using the Chen–Stein method, we here propose a compound Poisson distribution more
suitable to approximate the count, N(W), of any expectedly rare word family W . The main
difference from [8] is that we will consider clumps composed of overlapping occurrences of W ,
instead of separately considering clumps of w for each word w ∈ W . We will then directly
adapt the method of [12] for a single word to a word family. The difficulty arises from the
structure and the occurrence probabilities of such mixed clumps. The idea of studying mixed
clumps was previously introduced in [3] to approximate the count of competing renewals, but
the authors there focused only on the event that ‘a mixed clump starts at a given position’. Here
we will also have to take into account the exact size of the mixed clumps.

The paper is organized as follows. In Section 2 we state the approximation theorem for the
count N(W). The parameters of the limiting compound Poisson distribution will be explicitly
derived in Section 3, which is the high point of the paper. Section 4 contains the proof of the
approximation theorem, which uses the Chen–Stein method for Poisson approximations. As
a corollary, in Section 5 we propose a Poisson approximation for both the number of clumps
of a word family W and the number of competing renewals of W in a Markov chain. Our
contribution, relative to the results of [3], is in the derivation of an explicit formula for the
parameter of the limiting Poisson distribution. In Section 6 we present generalizations to
high-order Markov chains and to hidden Markov models.

2. Compound Poisson approximation for N(W )

In this paper we consider a random sequence, X = (Xi)i∈Z, generated by a homogeneous
stationary Markov chain of order 1 on a finite alphabet A. The generalization to higher-order
Markov chains is discussed in the conclusion. The stationary distribution on A is denoted by
µ, and � = [π(x, y)]x,y∈A denotes the transition matrix of the model.

Let W be a family of d different words, w1, w2, . . . , wd , on the alphabet A with length at
least 2. The length of any word w will be denoted by |w|, and we define h to be the length of
the longest word from the family W :

h := max{|w| : w ∈ W}.
We make two assumptions on the word family W : (i) it is reduced, meaning that, for all
w �= w′ ∈ W , w is not a substring of w′ (this is a usual assumption when studying occurrences
of word families, and is immediately satisfied if all the words of W have the same length);
and (ii) each word w ∈ W has a nonzero probability of occurring in X (this is a natural
assumption). Owing to the Markov property, the occurrence probability of a |w|-letter word
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130 E. ROQUAIN AND S. SCHBATH

w = w1w2 · · · w|w| in X is given by µ(w1)
∏|w|−1

j=1 π(wj , wj+1) and will be simply denoted
by µ(w) in what follows.

Classically, the number of occurrences of a word family W in the finite sequence X1 · · · Xn

is defined as N(W) = ∑
w∈W

∑n−|w|+1
i=1 Yi(w), where Yi(w) is a Bernoulli variable which

is equal to 1 if there is an occurrence of w starting at position i and is equal to 0 otherwise.
Note that we will generalize Yi(w) to Yi(W), which will be equal to 1 if and only if there
exists a word from W occurring at position i (i.e. if and only if there is an occurrence of W
at position i). Here we will use another decomposition of the count, based on the occurrences
of k-clumps. The notion of a clump makes no sense outside a sequence: a k-clump of W in
a sequence is a maximal set of k overlapping occurrences of W in this sequence. Therefore,
a k-clump of W occurs at position i in a sequence if and only if a word composed of exactly
k overlapping occurrences of the family W occurs at position i without overlapping any other
occurrence of the family W in this sequence. For example, for the family W = {atta,ttat},
the sequence gattagcattattac has a 1-clump of W at i = 2 and a 3-clump of W at i = 8
(shown underlined). We should be careful not to forget the occurrence of ttat in the 3-clump
attatta. Therefore, we have

N(W) =
∑
k≥1

kÑk(W),

where Ñk(W) is the number of k-clumps of W in X1 · · · Xn.
For convenience, we will work with the infinite sequence X. We define Ỹi,k(W) to be a

Bernoulli variable which is equal to 1 if a k-clump of W occurs at position i in X and is equal
to 0 otherwise, and we let

N∞(W) :=
∑
k≥1

kÑ∞
k (W) with Ñ∞

k (W) :=
n−h+1∑

i=1

Ỹi,k(W). (1)

Note that the count N∞(W) can differ slightly from the real observed count, N(W), of W in
the finite sequence X1 · · · Xn because clumps of W in X may start before position 1 and/or end
after position n, and occurrences of W in X1 · · · Xn may start after position n − h + 1 if there
exists a w ∈ W such that |w| �= h. However, the occurrence of the event {N(W) �= N∞(W)}
implies that there exists (at least) one occurrence of W starting at a position in {1, . . . , h − 1}
or {n − h + 2, . . . , n}. This event occurs with probability less than 2(h − 1)µ(W), where
µ(W) := E(Yi(W)) = ∑

w∈W µ(w) denotes the occurrence probability of W at a given
position. Therefore, the total variation distance between the distributions of these two counts
is bounded by 2hµ(W), which tends to 0 as n tends to ∞ under both h = o(n) and the rare
event condition. (The total variation distance between two discrete distributions P and P ′ on
N is defined by 1

2

∑
x∈N

|P(x) − P ′(x)| ≤ min P(N �= N ′), where the minimum ranges over
all couplings (N, N ′) of P and P ′.) The two counts are then asymptotically equivalent – we
will focus on N∞(W).

We will now use the Chen–Stein theorem as stated in [1] to bound the total variation distance,
dTV, between the distribution of the vector (Ỹi,k(W))i,k and the joint distribution of independent
Poisson variables (Zi,k)i,k such that E(Zi,k) = E(Ỹi,k(W)), which expectations will be denoted
by µ̃k(W). With Zk := ∑n−h+1

i=1 Zi,k , the Chen–Stein theorem states that

dTV(D((Ñ∞
k (W))k), D((Zk)k)) ≤ b1 + b2 + b3, (2)
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where D(·) denotes the distribution of its argument and

b1 =
n−h+1∑

i=1

∑
k≥1

∑
(j,�)∈Bi,k

E(Ỹi,k(W)) E(Ỹj,�(W)), (3)

b2 =
n−h+1∑

i=1

∑
k≥1

∑
(j,�)∈Bi,k\{(i,k)}

E(Ỹi,k(W)Ỹj,�(W)), (4)

b3 =
n−h+1∑

i=1

∑
k≥1

E(|E(Ỹi,k(W) − µ̃k(W) | σ(Ỹj,�(W) : (j, �) /∈ Bi,k))|), (5)

and where Bi,k ⊂ {1, . . . , n−h+1}×N\ {0} is a neighborhood of (i, k). As we will see, for a
particular choice of the neighborhood Bi,k , the quantities b1, b2, and b3 will tend to 0 as n tends
to ∞ under both h = o(n) and the rare event condition E(N(W)) = O(1) (see Section 4). This
means that the process (Ñ∞

k (W))k can be approximated by independent Poisson variables
(Zk)k with respective expectations λ̃k(W) := E(Ñ∞

k (W)) = (n − h + 1)µ̃k(W). From (1)
and properties of the total variation distance, it also means that, under the same asymptotic
conditions, the count N∞(W) can be approximated by

∑
k≥1 kZk , which by definition follows

the compound Poisson distribution CP (λ̃k(W) : k ≥ 1). We can now state the following
approximation theorem.

Theorem 1. For every word family W , the total variation distance between the distribution of
N(W) and the compound Poisson distribution with parameters (λ̃k(W))k≥1 such that λ̃k(W) =
(n − h + 1)µ̃k(W), with µ̃k(W) as given in (13), is bounded as follows:

dTV(D(N(W)), CP (λ̃k(W) : k ≥ 1)) ≤ Cnhµ2(W) + C′nµ(W)|α|h + 2hµ(W), (6)

where C > 0 and C′ > 0 are two constants that depend only on the transition matrix � and α is
the eigenvalue of � second largest in modulus (with |α| < 1). Therefore, if E(N(W)) = O(1)

and h = o(n), we have

dTV(D(N(W)), CP (λ̃k(W) : k ≥ 1)) → 0 as n → ∞.

The proof is presented in Section 4.

Remark 1. The conditions E(N(W)) = O(1) and h = o(n) imply that nµ(W) = O(1),
which is equivalent to the condition that log(n)/|w| = O(1) for all w ∈ W , which in turn
means that the compound Poisson approximation holds for families of sufficiently long words.

The Chen–Stein method usually does not provide an optimal bound. Our concern here is
just to show that the bound given by (6) converges to 0 as n tends to ∞, for h = o(n) and
E(N(W)) = O(1).

An important task now is to calculate the parameters of the limiting compound Poisson
distribution. We do this in the next section, and then provide an expression for µ̃k(W) which
is the occurrence probability of a k-clump of W occurring at a given position in the infinite
sequence X.

3. Occurrence probability of a k-clump of W

We first have to look at the typical distances allowed between successive occurrences of W
in a k-clump, i.e. k successive overlapping occurrences of W .
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132 E. ROQUAIN AND S. SCHBATH

3.1. Principal periods

For two words w = w1 · · · w|w| and w′ = w′
1 · · · w′

|w′| of W , an integer p, 1 ≤ p ≤ |w|−1,
such that w′

i = wi+p for i = 1, . . . , |w| − p is called a period of (w, w′). We denote by
P (w, w′) the set of periods of (w, w′). For each couple of words (w, w′) and each period
p ∈ P (w, w′), the prefix w(p) := w1 · · · wp is called a root of (w, w′). The periods of (w, w′)
are then the distances allowed between an occurrence of w and a further overlapping occurrence
of w′. For instance, P (taca,acac) = {1, 3}.

If we now look at the possible distances between successive overlapping occurrences of
(w, w′), it appears that some periods are not possible. For instance, the period p = 3 of
(taca,acac) is not possible because an occurrence of taca at position i and an occurrence
of acac at position i + 3 implies another occurrence of acac, in between (in fact at position
i + 1). More generally, for two words w and w′ of W , a period p ∈ P (w, w′) is said to be
principal with respect to W if, for all w� ∈ W and j ∈ P (w, w�), we have p−j /∈ P (w�, w′).
This condition simply means that W cannot occur between an occurrence of w at a position i

and an occurrence of w′ at position i +p. We denote by P ′
W (w, w′) the set of principal periods

of (w, w′) with respect to W . When there will be no ambiguity, we will omit the subscript W .
If W is composed of a unique word w then the set P ′{w}(w, w) coincides with the so-called
principal period set, P ′(w), of w introduced in [12].

A direct consequence of the definition of a principal period is the following lemma.

Lemma 1. (i) An occurrence of w′ ∈ W at position i overlaps an earlier occurrence of W in
the sequence if and only if there exist a word w ∈ W and a principal period p ∈ P ′(w, w′)
such that there is an occurrence of the principal root w(p) at position i − p in the sequence.

(ii) In the previous assertion, the word w and the period p are unique.

Note that the same result holds for a later occurrence of W and a suffix

w(p) := w|w|−p+1 · · · w|w|

with p ∈ P ′(w, w′).

3.2. Computation of µ̃k(W )

We can now describe more explicitly what we mean by a k-clump of W in a sequence.
Consider a word c composed of exactly k successive overlapping occurrences wr1 , wr2 , . . . , wrk

of the familyW , with r1, . . . , rk ∈ {1, . . . , d}. Then, for j ∈ {1, . . . , k−1}, each occurrencewrj

overlaps the occurrence wrj+1 with the corresponding period pj ∈ P (wrj , wrj+1) (see Figure 1).
Moreover, the periods pj are necessarily principal because c has to contain exactly k overlapping

p1

wr1

p2

wr2

p3

wr3

p4

wr4
wr5

Figure 1: Structure of a word composed of exactly five occurrences of W .
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occurrences of W . Therefore, the word c has the form

c = w
(p1)
r1 · · · w(pk−1)

rk−1 wrk . (7)

To simplify the notation, the first word, wr1 , the second word, wr2 , and the last word, wrk ,
of c are respectively denoted by u, v, and w. We denote by Ck(W) the set of words of the
form (7), by C(u;w)

k (W) the subset of words of Ck(W) which begin with u and end with w, and
by C(u,v)

k (W) the subset of words of Ck(W) which have u and v as the first two occurrences
from W . In the latter notation, when v is unknown, we replace it by a dot (e.g. we write
C(u,·)

k (W)).
A k-clump of W in X which begins with u and ends with w is then a word c ∈ C(u;w)

k (W)

not preceded in X by any root u′(p) with u′ ∈ W and p ∈ P ′(u′, u), and not followed by
any suffix w′

(q) with w′ ∈ W and q ∈ P ′(w, w′). Since the simultaneous occurrence in the
sequence of two different elements of Ck(W) at position i is impossible, using Lemma 1 we
obtain the following expression for Ỹi,k(W):

Ỹi,k(W) =
∑
u∈W

∑
w∈W

∑
c∈C(u;w)

k (W)

(
Yi(c) −

∑
u′∈W

∑
p∈P ′(u′,u)

Yi−p(u′(p)c)

−
∑

w′∈W

∑
q∈P ′(w,w′)

Yi(cw
′
(q))

+
∑
u′∈W

∑
w′∈W

∑
p∈P ′(u′,u)

∑
q∈P ′(w,w′)

Yi−p(u′(p)cw′
(q))

)
.

(8)

Thus, by taking the expectation in (8), we obtain the equality

µ̃k(W) =
∑

c∈Ck(W)

µ(c) − 2
∑

c′∈Ck+1(W)

µ(c′) +
∑

c′′∈Ck+2(W)

µ(c′′)

= pk(W) − 2pk+1(W) + pk+2(W), (9)

where pk(W) and p
(u,·)
k (W) respectively denote the occurrence probabilities of a word of

Ck(W) and a word of C(u,·)
k (W) occurring at a given position. The expression for µ̃k(W) can

thus be deduced from the one for the pk(W). The computation of pk(W) is done recursively.
For all k ≥ 1 and u = u1 · · · u|u| ∈ W ,

p
(u,·)
1 (W) = µ(u),

p
(u,·)
k+1 (W) =

∑
v∈W

∑
c∈C(u,v)

k+1 (W)

µ(c)

=
∑
v∈W

∑
p∈P ′(u,v)

∑
c′∈C(v,·)

k (W)

µ(u(p)c′)

=
∑
v∈W

1

µ(v1)

∑
p∈P ′(u,v)

µ(u(p+1))
∑

c′∈C(v,·)
k (W)

µ(c′)

=
∑
v∈W

Au,vp
(v,·)
k (W), (10)
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134 E. ROQUAIN AND S. SCHBATH

where Au,v is the probability that an occurrence of v = v1 · · · v|v| overlaps a previous occurrence
of u in the sequence and that there are no other occurrences of W in between:

Au,v = µ(u1)

µ(v1)

∑
p∈P ′(u,v)

p∏
t=1

π(ut , ut+1). (11)

Therefore, if we introduce the vectorial notation 
pk(W) for the vector [p(u,·)
k (W)]u∈W and

A for the matrix [Au,v]u,v∈W , (10) can be written as follows: 
pk+1(W) = A 
pk(W) for all
k ≥ 1. Similarly, we have 
p1(W) = 
µ(W) := [µ(w)]w∈W , leading to


pk(W) = Ak−1 
µ(W).

Denoting by ‖·‖1 the 1-norm of R
d defined by ‖
z‖1 = ∑d

r=1 |zr | for all 
z = (z1, . . . , zd) ∈ R
d ,

we can conclude that
pk(W) = ‖ 
pk(W)‖1 = ‖Ak−1 
µ(W)‖1. (12)

Combining relations (9) and (12) yields our final expression for µ̃k(W):

µ̃k(W) = ‖Ak−1(I − A)2 
µ(W)‖1.

This establishes the following proposition.

Proposition 1. For all families W , the occurrence probability of a k-clump of W is given by

µ̃k(W) = ‖Ak−1(I − A)2 
µ(W)‖1, (13)

where I is the identity matrix of R
d , A is the matrix of coefficients [Au,v]u,v∈W defined in (11),


µ(W) is the vector [µ(w)]w∈W , and ‖ · ‖1 is the 1-norm of R
d .

Remarks 2. 1. Theorem 1 and Proposition 1 generalize [12, Theorem 13]: indeed, for a single-
word family W = {w}, (13) reduces to µ̃k(w) = ak−1

w (1 − aw)2µ(w), where aw is the
probability of there being two successive overlapping occurrences of w and is given by a(w) =∑

p∈P ′(w)

∏p
t=1 π(wt , wt+1) with P ′(w) := P ′{w}(w, w).

2. For a family W such that, for all w �= w′ ∈ W , w does not overlap w′ (i.e. P (w, w′) = ∅),
A is a diagonal matrix, and we find that µ̃k(W) = ∑

w∈W ak−1
w (1 − aw)2µ(w), as in [8].

3. From (9), we can moreover show that

∑
k≥1

kµ̃k(W) = µ(W), (14)

∑
k≥1

µ̃k(W) = ‖(I − A) 
µ(W)‖1. (15)

4. Proof of the approximation theorem

To prove Theorem 1, we first have to choose the neighborhoods Bi,k for all (i, k) ∈ I , where
I := {1, . . . , n − h + 1} × N \ {0}, and then bound the three quantities b1, b2, and b3 defined
respectively by (3), (4), and (5). To do so, we will adapt the setup presented in [12] for a single
word.
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4.1. Choice of the neighborhood Bi,k

For each (i, k) ∈ I , we define a set Z(i, k) ⊂ Z which contains all the indices j of the
letters Xj used in the definition of Ỹi,k(W). We can take Z(i, k) = {s ∈ Z such that i − h ≤
s ≤ i + (k + 1)h}, because the length of a k-clump is less than kh and we have to know the
h − 1 letters before and after the clump to ensure that it does not overlap other occurrences.
We now define the neighborhood of (i, k) as the set of (j, �) ∈ I such that Z(i, k) and Z(j, �)

are separated by at most h positions:

Bi,k = {(j, �) ∈ I such that − (� + 3)h ≤ j − i ≤ (k + 3)h}.
This implies that if Ỹi,k(W) = Ỹj,�(W) = 1 with (j, �) /∈ Bi,k , then the two clumps will be
separated by more than 3h letters.

4.2. Bounding b1

From definition (3), we have

b1 =
n−h+1∑

i=1

∑
k≥1

∑
(j,�)∈Bi,k

E(Ỹi,k(W)) E(Ỹj,�(W))

≤
n−h+1∑

i=1

∑
k≥1

∑
�≥1

i+(k+3)h∑
j=i−(�+3)h

µ̃k(W)µ̃�(W).

Let µ̃(W) be the probability of a clump of W occurring at a given position; it satisfies µ̃(W) =∑
k≥1 µ̃k(W) ≤ µ(W). Using the symmetry between i and j and between k and l, and (14),

we can write

b1 ≤ 2µ̃(W)

n−h+1∑
i=1

∑
k≥1

((k + 3)h + 1)µ̃k(W),

≤ 2(n − h + 1)µ̃(W)([µ(W) + 3µ̃(W)]h + µ̃(W))

≤ 10nhµ2(W). (16)

The last inequality is obtained simply by bounding µ̃(W) by µ(W).

4.3. Bounding b2

From definition (4), we have

b2 =
n−h+1∑

i=1

∑
k≥1

∑
(j,�)∈Bi,k\{(i,k)}

E(Ỹi,k(W)Ỹj,�(W)).

Since two clumps of different sizes cannot occur at the same position, the term corresponding
to i = j disappears in the sum, and, again by symmetry, we obtain

b2 ≤ 2
n−h+1∑

i=1

∑
k≥1

∑
�≥1

i+(k+3)h∑
j=i+1

E(Ỹi,k(W)Ỹj,�(W)).

Let Ỹj (W) = ∑
�≥1 Ỹj,�(W) denote a Bernoulli variable that is equal to 1 if a clump of W

occurs at position j and is equal to 0 otherwise. Since Ỹi,k(W) = ∑
c∈Ck(W) Ỹi,k(W)Yi(c),
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we have

b2 ≤ 2
n−h+1∑

i=1

∑
k≥1

i+(k+3)h∑
j=i+1

E(Ỹi,k(W)Ỹj (W)),

≤ 2
n−h+1∑

i=1

∑
k≥1

∑
c∈Ck(W)

i+(k+3)h∑
j=i+1

E(Ỹi,k(W)Yi(c)Ỹj (W)).

Since a clump of length |c| which begins at position i cannot overlap a clump starting at position
j, i + 1 ≤ j < i + |c|, and since Ỹj (W) ≤ Yj (W), it follows that

b2 ≤ 2
n−h+1∑

i=1

∑
k≥1

∑
c∈Ck(W)

i+(k+3)h∑
j=i+|c|

E(Ỹi,k(W)Yi(c)Ỹj (W))

≤ 2
n−h+1∑

i=1

∑
k≥1

∑
c∈Ck(W)

i+(k+3)h∑
j=i+|c|+h

E(Ỹi,k(W)Yi(c)Yj (W))

+ 2
n−h+1∑

i=1

∑
k≥1

∑
c∈Ck(W)

i+|c|+h−1∑
j=i+|c|

E(Ỹi,k(W)Yi(c)Yj (W)).

The first and second terms on the right-hand side will respectively be denoted by b21 and
b22. Let us bound b21. Note that the random variable Ỹi,k(W)Yi(c) only involves the letters
Xi−h+1, . . . , Xi+|c|+h−1, whereas Yj (W) involves the letters Xj , . . . , Xj+h−1. Therefore, for
every position j which satisfies j ≥ i + |c| + h, the Markov property yields

E(Ỹi,k(W)Yi(c)Yj (W)) ≤ µ(W)

µmin
E(Ỹi,k(W)Yi(c)),

where µmin = minw∈W µ(w1) > 0. Since the sum over j contains fewer than (k + 2)h terms,
we obtain

b21 ≤ 2(n − h + 1)
µ(W)

µmin

∑
k≥1

(k + 2)hµ̃k(W)

≤ 2(n − h + 1)
µ(W)

µmin
(µ(W) + 2µ̃(W))h

≤ 6nh

µmin
µ2(W). (17)

To bound b22, we write E(Ỹi,k(W)Yi(c)Yj (W)) ≤ E(Ỹi(W)Yi(c)Yj (W)) and note that the ran-
dom variable Ỹi (W)Yi(c) involves the letters Xi−h+1, . . . , Xi+|c|−1, whereas Yj (W) involves
the letters Xj , . . . , Xj+h−1. Therefore, for every position j which satisfies j ≥ i + |c|, we
have

E(Ỹi(W)Yi(c)Yj (W)) ≤ µ(W)

µmin
E(Ỹi(W)Yi(c)).

Thus, we derive the following bound for b22:

b22 ≤ 2(n − h + 1)h

µmin
µ(W)

∑
k≥1

∑
c∈Ck(W)

E(Ỹi(W)Yi(c)) ≤ 2nh

µmin
µ2(W). (18)
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Indeed,∑
k≥1

∑
c∈Ck(W)

E(Ỹi(W)Yi(c)) =
∑
k≥1

P(a K-clump of W with K ≥ k starts at position i)

=
∑
k≥1

∑
K≥k

µ̃K(W) =
∑
K≥1

Kµ̃K(W) = µ(W).

Finally, combining (17) and (18) leads to

b2 ≤ 8nh

µmin
µ2(W). (19)

4.4. Bounding b3

From definition (5), we have

b3 =
n−h+1∑

i=1

∑
k≥1

E(|E(Ỹi,k(W) − µ̃k(W) | σ(Ỹj,�(W) : (j, �) /∈ Bi,k))|).

We denote by C′
k the set of the words rcs such that c ∈ Ck , |r| = |s| = h, and c is a k-clump

of W in the sequence rcs. An occurrence of a word of C′
k is then equivalent to an occurrence

of a k-clump of W : Ỹi,k(W) = ∑
rcs∈C′

k
Yi−h(rcs). Moreover, for all c ∈ Ck , we deduce from

the definition of the neighborhood Bi,k that

σ(Ỹj,�(W) : (j, �) /∈ Bi,k) ⊂ σ(. . . , Xi−2h−1, Xi−2h, Xi+|c|+2h, Xi+|c|+2h+1, . . . ).

Therefore, owing to the Markov property, we have

b3 ≤
n−h+1∑

i=1

∑
k≥1

∑
rcs∈C′

k

E(|E(Yi−h(rcs) − µ(rcs) | σ(. . . , Xi−2h, Xi+|c|+2h, . . . ))|)

≤
n−h+1∑

i=1

∑
k≥1

∑
rcs∈C′

k

E(|E(Yi−h(rcs) − µ(rcs) | X(i−h)−h, X(i−h)+|rcs|+h)|).

Now we use the following result, proved in [13]: for all words w and all integers j and t ,

E(|E(Yj (w) − µ(w) | Xj−t , Xj+|w|+t )|) ≤ C′µ(w)|α|t ,
where C′ is a positive constant that depends only on the matrix � and α is the eigenvalue of
the matrix � second largest in modulus (with |α| < 1). This leads to

b3 ≤
n−h+1∑

i=1

∑
k≥1

∑
rcs∈C′

k

C′µ(rcs)|α|h.

Finally, the equality
∑

k≥1
∑

rcs∈C′
k
µ(rcs) = µ̃(W) yields

b3 ≤ C′(n − h + 1)|α|hµ̃(W) ≤ C′nµ(W)|α|h. (20)

Inequalities (16), (19), and (20) establish Theorem 1.
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5. Clumps and competing renewals

When counting the occurrences of a word or word family in a finite sequence X1 · · · Xn,
one may be interested in counting only nonoverlapping occurrences, for instance clumps or
renewals. A renewal can be recursively defined as follows: an occurrence is a renewal if
and only if either it is the first occurrence or it does not overlap a previous renewal. For a
word family, they are called competing renewals. Various results have been obtained for the
distribution of the number of clumps and the number of competing renewals (see [5, Chapter 6
and references therein]). New Poisson approximations directly follow from Theorem 1.

First, inequalities (2), (16), (19), and (20) lead to

dTV(D(Ñ∞(W)), P (λ̃)) ≤ Cnhµ2(W) + C′nµ(W)|α|h,
where Ñ∞(W) := ∑

k≥1 Ñ∞
k (W), P (·) denotes the Poisson distribution, and, using (15),

λ̃ := E(Ñ∞(W)) = (n − h + 1)‖(I − A) 
µ(W)‖1.

Moreover, Ñ∞(W) asymptotically has the same distribution as the number, Ñ(W), of clumps of
W in X1 · · · Xn: P(Ñ∞(W) �= Ñ(W)) ≤ hµ(W) (by same argument as for N∞). Therefore,
under both h = o(n) and the rare event condition E(N(W)) = O(1), the total variation distance
between the distribution of Ñ(W) and the Poisson distribution P (λ̃) tends to 0 as n tends to ∞.

Second, it can be shown that the distribution of the number, R(W), of competing renewals
of W is asymptotically identical to that of the number of clumps:

dTV(D(R(W)), D(Ñ(W))) ≤ P(R(W) �= Ñ(W)) ≤ 1

µmin
nhµ2(W), (21)

where, recall, µmin = minw∈W µ(w1) > 0. Indeed, we note that if all the clumps are such
that the occurrence of W they start with overlaps the occurrence of W they end with, then
R(W) = Ñ(W). Thus, if R(W) �= Ñ(W) then there exists (at least) one clump whose first
and last occurrences from W do not overlap. Let i be the position of such a clump and let u

be the occurrence from W it starts with. Then an occurrence of u starts at position i and an
occurrence of W starts between positions i+|u| and i+|u|+h−1; this occurs with probability
hµ(u)µ(W)/µmin. Summing over i ∈ {1, . . . , n − h + 1} and u ∈ W leads to inequality (21).
Owing to the triangular inequality, we then obtain the following Poisson approximation for the
number of competing renewals:

dTV(D(R(W)), P (λ̃)) = O(nhµ2(W) + nµ(W)|α|h + hµ(W)).

If E(N(W)) = O(1) and h = o(n), then the total variation distance between the distribution of
R(W) and the Poisson distribution P (λ̃) tends to 0 as n tends to ∞. This Poisson distribution
is in fact very close to the natural limiting Poisson distribution with parameter E(R(W))

proposed in [3], because their respective parameters are asymptotically equivalent under the
rare condition and h = o(n). However, in practice calculating E(R(W)) requires solving a
system of equations, whereas the expression for λ̃ is explicit.

6. Generalizations and conclusion

We have provided a new compound Poisson distribution with explicit parameters to approx-
imate the count of overlapping occurrences of a word family in a stationary Markov chain of
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length n. The error of approximation converges to 0 given that the word family W is expectedly
rare (E(N(W)) = O(1)) and the maximal word length is of order less than n.

Our results can easily be extended to the case of a Markov chain of order m, 2 ≤ m ≤
min{|w| : w ∈ W} − 1. It suffices to consider the sequence X∗ obtained by letting X∗

i :=
XiXi+1 · · · Xi+m−1, which is a Markov chain of order 1 on the alphabet A∗ := Am. Moreover,
an occurrence of W in X corresponds to an occurrence of W∗ in X∗, and vice versa, where W∗
is the word family W written on the new alphabet A∗. The parameters of the limiting compound
Poisson distribution will then be ‖Ak−1

(m) (I − A(m))
2 
µ(W)‖1, where A(m) is the matrix whose

(u, v)-indexed coefficient is given by

µ(u1 · · · um)

µ(v1 · · · vm)

∑
p∈P ′(u,v)
p≤|u|−m

p∏
t=1

π(ut · · · ut+m−1, ut+m),

and π(·, ·) and µ(·) respectively denote the transition probabilities and the stationary distribution
of the model. This compound Poisson distribution has been included in the R’MES software
(see http://genome.jouy.inra.fr/ssb/rmes/), used to find exceptional motifs in DNA sequences.

Our compound Poisson approximation for the count of any rare word family in a Markov
chain, together with a Gaussian approximation or the exact distribution, is extremely useful
when one models the sequence as a hidden Markov chain. Indeed, a hidden Markov chain
(X, S) on the alphabet A with state space {1, . . . , s} can be written as an order-1 Markov chain
X on the alphabet A × {1, . . . , s}, and an occurrence of a given word w in X corresponds to
an occurrence of a word family W in X. For instance, if there are two states, 1 and 2, the word
family W associated with w = aca is

{a1c1a1,a1c1a2,a1c2a1,a2c1a1,a1c2a2,a2c1a2,a2c2a1,a2c2a2},
where aj and cj respectively stand for the letters a and c in state j .
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