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A REMARK ON PREINVEX FUNCTIONS

JIANWEN P E N G AND XIANJUN LONG

In this paper, we show that the ratio of preinvex functions is invex. Hence, we give a
positive answer to the open question which was proposed in a paper of Yang, Yang
and Teo in (2003).

1. INTRODUCTION

Let R71 denotes n-dimension Euclidean space. In [2], Hanson considered the real
differentiable function f(x) on Rn whose gradient V / ( i ) satisfies the condition: for any
x,y £ Rn, there exists a vector r)(x,y) e Rn such that

Craven [3] called this an invex function. Later, Weir and Mond [4] and Weir and Jeyaku-
mar [5] introduced preinvex functions defined as follows.

Let K C Rn and / : K -¥ R. Then / is preinvex if for any x,y € K, there exists a
vector T}{x,y) 6 Rn, for all a € [0,1), y + arj(x,y) € K

f{y + ar](x,y)) ^ af(x) + (1 - a)f(y).

It is easy to show that preinvexity is a generalisation of invexity for nondifferentiable
function.

In [6], Yang and Chen presented a wider class of generalised convex functions, called
semipreinvex functions as follows.

A set K in Rn is said to satisfy the "semi-connected" property, if for any x,y £ K and
a € [0,1], there exists a vector T?(X, y, a) e Rn, such that y + ar)(x, y, a) g K. Let K be
a set in Rn having the "semi-connected" property with rj(x, y, a) : K x K x [0,1] —> Rn

and f(x) be a real function on K. Then / is called semi-preinvex with respect to T)(x, y,a)

if for x,y€K and a € [0,1],

f(y + ar]{x,y,a)) ^ af(x) + (1 - a)f{y)
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holds and lim ar](x, y, a) — 0.

The following result is due to Khan and Hanson [7] and Craven and Mond [8].

THEOREM 1 . 1 . Let Xo C # " and let f and g be real-valued functions defined on
Xo. If f(x) ^ 0, g(x) > 0, f(x) and —g(x) are invex with respect to a same r](x,y) on
Xo, then f(x)/g(x) is an invex function with respect torj(x,y) = (g(y) / g(x))r](x, y).

Yang, Yang and Teo [1] generalise Theorem 1.1 as follows.

THEOREM 1 . 2 . (See [1, Theorem 2.9].) Let Xo C Rn and let f and g be real-
valued differential functions defined on Xo. If j(x) ^ 0, g(x) > 0, f(x) and -g(x) are
semipreinvex with respect to a same T](x,y,a) on Xo, and \imrj(x,y,a) = T)(x,y), then

ct—tO

f(x)/g(x) is an invex function with respect to rj(x,y) — (g(y)/g(x))T)(x,y).
Then, Yang, Yang and Teo [1] proposed an open question as follows:

Is there a similar result as that of Theorem 1.2 for preinvex functions?

In this paper, we show that the ratio of preinvex functions is invex. Hence, we give
a positive answer to the open question in [1].

2. MAIN RESULTS

First of all, we prove the following result which is a generalisation of Theorem 1.1
and a similar result with [1, Theorem 2.8].

T H E O R E M 2 . 1 . Let Xo C Rn and let f and g be real-valued functions defined

on Xo- If f{x) ^ 0, g(x) > 0, f(x) and —g(x) are preinvex with respect to a same

r)(x,y) on Xo, then f(x)/g(x) is a semipreinvex function with respect to r]'(x,y,a)

= [(9{y))/{ag(y)) + (1 - a)g(x)]V(x, y).

P R O O F : Since f(x) and —g(x) are preinvex with respect to a same T](x,y) and
f(x) > 0, g{x) > 0, we have, for all x,y eX0 and a € [0,1], y + ar)*(x, y, a) G Xo, and

ari*(x,y,a))

_ f(y + [(ag(y))/(ag(») + (1 - a)g(x))]t}(x, y))
g(y + [(ag(y))/(ag(y) + (1 - a)g(x))}i](x, y))
{ag{y))/{ag{y) + (1 - a)g(x))f(x) + ((1 - a)g(x))/(ag{y) + (1 - a)g(x))f{y)

" (ag(y))/(ag(y) + (1 - a)g(x))g{x) + ((1 - a)g{x))/(ag(y) + (1 - a)g{x))g(y)
_ ag(y)f(x) + (1 - a)g(x)f(y)

ag{y)g{x) + (1 - a)g(x)g{y)
_ ag(y)f(x) + (1 - a)gjx)f{y)

g{x)g(y)

g(x)
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= <*(£)(*)+ (l-a)(£)(y)
That is, f(x)/g(x) is a semipreinvex function with respect to r)*(x, y,a). D

The following result gives a positive answer to the open question in [1].

THEOREM 2 . 2 . Let Xo c i?n and let f and g be real-valued differential func-

tions defined on Xo- If f(x) ^ 0, g(x) > 0, f(x) and —g(x) are preinvex with respect

to a same r](x,y) on Xo, then f{x)/g(x) is an invex function with respect to rj{x,y)

= [g{y)/g{x)]ri{x,y).

PROOF: By Theorem 2.1, we know that f(x)/g(x) is a semipreinvex function with

respect to rf(x,y,a) = \(g(y))/(ag{y) + (1 - a)g(x))]r](x,y). That is, for all x,y € Xo

and a € [0,1],

Then,
arj*(x,y, a)) - (f/g)(y)

a 5
Let a —> 0, and note that lim ri*(x, y, a) — rj(x, y), we have

a*0

Hence, f(x)/g(x) is an invex function with respect to rj(x,y). D
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