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Abstract

In a G/GI/c loss system with balking, reneging, or limited waiting space, deleting some
of the arriving customers can either increase or decrease the fraction of the remaining
arrivals who get served, depending on how customers are deleted. We present a model
in which the random deletion of arrivals independently and with some fixed probability
can never decrease the fraction of the remaining arrivals who get served.
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1. Introduction

In a G/GI/c loss system with balking, reneging, or limited waiting space, deleting some of
the arriving customers can either increase or decrease the fraction of the remaining arrivals
who get served. For example, consider a G/D/1/1 system in which service takes a deterministic
two units of time, and customers arrive at times 1, 2, 4, 6, 11, 12, 14, 16, 21, 22, 24, 26, . . . .
In this system, only the customers arriving at times 2, 12, 22, . . . are lost, so three-quarters
of the customers get served. If we delete the customers arriving at times 1, 11, 21, . . . , then
all of the remaining customers get served. If we instead delete the customers arriving at times
4, 14, 24, . . . , then only two-thirds of the remaining customers get served. Thus, the fraction of
the remaining customers served can either rise or fall, depending on which customers we delete.
We present a model in which, if customers are deleted randomly with some fixed probability,
the fraction of the remaining customers who get served can never decrease.

2. G/GI/c queue with balking or limited waiting space

Consider a standard G/GI/c queue working in a first-come–first-served fashion with the
following additional conditions. Arriving customers are classified as eligible according to a
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Bernoulli process with parameter p, 0 ≤ p ≤ 1. This is a system parameter. Ineligible
customers are lost, while eligible customers finding the queue length equal to x join the system
with probability f (x), where f (·) is a nonincreasing function bounded below by 0 and above
by 1. In other words, eligible customers who find x customers in the queue balk with probability
1 − f (x). Note that setting f (x) = 0 for x ≥ m limits the total number of customers in the
system to m, and further setting f (x) = 1 for 0 ≤ x ≤ m − 1 reduces the system to a standard
G/GI/c/m queue which arriving customers who find less than m customers in the system are
allowed to join with probability p.

In order to define the queue length process uniquely in the case of simultaneous occurrence
of service completion(s) and customer arrival(s), we assume that Sonderman’s (1979) event-
order assumption holds. That is, we assume that, at any time t , first all scheduled departures
are allowed to occur and then new arrivals are allowed to enter the system. If any of these new
arrivals have zero service time and are next to be serviced, they are allowed to depart, allowing
for more arrivals. Continuing in this way, all events that can occur at time t are allowed to
occur.

Let B(t) denote the number of customer arrivals and E(p, t) the number of eligible customer
arrivals by time t . Also, define J (p, t) as the number of customers who have joined the system
by time t . Then J (p, t)/E(p, t) is the fraction of eligible customers who have joined the
system by time t . We assume that, for 0 ≤ p ≤ 1, limt→∞ J (p, t)/t and limt→∞ B(t)/t exist,
and we define

L(p) = lim
t→∞

J (p, t)

E(p, t)
= lim

t→∞
J (p, t)

pB(t)

as the long-run fraction of eligible customers who join the system. Equivalently, we can set the
arrival rate limt→∞ B(t)/t to 1 without loss of generality and write

L(p) = N(p)

p
, (2.1)

where N(p) = limt→∞ J (p, t)/t is the long-run average number of customers who join the
system per unit time.

In the remainder of this section, we prove the following theorem.

Theorem 2.1. L(p) is nonincreasing in p.

Proof. Consider the system described above with the following additions. When a customer
arrives and the queue length is equal to x, the customer joins the system and is labelled as a
type-1 customer with probability p1f (x), joins the system and is labelled as a type-2 customer
with probability p2f (x) (with p1, p2 ≥ 0 and p1 + p2 ≤ 1), or is otherwise immediately lost.
Let J̃i (p1, p2, t) be the number of type-i customers who have joined the system by time t , and
define

Ñi(p1, p2) = lim
t→∞

J̃i (p1, p2, t)

t

to be the long-run average number of type-i customers who join the system per unit time.
Since service times are independent and identically distributed and every customer who joins

the system is type 1 with probability

p1f (x)

p1f (x) + p2f (x)
= p1

p1 + p2
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(independent of x), we have

Ñ1(p, ε)

Ñ1(p, ε) + Ñ2(p, ε)
= p

p + ε
, (2.2)

where 0 ≤ p ≤ 1 and 0 ≤ ε ≤ 1 − p. Also, by the rules of the construction we immediately
have

Ñ1(p, ε) + Ñ2(p, ε) = Ñ1(p + ε, 0). (2.3)

Combining (2.2) and (2.3), we get

Ñ1(p, ε)

p
= Ñ1(p + ε, 0)

p + ε
,

and using the fact that Ñ1(p, 0) ≥ Ñ1(p, ε) (to be proved in Lemma 2.1, below) gives

Ñ1(p, 0)

p
≥ Ñ1(p + ε, 0)

p + ε

or, equivalently,
N(p)

p
≥ N(p + ε)

p + ε
.

The result now follows immediately from (2.1).

Lemma 2.1. We have Ñ1(p, 0) ≥ Ñ1(p, ε).

Proof. The proof uses a coupling argument to establish that J̃1(p, 0, t) ≥ J̃1(p, ε, t), which
immediately implies the result. We couple a (p, ε) system together with a (p, 0) system, let
both systems have the same arrival process, and let the service time of the ith type-1 customer
to enter service be the same in both systems, for i ∈ {1, 2, . . . }.

For the ith arrival, let Vi and Ui be uniform random variables taking values between 0 and 1,
independent of everything else. First, if Vi < p then the arrival is labelled as type 1, and if
p < Vi < p + ε then it is labelled as type 2. In the (p, ε) system, if the queue length is x at the
time of the ith arrival, then the customer joins the system as a type-1 customer if Ui < f (x)

and Vi < p and as a type-2 customer if Ui < f (x) and p < Vi < p + ε. In the (p, 0) system,
if the queue length is x at the time of the ith arrival, then the customer joins the system as a
type-1 customer if Ui < f (x) and Vi < p.

Let Tn be the time of the nth arrival which is labelled as type 1, whether or not the customer
joins either system. For notational convenience, let A(t) = J̃1(p, ε, t) and A′(t) = J̃1(p, 0, t)

respectively denote the total numbers of type-1 customers who have joined the (p, ε) and (p, 0)

systems by time t . For a given n, we will show that if we assume A(t) ≤ A′(t) to hold for all
t < Tn, then A(Tn) ≤ A′(Tn).

We consider two cases. First suppose that A(Tn−1) < A′(Tn−1). Then we must have
A(Tn) ≤ A′(Tn), since A(Tn) − A(Tn−1) ≤ 1. Now suppose that A(Tn−1) = A′(Tn−1). Let
Q(t) and Q′(t) respectively denote the queue lengths at time t in the (p, ε) system and in the
(p, 0) system. Since type-1 service times are identical and in the same order in both systems and
(since A(Tn−1) = A′(Tn−1)) the same number of type-1 customers have joined both systems
prior to time Tn, the combined service time of type-1 customers who join prior to time Tn will
be the same in both systems. Furthermore, the assumption that A(t) ≤ A′(t) for all t < Tn
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implies that the type-1 customers who join have arrived no earlier in the (p, ε) system, and,
since they are served in the same order, we must have Q(Tn) ≥ Q′(Tn).

To see why Q(Tn) ≥ Q′(Tn), imagine a decision-maker who decides when customers enter
service and who may keep servers idle. The goal of the decision-maker is to minimize Q(Tn)

with the restriction that customers must be served in the order in which they arrive. Suppose
that the decision-maker decides to idle a server for t time units while a customer waits. It is
easily seen that it is at least as good instead to serve this customer as soon as possible, and
idle the server for t time units after the customer finishes service. Repeating this interchange
argument, it can be seen that it is optimal to serve all customers as soon as possible. This
implies that it cannot be worse if customers arrive sooner, as is the case in the (p, 0) system,
so we must have Q(Tn) ≥ Q′(Tn).

To conclude, the fact that f (·) is nonincreasing implies that if the customer arriving at time
Tn is the ith customer to arrive and Ui < f (Q(Tn)), then we also have Ui < f (Q′(Tn)) and,
so, A(Tn) ≤ A′(Tn).

3. G/GI/c queue with reneging

Consider a standard G/GI/c queue working in a first-come–first-served fashion and according
to Sonderman’s (1979) event-order assumption, with the following additional conditions. An
arriving customer is allowed to join with probability p and is otherwise lost. The ith customer
to join the system waits to be served but abandons the system if his service has not started
within Xi time units of his arrival, where {Xj , j ≥ 1} are independent, identically distributed
random variables.

As in Section 2, let B(t) denote the number of arrivals to the system and E(p, t) the number
of eligible customers who have arrived by time t . Note that in this model all the eligible
customers enter the system. Also, define S(p, t) as the number of customers who have entered
service by time t . Then S(p, t)/E(p, t) is the fraction of admitted customers who enter service.
We assume that, for 0 ≤ p ≤ 1, limt→∞ S(p, t)/t and limt→∞ B(t)/t exist, and we define

R(p) = lim
t→∞

S(p, t)

E(p, t)
= lim

t→∞
S(p, t)

pB(t)

to be the long-run fraction of admitted customers who receive service. Equivalently, we can
set the arrival rate limt→∞ B(t)/t to 1 without loss of generality and write

R(p) = M(p)

p
, (3.1)

where M(p) = limt→∞ S(p, t)/t is the long-run average number of customers who enter
service per unit time. The following result then follows from Theorem 2.1 and Lemma 2.1.

Corollary 3.1. R(p) is nonincreasing in p.

Proof. Consider a new G/GI/c queueing system to which arriving customers are accepted
with probability pf (x) = p P(X1 > x), where x is the time the arriving customer, if accepted,
would need to wait in the queue before starting service. Letting M̂(p) denote the long-run
number of customers who are accepted per unit time in this new system, it can easily be seen
that M(p) = M̂(p). For this new system, the argument in the proof of Lemma 2.1 also
goes through if Q(t) and Q′(t) are defined to be the respective amounts of time a customer
arriving at time t must wait in the queue in the (p, ε) system and in the (p, 0) system before
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starting service. Then, from Theorem 2.1, it follows that M̂(p)/p is nonincreasing in p, which
immediately implies the result.
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