THE EQUIVALENCE OF ASYMPTOTIC DISTRIBUTIONS UNDER RANDOMISATION AND NORMAL THEORIES

by SAMUEL D. SILVEY

(Received 9th January, 1953)

§ 1. Introduction. A problem of some interest in mathematical statistics is that of determining conditions under which the randomisation distribution of a statistic and its normal theory distribution are asymptotically equivalent, as these two distributions are used in alternative approaches to the same inference problem.

Let $\{\xi_n\}$ be a sequence of independent random variables such that, for each *n*, the distribution of ξ_n is $N(\mu, \sigma^2)$ (*i.e.*, is normal with mean μ and variance σ^2).

Let $\{a_n\}$ be a given sequence of real numbers with $a_{n_1} \neq a_{n_2}$ for some n_1, n_2 .

Let $\{X_n\}$ be a sequence of random variables, the joint probability distribution of X_1 , X_2, \ldots, X_n being defined for each n as follows:

$$P\{X_1 = a_{\rho_1}, X_2 = a_{\rho_2}, \dots, X_n = a_{\rho_n}\} = \frac{1}{n!},$$

for each permutation $(\rho_1, \rho_2, ..., \rho_n)$ of the integers (1, 2, ..., n), where $P\{R\}$ denotes the probability of a relation R.

Let $t_n(x_1, x_2, ..., x_n)$, denoted by $t_n(x)$, be a function of n variables $x_1, x_2, ..., x_n$, defined for each n.

Then $\{t_n(\xi)\}\$ and $\{t_n(X)\}\$ are sequences of random variables, and the problem stated above is that of determining conditions subject to which, for all c,

$$\lim_{n\to\infty} P\{t_n(\xi) < c\} = \lim_{n\to\infty} P\{t_n(X) < c\}.$$

Of particular interest is the case where t_n has, for each n, the properties :

(i) $t_n(kx_1, kx_2, \dots, kx_n) = t_n(x_1, x_2, \dots, x_n)$ for any positive number k,

(ii) $t_n(x_1+c, x_2+c, ..., x_n+c) = t_n(x_1, x_2, ..., x_n)$ for any number c.

Many statistics in common use have these properties.

For such sequences $\{t_n\}$ the distribution of $t_n(\xi)$ is independent of μ and σ^2 , since

$$\begin{split} P\{t_{n}(\xi) < c\} &= \iint_{t_{n}(\xi) < c} \dots \int (2\pi\sigma^{2})^{-\frac{n}{2}} \exp\left[-\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (\xi_{i} - \mu)^{2}\right] d\xi_{1} d\xi_{2} \dots d\xi_{n} \\ &= \iint_{t_{n}(\eta) < c} (2\pi)^{-\frac{n}{2}} \exp\left[-\frac{1}{2} \sum_{i=1}^{n} \eta_{i}^{2}\right] d\eta_{1} d\eta_{2} \dots d\eta_{n}, \end{split}$$

where $\eta_i = \frac{\xi_i - \mu}{\sigma}$, i = 1, 2, ..., n, since the region $t_n(\xi) < c$ corresponds to the region

 $t_n(\sigma\eta_1+\mu, \ \sigma\eta_2+\mu, \ \ldots, \ \sigma\eta_n+\mu) \!<\!\! c,$

which by the properties (i), (ii) of t_n is the region $t_n(\eta) < c$.

For such sequences $\{t_n\}$ the distribution of $t_n(\xi)$ will be called the normal theory distribution of t_n , that of $t_n(X)$ the randomisation distribution of t_n . In discussing the normal theory distribution of t_n we can, without loss of generality, take $\mu = 0$ and $\sigma^2 = 1$. § 2. Geometrical Interpretation. The properties (i) and (ii) imply that the distribution of $t_n(\xi)$ is the same as the conditional distribution of $t_n(\xi)$ given

$$\overline{\xi}_n = \frac{1}{n} \sum_{i=1}^n \xi_i \quad \text{and} \qquad m_{2, n}(\xi) = \frac{1}{n} \sum_{i=1}^n (\xi_i - \overline{\xi}_n)^2,$$

this conditional distribution in turn being independent of ξ_n and $m_{2,n}(\xi)$. For, taking $\mu = 0$, $\sigma^2 = 1$, the probability density element of $\xi_1, \xi_2, ..., \xi_n$ is

$$(2\pi)^{-\frac{n}{2}} \exp\left(-\frac{1}{2}\sum_{i=1}^{n}\xi_{i}^{2}\right) d\xi_{1} d\xi_{2} \dots d\xi_{n},$$

$$(2\pi)^{-\frac{n}{2}} \exp\left[-\frac{1}{2}\sum_{i=1}^{n}(\xi_{i}-\bar{\xi}_{n})^{2}\right] \exp\left(-\frac{n}{2}\bar{\xi}_{n}^{2}\right) d\xi_{1} d\xi_{2} \dots d\xi_{n}.$$

i.e.,

Applying an orthogonal linear transformation from $\xi_1, \xi_2, ..., \xi_n$ to $\eta_1, \eta_2, ..., \eta_n$ in which $\eta_1 = \frac{1!}{\sqrt{n}} \sum_{i=1}^n \xi_i$, we get the probability density element of $\eta_1, \eta_2, ..., \eta_n$ as

$$(2\pi)^{-\frac{n}{2}} \exp\left(-\frac{1}{2}\sum_{i=2}^{n}\eta_{i}^{2}\right) \exp\left(-\frac{1}{2}\eta_{1}^{2}\right) d\eta_{1} d\eta_{2} \dots d\eta_{n}.$$

Under this transformation $t_n(\xi)$ becomes $t_n'(\eta)$, say, where the property (ii) of t_n implies that $t_n'(\eta)$ is functionally independent of η_1 . Clearly $t_n'(\eta)$ is also a homogeneous function of η_2 , η_3 , ..., η_n of degree zero.

It follows that if the change is made from Cartesian coordinates $(\eta_2, \eta_3, ..., \eta_n)$ to polar coordinates $(r, \theta_1, \theta_2, ..., \theta_{n-2})$, $t'_n(\eta)$ becomes a function $t'_n(\theta_1, \theta_2, ..., \theta_{n-2})$ of $\theta_1, \theta_2, ..., \theta_{n-2}$ only. Also the probability density element of the random variables $\eta_1, r, \theta_1, ..., \theta_{n-2}$ can be expressed in the form

$$K \exp\left(-\frac{1}{2}\eta_1{}^2\right) d\eta_1 \cdot r^{n-2} \exp\left(-\frac{1}{2}r^2\right) dr \cdot J(\theta_1, \theta_2, ..., \theta_{n-2}) d\theta_1 d\theta_2 \dots d\theta_{n-2},$$

where $J(\theta_1, \theta_2, ..., \theta_{n-2})$ is a function derived from the Jacobian $\left|\frac{\partial(\eta_2, \eta_3, ..., \eta_n)}{\partial(r, \theta_2, ..., \theta_{n-2})}\right|$ and K is a constant.

Hence the random variable $t_n(\xi)$ is independent of the random variables η_1 and r, *i.e.*, of the random variables $\overline{\xi}_n$ and $m_{2,n}(\xi)$.

Furthermore, from the above it is clear that the conditional distribution of $t_n(\xi)$, given $\overline{\xi}_n$ and $m_{2,n}(\xi)$, depends only on the "volume" element $d\xi_1 d\xi_2 \dots d\xi_n$.

Hence if the random variables $\xi_1, \xi_2, \ldots, \xi_n$ are represented by a *n*-dimensional Euclidean space W_n , if Q_{n-2} denotes the hypersphere $\xi_1 + \xi_2 + \ldots + \xi_n = nq_1$, $\sum_{i=1}^n (\xi_i - \overline{\xi_n})^2 = nq_2$, if $Q_{n-2,c}$ denotes the subset of Q_{n-2} in which $t_n(\xi) < c$, and if l_n denotes *n*-dimensional Lebesgue measure, then

$$\begin{split} P\{t_n(\xi) < c\} = P\{t_n(\xi) < c \mid \overline{\xi}_n = q_1, \, m_{2, n}(\xi) = q_2\} \\ = & \frac{l_{n-2}(Q_{n-2, c})}{l_{n-2}(Q_{n-2})} \, . \end{split}$$

Again the space of variation \mathfrak{X}_n of the random variables $X_1, X_2, ..., X_n$ is a set of n! points (not necessarily all distinct) in a *n*-dimensional Euclidean space W_n' , with mutually

perpendicular axes $OX_1, OX_2, ..., OX_n$. If W_n' is superimposed on W_n with $OX_i \leftrightarrow O \xi_i$ i = 1, 2, ..., n, then \mathfrak{X}_n is contained in the hypersphere A_{n-2} with equations

$$\xi_1 + \xi_2 + \dots + \xi_n = n\bar{a}_n, \qquad \sum_{i=1}^n (\xi_i - \bar{\xi}_n)^2 = nm_{2,n}(a),$$
$$\bar{a}_n = \frac{1}{n} \sum_{i=1}^n a_i, \qquad m_{2,n}(a) = \frac{1}{n} \sum_{i=1}^n (a_i - \bar{a}_n)^2.$$

where

If ν_c denotes the number of points of \mathfrak{X}_n for which $t_n(X) < c$, then

$$P\{t_n(X) < c\} = \frac{\nu_c}{n!} \cdot$$

Hence in order that the limiting distribution functions of $t_n(\xi)$ and $t_n(X)$ should be the same, it is necessary and sufficient that

$$\lim_{n \to \infty} \frac{l_{n-2}(A_{n-2,c})}{l_{n-2}(A_{n-2})} = \lim_{n \to \infty} \frac{\nu_c}{n!} \text{ for all } c,$$

i.e., that the set of points \mathfrak{X}_n should tend to be distributed uniformly throughout A_{n-2} , relative to the class \mathfrak{C} of subsets $A_{n-2,c}$, when W_n' is superimposed on W_n as above.

§ 3. Linear Combinations. The discussion is now particularised from the general class of sequences $\{t_n\}$ to a subset of this class.

For each n, let $y_{n1}, y_{n2}, ..., y_{nn}$ be an assigned set of real numbers with $y_{ni_1} \neq y_{ni_2}$ for some i_1, i_2 .

Let

$$n_{i,n}(y) = \frac{1}{n} \sum_{i=1}^{n} (y_{ni} - \bar{y}_n)^j, \quad j = 2, 3, \dots,$$

and

$$b_{j,n}(y) = \frac{m_{j,n}(y)}{[m_{2,n}(y)]^{j/2}}, j = 2, 3, \dots$$

$$y'_{ni} = \frac{y_{ni} - y_n}{[m_{2,n}(y)]^{1/2}}$$
, $i = 1, 2, ..., n$

so that $\bar{y}_{n'} = 0$, $m_{2,n}(y') = 1$, and $m_{j,n}(y') = b_{j,n}(y)$.

1

Similarly let
$$a'_{ni} = \frac{a_i - \bar{a}_n}{[m_{2,n}(a)]^{1/2}}$$
, $i = 1, 2, ..., n$.

 $\bar{y}_n = \frac{1}{2} \sum_{n=1}^{n} y_{ni}$

We consider sequences $\{r_n\}$, where $r_n(\xi)$ is of the form

$$r_{n}(\xi) = \frac{(n-1)^{1/2}}{n} \sum_{i=1}^{n} y'_{ni} \xi'_{ni},$$
$$\xi'_{ni} = \frac{\xi_{i} - \overline{\xi}_{n}}{[m_{2-n}(\xi)]^{\frac{1}{2}}}, \quad i = 1, 2, ..., n$$

where

A sequence $\{r_n(X)\}$ can be regarded as a sequence of standardised linear combinations of the random variables X_1, X_2, \ldots . We discuss conditions subject to which the limiting distributions of $r_n(\xi)$ and $r_n(X)$ are equivalent.

The following lemmas are required.

3.1. LEMMA. Every $r_n(\xi)$ has the same distribution which tends to the N(0, 1) form as $n \rightarrow \infty$.

We have

$$\frac{[r_n(\xi)]^2}{n-1} = \frac{\left(\sum_{i=1}^n \frac{y'_{ni}}{n^{1/2}} \xi_i\right)^2}{\sum_{i=1}^n \xi_i^2 - n \,\overline{\xi}_n^2}.$$

Applying an orthogonal linear transformation from $\xi_1, \xi_2, ..., \xi_n$ to $\eta_1, \eta_2, ..., \eta_n$ in which

$$n^{\frac{1}{2}} \eta_{1} = \sum_{i=1}^{n} \xi_{i},$$
$$n^{\frac{1}{2}} \eta_{2} = \sum_{i=1}^{n} y'_{ni} \xi_{i}$$

and

142

(these being orthogonal since $\sum_{i=1}^{n} y'_{ni} = 0$), we get

$$\frac{[r_n(\xi)]^2}{n-1} = \frac{\eta_2^2}{\sum_{i=2}^n \eta_i^2} . \qquad (3.1.1)$$

Since $\xi_1, \xi_2, ..., \xi_n$ are independent random variables each with a N(0, 1) distribution, $\eta_1, \eta_2, \ldots, \eta_n$ have the same property.

It follows that the distribution of $r_n(\xi)$ does not depend on a particular set of values $y_{n1}, y_{n2}, ..., y_{nn}$

Further, it is easily shown from (3.1.1) that if $-(n-1)^{\frac{1}{2}} \leq c_1 < c_2 \leq (n-1)^{\frac{1}{2}}$, then

$$P\{c_1 \leq r_n(\xi) < c_2\} = \left(\frac{n}{n-1}\right)^{\frac{1}{2}} \frac{\Gamma\left(\frac{n-1}{2}\right)}{\left(\frac{n}{2}\right)^{\frac{1}{2}} \Gamma\left(\frac{n-2}{2}\right)} (2\pi)^{-\frac{1}{2}} \int_{c_1}^{c_2} \left(1 - \frac{x^2}{n-1}\right)^{\frac{n-4}{2}} dx.$$

From this it is clear that

$$\lim_{n\to\infty} P\{r_n(\xi) < c\} = (2\pi)^{-\frac{1}{2}} \int_{-\infty}^c \exp\left(-\frac{1}{2}x^2\right) dx.$$

3.2. LEMMA. Let $(\alpha_1, \alpha_2, ..., \alpha_h)$ be a partition of an integer s. Let $S_n(a', \alpha)$ denote the symmetric polynomial $\Sigma a'_{i_1} a'_{i_2} a'_{i_1} a'_{i_1} a'_{i_2} a'_{i_1} a'_{i_1} a'_{i_2} a'_{i_1} a'_{i_2} a'_{i_1} a'_{i$ of h distinct integers from 1, 2, ..., n. Then $S_n(a', \alpha)$ can be expressed in the form

$$S_n(a', \alpha) = n^{h} \prod_{i=1}^{h} m_{\alpha_i, n}(a') + R_n[m(a')],$$

where $R_n[m(a')]$ is a sum of terms of the form $C_{\alpha,\beta} n^k \prod_{i=1}^k m_{\beta_i,n}(a')$, in which

- (i) (β₁, β₂, ..., β_k) is a partition of s in which each β is either an α or a sum of more than one α.
- (ii) k < h,
- (iii) $C_{\alpha, \beta}$ is a constant independent of n,
- (iv) the number of terms is independent of n.

This follows directly from the well-known expression for symmetric polynomials of the type $S_n(a', \alpha)$ in terms of sums of powers $\sum_{i=1}^n a_i'^p$, since $\sum_{i=1}^n a_i'^p = nm_{p,n}(a')$.

(i), (ii), (iii), and (iv) are properties of this expression.

(i)
$$m_{2s,n}(a') \ge 1$$
, $s = 1, 2, 3, ...$
(ii) $|m_{s,n}(a')| \le n^{\frac{s-2}{2}}$, $s = 2, 3, 4, ...$

(i) follows from well-known inequalities on absolute moments [2].

(ii)
$$|m_{s,n}(a')| = |\frac{1}{n}(a_1'^s + a_2'^s + \dots + a'_n^s)|$$

$$\leqslant \frac{1}{n}(a_1'^2 + a_2'^2 + \dots + a_n'^2)^{s/2}$$
$$= n^{\frac{s-2}{2}}.$$

These inequalities hold also when a' is replaced by y'.

3.4. THEOREM. Randomisation distributions and normal theory distributions of all statistics r_n are asymptotically equivalent if and only if the distribution of the set of measures $a_1, a_2, ..., a_n$ tends to the normal form as $n \rightarrow \infty$.

Necessity. Let the sequence $\{r_n^0\}$ be defined by $y_{n1} = 1$, $y_{ni} = 0$, $i = 2, 3, ..., n, n = 2, 3, 4 \dots$, so that

$$r_n^{0}(X) = \frac{X_1 - \overline{X}_n}{[m_{2,n}(X)]^{\frac{1}{2}}} = \frac{X_1 - \tilde{a}_n}{[m_{2,n}(a)]^{\frac{1}{2}}} \cdot$$

If F(c) denotes the proportion of the numbers a_1, a_2, \ldots, a_n with the property that

$$\frac{a_i - \bar{a}_n}{[m_{2, n}(a)]^{\frac{1}{2}}} < c$$

then the proportion of the points of \mathfrak{X}_n for which $r_n^0(X) < c$ is F(c), since corresponding to each such number a_i there are (n-1)! points of \mathfrak{X}_n for which $r_n^0(X) < c$.

Hence
$$P\{r_n^0(X) < c\} = F(c).$$

Also, by (3.1), $P\{r_n^0(\xi) < c\} \rightarrow (2\pi)^{-\frac{1}{2}} \int_{-\infty}^{c} \exp((-\frac{1}{2}x^2)) dx$, as $n \rightarrow \infty$.

Hence for equivalence of the asymptotic distributions of $r_n^0(X)$ and $r_n^0(\xi)$ it is necessary that

$$F(c) \to (2\pi)^{-\frac{1}{2}} \int_{-\infty}^{c} \exp((-\frac{1}{2}x^2) dx)$$

i.e., that the set of numbers $a_1, a_2, ..., a_n$ should tend to be normally distributed.

Sufficiency. As a consequence of (3.1) it has to be shown that, if the set $a_1, a_2, ..., a_n$ tends to be normally distributed, then the limiting form of the distribution of $r_n(X)$ in any sequence $\{r_n(X)\}$ of linear combinations is N(0, 1). Now the set $a_1, a_2, ..., a_n$ tends to be normally distributed if and only if

$$b_{j,n}(a) \rightarrow 0,$$
 $j = 3, 5, 7, ...,$
 $b_{j,n}(a) \rightarrow \frac{j!}{(\frac{1}{2}j)! 2^{j/2}},$ $j = 2, 4, 6, ...,$

and as $n \rightarrow \infty$.

Hence it has to be shown that, subject to

$$b_{j,n}(a) = \begin{cases} o(1) & , \quad j = 3, 5, 7, \dots \\ \frac{j!}{(\frac{1}{2}j)! 2^{j/2}} + o(1), & j = 2, 4, 6, \dots, \end{cases}$$

the distribution of any statistic $r_n(X)$ is asymptotically N(0, 1).

SAMUEL D. SILVEY

 \mathbf{Let}

$$X'_{ni} = \frac{X_i - X_n}{[m_{2, n}(X)]^{\frac{1}{2}}} = \frac{X_i - \bar{a}_n}{[m_{2, n}(a)]^{\frac{1}{2}}} .$$

Then for any integers $\alpha_1, \alpha_2, \ldots, \alpha_h$, if E denotes the expected value of a random variable,

$$E\left\{X'_{ni_1}^{\alpha_1}X'_{ni_2}^{\alpha_2}\cdots X'_{ni_h}^{\alpha_h}\right\}=\frac{1}{n^{[h]}}S(a',\alpha),$$

where $n^{[h]} = n(n-1) \dots (n-h+1).$

Also

$$r_n(X) = \frac{(n-1)^{\frac{1}{2}}}{n} \sum_{i=1}^n y'_{ni} X'_{ni}$$

Let t be a positive integer, $t \ge 2$.

Expanding $\left(\sum_{i=1}^{n} y'_{ni} X'_{ni}\right)^{t}$, taking expected values term by term and collecting terms, we get

where summation extends over all partitions $(\alpha_1, \alpha_2, ..., \alpha_h)$ of t. Also

$$C_{\alpha} = \frac{t!}{\alpha_1! \alpha_2! \ldots \alpha_h!} \frac{1}{\pi_1! \pi_2! \ldots \pi_p!}$$

where, when the α 's are chosen from ρ different integers $i_1, i_2, ..., i_{\rho}, \pi_j$ of the α 's are equal to $i_j, j = 1, 2, ..., \rho$.

By (3.2)
$$S_n(a', \alpha) = n^h \prod_{i=1}^h m_{\alpha_i, n}(a') + R_n(a', \alpha),$$

where

$$R_n(a', \alpha) = O(n^{h-1}),$$

and so

$$\frac{1}{n^{[h]}} S_n(a', \alpha) = \prod_{i=1}^h m_{\alpha_i, n}(a') + o(1)$$

If any α_i is odd, then $\prod_{i=1}^h m_{\alpha_i, n}(a') = o(1)$.

If t is odd, then for each partition $(\alpha_1, \alpha_2, ..., \alpha_h)$ of t at least one α_i is odd, and so for every partition of t

$$\frac{1}{n^{[h]}} S_n(a', \alpha) = o(1).$$

By applying (3.2) to $S_n(y', \alpha)$ and using (3.3) it is easily shown that $n^{-t/2}S_n(y', \alpha)$ is bounded.

Then, since the number of terms on the right side of (3.4.1) is independent of n,

$$\mathbb{E}[r_n(X)]^t = o(1)$$
, if t is odd.

Also if t is even, t = 2u, say, those terms on the right-hand side of (3.4.1) corresponding to partitions $(\alpha_1, \alpha_2, ..., \alpha_h)$ of 2u in which some α_i is odd are o(1).

Hence
$$E[r_n(X)]^{2u} = \frac{(n-1)^u}{n^{2u}} \Sigma \frac{1}{n^{[n]}} C_{2\beta} S_n(y', 2\beta) S_n(a', 2\beta) + o(1)$$
, summation extending

over all partitions $(2\beta_1, 2\beta_2, ..., 2\beta_h)$ of $2u, \beta_1, \beta_2, ..., \beta_h$ being integers.

 $S_n(y', 2\beta) = S_n(y'^2, \beta),$

Now while

$$\frac{1}{n^{[h]}}S_n(a', 2\beta) = \frac{1}{2^u}\prod_{i=1}^h \frac{(2\beta_i)!}{\beta_i!} + o(1).$$

144

Hence

$$E[r_n(X)]^{2u} = \frac{1}{2^{u_n u}} \mathcal{L}\left[C_{2\beta} S_n(y'^2, \beta) \prod_{i=1}^{h} \frac{(2\beta_i)!}{\beta_i!}\right] + o(1),$$

since, as above, $n^{-u}S_n(y'^2,\beta)$ is bounded.

Also

$$C_{2\beta} \prod_{i=1}^{h} \frac{(2\beta_i)!}{\beta_i!} = \frac{(2u)!}{u!} C_{\beta_i} \text{ and so}$$

$$E[r_n(X)]^{2u} = \frac{(2u)!}{2^{u}u!} \frac{1}{n^{u}} \Sigma C_{\beta} S_n(y'^2, \beta) + o(1)$$

$$= \frac{(2u)!}{2^{u}u!} \left(\frac{y_1'^2 + y_2'^2 + \dots + y_n'^2}{n} \right)^u + o(1)$$

$$= \frac{(2u)!}{2^{u}u!} + o(1).$$

Finally $E[r_n(X)] = 0.$

Hence the moments of the distribution of $r_n(X)$ tend to those of a N(0, 1) distribution, and since this distribution is completely determined by its moments, this completes the proof.

While the very stringent conditions on $\{a_n\}$ of (3.4) are necessary for equivalence of the asymptotic distributions of $r_n(X)$ and $r_n(\xi)$ for all sequences $\{r_n\}$, for "most" such sequences much less restrictive conditions are sufficient. This is brought out by the following theorem, which is a more general form of a result proved by Wald and Wolfowitz [5], and partially extended by Noether [4].

3.6. THEOREM. If $b_{j,n}(y) = O[n^{\theta(j-2)}]$, $j = 2, 3, 4, ..., where \theta$ is a given real number such that $0 \le \theta < \frac{1}{2}$, then the distribution of $r_n(X)$ is asymptotically N(0, 1) provided $b_{j,n}(a) = o[n^{\phi(j-2)}]$, $j = 3, 4, ..., where \phi = \frac{1}{2} - \theta$.

Application of lemma 3.2 to $S_n(y', \alpha)$ and $S_n(\alpha', \alpha)$ in each term of the right side of (3.4.1) shows that $E[r_n(X)]^t$ can be expressed as a sum of terms of the form

$$C_{\alpha}K_{\alpha,\beta,\gamma}\left(\frac{n-1}{n}\right)^{t/2}\frac{1}{n^{t/2}}\frac{1}{n^{t/2}}\left\{n^{h_{1}}\prod_{i=1}^{h_{1}}m_{\beta_{i},n}\left(y'\right)\right\}\left\{n^{h_{2}}\prod_{j=1}^{h_{2}}m_{\gamma_{j},n}(a')\right\}=B, \text{ say,}$$

where

(i) the number of terms is independent of n,

- (ii) $\begin{pmatrix} (\beta_1, \beta_2, \dots, \beta_{h_1}) \\ (\gamma_1, \gamma_2, \dots, \gamma_{h_2}) \end{pmatrix}$ is a partition of t in which $\begin{cases} h_1 \leq h \\ h_2 \leq h \end{cases}$ and each $\begin{cases} \beta_i \\ \gamma_j \end{cases}$ is either an α or a sum of α 's.
- (iii) $K_{\alpha,\beta,\gamma}$ is independent of *n* and equals 1 if $h_1 = h_2 = h$, *i.e.*, if (α) , (β) , and (γ) are all the same partition of *t*.

We consider the order of the term B. If any $\beta_i = 1$, or any $\gamma_j = 1$, then B = 0. If some $\gamma_j > 2$ and every $\beta_i \ge 2$, then $B = o(n^p)$, where

$$p = h_1 + h_2 - h - \frac{1}{2}t + \theta(t - 2h_1) + \phi(t - 2h_2)$$

$$= 2\phi h_1 + 2\theta h_2 - h, \quad \text{since } \theta + \phi = \frac{1}{2},$$

$$\leqslant 0$$
 , since $h_1 \leqslant h$ and $h_2 \leqslant h_2$

i.e.,

$$B = o(1)$$
, if any $\gamma_j > 2$.
Hence, if t is odd,

$$E\{r_n(X)\}^t = o(1),$$

for then at least one γ_i in each partition is odd, *i.e.*, is either 1 or is greater than 2.

Furthermore, if t is even, t=2u, say, then B=o(1) unless possibly when $h_2=u$, and $\gamma_1=\gamma_2=\ldots=\gamma_u=2$.

If t=2u and $h_2=u$ and $\gamma_j=2, j=1, 2, ..., u$, then

- (i) B=0, if any $\beta_i=1$,
- (ii) $B = O[n^{2\phi h_1 + 2\theta h_2 h}]$, if each $\beta_i \ge 2$.

In case (ii) B = o(1), unless $h_1 = h_2 = h$, since $2\phi h_1 + 2\theta h_2 - h < 0$ except when $h_1 = h_2 = h$, *i.e.*, B = o(1), unless possibly when $h = h_1 = h_2 = u$, and $(\alpha) = (\beta) = (\gamma) = (2, 2, ..., 2)$.

For the only term for which this is true $K_{\alpha,\beta,\gamma} = 1$, by (iii), while $C_{\alpha} = \frac{(2u)!}{u! 2^{u'}}$, as in (3.4).

The term itself is, then, $\frac{(2u)!}{u! 2^u} + o(1)$.

It follows as in (3.4) that $r_n(X)$ is asymptotically distributed in the N(0, 1) form.

3.7 Applications. (1). Asymptotic normality of the distribution of the product-moment rank correlation coefficient was originally proved by Hotelling and Pabst [1]. Derivation of this result from Theorem 3.6 illustrates to some extent the width of the conditions there established.

If
$$y_{ni} = i, i = 1, 2, ..., n, n = 2, 3, ...$$

and $a_i = i, i = 1, 2, ..., n$

then the corresponding sequence $\{r_n(X)\}$ is a sequence of product-moment rank correlation coefficients. It is easily shown that, in this case, $b_{j,n}(y) = b_{j,n}(a) = O(1), j = 2, 3, ...$, so that, for this sequence, the conditions of Theorem 3.6 are more than satisfied. In fact, for $b_{j,n}(y) = O(1)$, j = 2, 3, ..., it is sufficient for asymptotic normality of $r_n(X)$ to have

$$b_{j,n}(a) = o\left(n^{\frac{j-2}{2}}\right)j = 3, 4, \dots$$

(2). Madow [4] has established conditions subject to which linear combinations of the measures of a random sample drawn without replacement from a finite population are approximately normal. Such sampling results in an actual situation to which the above theory can be applied, the connection being as follows.

Let $a_1, a_2, ..., a_n$ be considered as the measures of a population P_n of n individuals in a sequence $\{P_n\}$ of populations. Then the random variables $X_1, X_2, ..., X_n$ can be considered as arising from a random ordering of P_n , and $X_1, X_2, ..., X_k, k < n$, can be considered as the measures of a random sample of k individuals drawn without replacement from P_n .

The following is a particular application.

Let f be a rational number with 0 < f < 1.

Let $\{P_{n_i}\}$ be a subsequence of $\{P_n\}$ for which fn_i is integral and equal to p_i , say, for i = 1, 2, ...

$$y_{n_i j} = \frac{1}{p_i} - \frac{1}{n_i}, \quad j = 1, 2, \dots, p_i,$$
$$= -\frac{1}{n_i}, \quad j = p_i + 1, \dots, n_i.$$

 $\overline{x}_i = \frac{1}{p_i} (X_1 + X_2 + \ldots + X_{p_i}).$

Then it is easily shown that $b_{j,n_i}(y) = O(1), j = 2, 3, ...$

Let

https://doi.org/10.1017/S2040618500035632 Published online by Cambridge University Press

146

EQUIVALENCE OF ASYMPTOTIC DISTRIBUTIONS

Then $r_n(X)$ corresponding to these values of y is given by

$$r_{n_i}(X) = \left(\frac{fn_i}{1-f}\right)^{\frac{1}{2}} \frac{\bar{x}_i - \bar{a}_{n_i}}{[m_{2,n_i}(a)]^{\frac{1}{2}}},$$

and the distribution of $r_{n_i}(X)$ is asymptotically N(0, 1) provided

$$b_{j, n_i}(a) = o\left(n_i^{\frac{j-2}{2}}\right), j = 3, 4, \dots$$

Tying this up with more usual terminology we have the result that if a random sample, with sampling fraction f, is drawn without replacement from a large finite population of N individuals with mean $\mu(=\bar{a}_N)$ and variance $\sigma^2(=m_{2,N}(a))$ then the distribution of the sample

mean is approximately normal with mean μ and variance $\frac{\sigma^2}{N} \left(\frac{1}{f} - 1\right)$, unless the population is

very unusual.

Proofs establishing the equivalence of the normal theory approach and the randomisation approach to a wider field of practical problems depend on an extension of Theorem 3.6 to the joint distribution of more than one linear combination. It is hoped to publish this extension in a later paper.

REFERENCES

(1) Hotelling, H., and Pabst, M. R., "Rank correlation and tests of significance involving no assumptions of normality," Ann. Math. Stats., 7 (1936).

(2) Kendall, M. G., Advanced Theory of Statistics (3rd ed., London, 1947), p. 56.

(3) Madow, W. G., "On the limiting distribution of estimates based on samples from finite universes," Ann. Math. Stats., 19, 4 (1948).

(4) Noether, G. E., "On a theorem of Wald and Wolfowitz," Ann. Math. Stats., 20, 3 (1949).

(5) Wald, A., and Wolfowitz, J., "Statistical tests based on permutations of the observations," Ann. Math. Stats., 15, 4 (1944).

UNIVERSITY OF GLASGOW