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NUMBER FIELDS WITH DISCRIMINANT ±2a3b

AND GALOIS GROUP An OR Sn

GUNTER MALLE and DAVID P. ROBERTS

Abstract

The authors present three-point and four-point covers having bad
reduction at 2 and 3 only, with Galois group An or Sn for n equal to
9, 10, 12, 18, 28, and 33. By specializing these covers, they obtain
number fields ramified at 2 and 3 only, with Galois group An or Sn

for n equal to 9, 10, 11, 12, 17, 18, 25, 28, 30, and 33.

1. Introduction

1.1. An inverse problem

The most standard inverse Galois problem asks for a Galois number field K ⊂ C with
Galois group Gal(K/Q) isomorphic to a given finite group G. This problem is easy to solve
for the symmetric groups Sn, and not too much harder for the alternating groups An. For
Lie-type groups, the problem is much harder, but it has been solved for many groups by
various techniques; see, for example, [8].

The deepest results on number fields pay close attention to how primes ramify. It is
therefore natural to modify the standard inverse Galois problem to ask for number fields K

which not only have Galois group G, but which also have discriminant divisible by only
primes in a given non-empty finite set S. In this setting, symmetric groups and alternating
groups suddenly become problematic. In particular, known constructional techniques based
on étale cohomology or automorphic forms apply mainly only to Lie-type groups.

More precisely, let NF(S, n) be the set of Galois number fields K ⊂ C with Gal(K/Q)

either An or Sn, and all prime factors of the discriminant in S. On the one hand, current
constructional techniques have only moderate control over ramifying primes, and it seems
quite possible that NF(S) := ∐

NF(S, n) would be finite for all S. On the other hand, if
we fix two distinct primes p and �, and put S = {p, �}, then one can prove, using modular
forms, that there are infinitely many fields with G of the form PGL2(F�n) and ramification
set within S. From the ABC construction of [10], one can similarly expect that for many
such S = {p, �}, there would be infinitely many fields with, say, Galois group of the form
PSp2n(F�) and ramification within S. Given these analogs, it also seems quite possible that
NF(S) is infinite, at least for S sufficiently large. Thus the nature of the sets NF(S, n) for S

fixed and n increasing is completely unknown.

1.2. Overview of this paper

The present work explores this situation computationally, for An and Sn fields. As in
[3], [4], and [10], we focus exclusively on S = {2, 3}, so as to keep things manageable.
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An and Sn number fields with discriminant ±2a3b

Previously, only 152 fields in degrees 1 � n � 9 were known, plus an additional S32
field given in [10]. The present paper goes substantially beyond the previous work, as it
constructs 23 more fields in degree 9, and then 277 fields in degrees 10 through 33.

As in [10], our main method of constructing number fields is to specialize three-point
covers F : X −→ P1

t , with t indicating the coordinate on the base curve. The covers
that we are concerned with in this paper satisfy the following three logically independent
conditions.

The monodromy group of F is An or Sn. (1.1)

F is defined over Q. (1.2)

The bad reduction set of F is contained in {2, 3}. (1.3)

For the purposes of this paper, we say that a three-point cover is ‘good’ if and only if it
satisfies Conditions (1.1)–(1.3). Degrees n � 4 are rather trivial, as Condition (1.3) is then
automatic. In degrees at least 5, only two good covers were previously known, denoted
here as 6a and 9c. This paper presents nine more good covers, denoted 9d, 10c, 12a, 12b,
12c, 12d, 18a, 28c, and 33a (the labels 9a, 9b, 10a, 10b, 28a, and 28b are used in [10] for
covers with Lie-type Galois groups). For all eleven An or Sn covers, X has genus zero and,
moreover, has a rational point. We give each cover in the form F : P1

x −→ P1
t by giving

t as a rational function of x.
With regard to the cardinality of the sets NF(S), our work here still leaves the matter

wide open. On the one hand, the known part of NF({2, 3}) has roughly tripled in size. On
the other hand, our techniques are not general. In discussing the new covers, we treat a
number of their aspects in some detail, in the hope that our descriptions might facilitate
further progress on the size of NF(S, n).

1.3. Contents of the sections

Section 2 provides some background material on three-point covers, in an effort to make
this paper reasonably self-contained. Readers familiar with the theory of three-point covers
need only skim over Section 2 to acquaint themselves with our notational conventions.
Section 3 is also a background section. It presents Covers 6a and 9c, and explains how
Katz’s theory of rigid local systems forces them to have bad reduction set exactly {2, 3}. In
contrast, we do not have a theoretical reason to explain why the new covers of this paper
have bad reduction set {2, 3}.

Section 4 presents Covers 9d and 10c. It also explains how our computations have estab-
lished that 6a, 9c, 9d, and 10c are the only genus-zero good covers in degrees 5 � n � 11.
Section 5 presents Covers 12a, 12b, 12c, and 12d . It also explains how 12a is naturally
a special case of a one-parameter family 12A of four-point covers, while 12b, 12c, and
12d are special cases of another one-parameter family 12BCD of four-point covers. Family
12A also includes 6a and 9c as degenerate special cases. Section 6 presents Cover 18a.
This is the only one of our eleven three-point covers that appears in isolation, as the others
are naturally grouped: (6a, 9c, 12a), (12b, 12c, 12d), and (9d, 10c, 28c, 33a). Section 7
presents Covers 28c and 33a, and explains how they are members of a discretely indexed
family, also containing 9d and 10c. All four covers are doubly exceptional members of this
family, in the sense that usually neither Condition (1.2) nor Condition (1.3) is satisfied.

Section 8 gives alternative defining polynomials for most of the covers considered in
Sections 3–7. The polynomials given in these previous sections are the natural ones from
the point of view of the theory of three-point covers, while the new polynomials have fewer
terms.
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Finally, Section 9 describes the fields obtained by specializing the new covers, and shows
how our new results extend the results of [3], [4], and [10]. Cover 18a yields 82 new fields,
while the other eight new three-point covers yield 23 to 36 fields each. Also, 12A yields 14
fields beyond those from 12a, while 12BCD yields 1 field beyond those from 12b, 12c, and
12d. The absolute discriminants 2a3b of all the known fields with n � 9 satisfy a � n and
b � n. In particular, as was the case in degrees 4 � n � 8, they are all wildly ramified at
both 2 and 3.

2. Background

2.1. Partition triples

In the study of three-point covers, it is natural to consider ordered triples

� = (λ0, λ1, λ∞) (2.1)

of partitions of n, having altogether n + 2 − 2g parts, for g a non-negative integer. All
eleven of our examples have g = 0. Also, all eleven of our examples have a singleton in
λ∞, meaning a part d that occurs only once. To keep the setting simple, we discuss three-
point covers only in this restricted context. The first restriction means that all the covering
curves X that we consider will have genus zero. The second means that each of these curves
X will, moreover, be isomorphic to the projective line, rather than to a conic in the projective
plane without rational points.

2.2. ABC equation

An ABC triple of degree n over a field k ⊆ C is a triple (A(x), B(x), C(x)) of poly-
nomials in k[x] with A(x) and B(x) of degree n, C(x) of degree n − d < n,

A(x) + B(x) + C(x) = 0, (2.2)

and A(x)B(x)C(x) having exactly n + 1 roots in C, not counting multiplicity. The rami-
fication invariant of (A(x), B(x), C(x)) is � = (λ0, λ1, λ∞), where λ0, λ1, and λ∞ give
the multiplicities of the roots of A(x), B(x), and C(x) respectively; here, to account for the
degree-drop d of C(x), we consider ∞ as a root of C(x) with multiplicity d. Henceforth,
we consider only degree-n ABC triples where d is a singleton of λ∞. Then (�, d) is as in
the preceding paragraph.

The three-point covers that we are considering in this paper are rational functions

F : P1
x −→ P1

t

arising from ABC triples via F(x) = −A(x)/C(x). On the level of function fields over a
ground field k, one has k(P1

x) = k(x) and k(P1
t ) = k(t). The equation

−A(x)

C(x)
= t (2.3)

gives the inclusion of k(t) into k(x). There is an algorithm for computing ABC triples by
means of solving non-linear algebraic equations. The algorithm is described with exam-
ples in [8, Chapter I.9]. Our proof here of Proposition 7.1 provides another representative
example.

2.3. Equivalence

We say that two three-point covers F, G : P1
x −→ P1

t are isomorphic if there is a
fractional linear transformation H : P1

x −→ P1
x such that F ◦ H = G; this fractional linear
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transformation H is not required to preserve the marked point ∞ ∈ P1
x . More broadly,

we say that F and G are equivalent if and only if there are an H : P1
x −→ P1

x and an
I : P1

t −→ P1
t such that I ◦ F ◦ H = G. When we say things such as ‘there are two old

and nine new covers in this paper’, it is to be understood that we are speaking of covers up
to equivalence.

2.4. Discriminant

Rather than working directly with (2.3), we will instead work with polynomials

f (t, x) = A(x) + tC(x). (2.4)

Then B(x) = −f (1, x). The discriminant of f (t, x) has the form

D(t) = �tn−length(λ0)(t − 1)n−length(λ1) (2.5)

for some nonzero � in k.

2.5. Topological description over C

Three-point covers over C can be analyzed topologically as follows. Let

T = P1
t − {0, 1, ∞}.

Basepoint T by � = 1/2. For t = 0,1, let gt be the class in π1(T , �) of the circle of radius
1/2 going counterclockwise about t . To treat the third cusp ∞ on a similar footing, define
g∞ ∈ π1(T , �) by

g0g1g∞ = 1. (2.6)

Given a three-point cover F : X −→ P1
t , let X� be the inverse image of �. Then π1(T , �)

acts naturally on X�. The partition λt can then be recovered as the sizes of the orbits of gt

on X�. The monodromy group M of F is the subgroup of the symmetric group Sym(X�)

generated by the gt . So our Condition (1.1) requires that the monodromy group be as
large as possible, consistent with the parities of the λt . Sections 6 and 7 each give sample
monodromy calculations, centering on Figures 6.1 and 7.1 respectively.

The topological picture lets one count isomorphism classes of three-point covers over
C. Let � be given as above. Let �(�) be the set of (g0, g1, g∞) ∈ S3

n satisfying (2.6)
with gt having orbit partition λt . The mass m(�) of � is by definition |�(�)|/n!, and
there is a convenient formula expressing m(�) in terms of a sum indexed by the irreducible
characters of Sn; see [8, Theorem I.5.8]. Of greater interest to us is the subset �(�) of
�(�) consisting of triples (g0, g1, g∞) generating all of An or Sn. The action of Sn on
�(�) by simultaneous conjugation restricts to a free action of Sn on �(�). The quotient
set J (�) = �(�)/Sn naturally indexes isomorphism classes of covers with monodromy
group An or Sn and ramification-invariant �. One has |J (�)| � m(�).

2.6. Descent and moduli algebras

A three-point cover over C canonically descends to a three-point cover over Q. Here we
are using the fact that our three ramification points are required to be the standard points 0,
1, and ∞. Because of this canonical descent, one has canonically associated to �, a moduli
algebra A(�) of degree |J (�)| over Q. The set of homomorphisms from A(�) into Q is
identified with J (�). The algebra A(�) is a product of number fields. Sample computations
of A(�) are given in Sections 4 and 7.
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Covers satisfying our Condition (1.2) correspond to factors Q of A(�). The paper [7]
systematically examines the algebras A(�) in certain degree-n cases, where n � 13. The
computations there, extended in Section 4 here, suggest that there is a very definite tendency
for A(�) itself to be a field. This makes our Condition (1.2) hard to satisfy in cases beyond
|J (�)| = 1.

2.7. Bad reduction

A three-point cover X over Q without non-identity automorphisms has a canonically
defined set S of bad reduction primes. General bounds

Slocal ⊆ S ⊆ Sglobal (2.7)

are known. Here, Slocal is the set of primes dividing the parts of the λt . So our Condi-
tion (1.3) immediately restricts the possible � by requiring that all parts of each λt be
among {1, 2, 3, 4, 6, 8, 9, 12, . . . }. Also, Sglobal is the set of primes dividing |M|. So in our
cases, Sglobal is the set of primes at most n. Again, computations suggest that there is no
particular tendency in general for S to be near Slocal. This makes Condition (1.3) hard to
satisfy. In (2.7), the lower bound is relatively elementary, while the upper bound is deeper.
Entry points into the literature on (2.7) include [1, Section 2] and [8, Sections I.10.3 and
I.10.4]; both these references refer back to the original work of Grothendieck and Beckmann
on the upper bound.

3. Covers 6a and 9c, and linear rigidity

3.1. Two previously known examples

The two examples of this section are 6a and 9c:

�6a = (33, 3111, 42),

f6a(t, x) = (x2 − 2)3 + t (3x − 4)2,

f6a(1, x) = (x − 1)3(x3 + 3x2 − 8),

D6a(t) = 21336t4(t − 1)2;
�9c = (9, 217, 81),

f9c(t, x) = x9 + t (−9x + 8),

f9c(1, x) = (x − 1)2(x7 + 2x6 + 3x5 + 4x4 + 5x3 + 6x2 + 7x + 8),

D9c(t) = −224318t8(t − 1).

Cover 6a is discussed, together with a related degree-10 cover, in [10, Section 5]. Cover
9c is one of a two-parameter family of trinomial covers; it is discussed in [10, Section 10].
These two covers visibly satisfy Conditions (1.2) and (1.3) of the introduction: (1.2) because
all coefficients are rational, and (1.3) because the numerical coefficient � in Dn(t) has the
form ±2a3b. This will be the case for all our new covers as well. Condition (1.1) is also
quickly verifiable, either conceptually by monodromy techniques, or computationally by
considering primes p and t in Fp − {0, 1} and factoring f (t, x) ∈ Fp[t, x] until enough
partitions of n have arisen.

In what follows, in order to save space, we will not display fn(1, x).
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3.2. Linear rigidity

Katz’s theory of rigid local systems [5] gives a strengthening of S ⊆ Sglobal for some
covers as follows. Let ρ : M −→ GLr (F�) be an irreducible representation of the mono-
dromy group M of a cover. Suppose that ρ is linearly rigid, in the sense that the sum of the
centralizer dimensions of ρ(g0), ρ(g1), and ρ(g∞) is as large as possible, namely r2 + 2.
Then S ⊆ Slocal ∪ {�}. If one similarly has linear rigidity for an absolutely irreducible
characteristic-zero representation, then, as a formal consequence, one has S = Slocal. If
ρ(gt ) is semisimple – as it always is for a characteristic-zero representation – then its
centralizer dimension is the sum of the squares of the multiplicities of its eigenvalues.

The groups M = An and M = Sn have a natural n-dimensional representation R into
GLn(Z) as permutation matrices. If g has cycle type λ, then each part s of λ contributes the
s roots of unity of order dividing s to the complex eigenvalues of R(g). The representation
R is not irreducible, but is rather of the form 1 +ρ, where 1 is the trivial representation and
ρ is absolutely irreducible for n � 4. For 6a, the sum of the centralizer dimensions is thus
calculated as follows.

t λt Eigenvalues of R(gt ) Cent. dim. of ρ(gt )

0 33 1, ω, ω; 1, ω, ω 12 + 22 + 22 = 9

1 3111 1, ω, ω; 1; 1; 1 32 + 12 + 12 = 11

∞ 42 1, i, −1, −i; 1, −1 12 + 22 + 12 + 12 = 7

27

For example, on the line t = 1, one has eigenvalue 1 with multiplicity 4 in R(g1), but
multiplicity only 4 − 1 = 3 in ρ(g1), thus yielding the contribution of 32 to the centralizer
dimension of ρ(g1). Since 27 = 52 + 2, one has linear rigidity in the case of 6a. In the case
of 9c, the cusps t = 0 and t = ∞ each contribute 8, while t = 1 contributes 72 + 12 = 50.
One has 8 + 8 + 50 = 66 = 82 + 2, and thus linear rigidity here too. It is in this sense that
6a and 9c are forced to have bad reduction at exactly {2, 3}.

Katz’s theory is at its most powerful for groups M that have small-rank linear
representations, mainly classical groups over finite fields. When M is An or Sn, it seems
that linear rigidity is limited to very low degrees and the single two-parameter family
� = (mr, 21n−2, n) for m + r = n and m and r relatively prime, as discussed in [10,
Section 10]. To see that Katz’s theory is far from applying to the new covers in this paper,
define the mobility of an r-dimensional representation ρ to be ((r2 +2)−C)/2, where C is
the sum of the centralizer dimensions of ρ(gt ). Then for our nine new covers, the mobilities
are not zero, but rather as follows.

Cover: 6a 9c 9d 10c 12a 12b 12c 12d 18a 28c 33a

Mobility(�) 0 0 4 6 7 4 5 3 8 31 45

Mass(�) 1 1 2 2 1.5 1.5 1 2.5 1 1
18 2 2

|J (�)| 1 1 2 2 1 1 1 1 1 2 2

For � a prime dividing n, the representation ρ of Sn reduces mod � to an irreducible (n−2)-
dimensional representation ρ′ plus the trivial representation 1. However, one can check that
the mobility of ρ′ is always at least the mobility of ρ, and so one cannot make Katz’s theory
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apply to our new covers via this route either. Also, if an An or Sn cover has mobility zero,
then a consequence of Katz’s theory is that the corresponding mass m(�) is 1. Even this
consequence holds for only one of our nine new covers.

4. A completeness result, and Covers 9d and 10c

Proposition 4.1. In degrees 5–11, there are only four equivalence classes of genus-zero
good covers: Covers 6a and 9c from the previous section, and Covers 9d and 10a described
in this section.

Proof. Since we are working with equivalence classes, we consider only partition triples
� = (λ0, λ1, λ∞) with λ0 � λ1 � λ∞ with respect to some ordering on partitions. Also,
we consider only those � where all parts of each λt are in {1, 2, 3, 4, 6, 8, 9}. We impose
the genus-zero condition that λ0, λ1, and λ∞ have altogether n+ 2 parts. We do not impose
the existence of a singleton condition as discussed at the beginning of Section 2. The total
number of partition triples to check is then as given in Table 4.1.

For each partition, we compute the group-theoretically defined quantity |J (�)|. The
results are summarized in Table 4.1.

If |J (�)| = 0, then there is no further work to be done. If |J (�)| = 1, we compute a
defining equation and check whether or not the bad reduction set is within {2, 3}.

When |J (�)| � 2, we proceed in one of two ways. The main way is again to compute
the defining equations. In this way, one can obtain the degree-|J (�)| moduli algebra A(�)

over Q. Typically, A(�) is simply a field, and then again we stop. Exceptionally, A(�)

has some factors of Q. Then we examine the bad reduction for the cover corresponding
to each such factor, exactly as in the case |J (�)| = 1. When this approach is beyond
computational feasibility for our current programs, we can always find that there are no
corresponding good covers by finding a small prime p � 5 for which there are no covers
A(x)+ tC(x) ∈ Fp[t, x] that could be the reduction of a good cover. This reduction method
is a very much easier calculation. We persevered with the first method whenever possible,
however, because knowledge of the moduli algebras is a key step toward obtaining a full
understanding of the situation.

Table 4.1: Information about the search for good covers in degrees 5 � n � 11.

n Total |J (�)| : S ∩ {5, 7, 11} for cases with |J (�)| = 1 Max

=0 =1 �2 ∅ {5} {7} {5, 7} {11} {5, 11} {7, 11} {5, 7, 11} |J (�)|
5 6 1 4 1 0 1 2

6 27 18 3 6 1 2 4

7 34 3 9 22 0 0 6 3 12

8 113 47 6 61 0 2 2 2 24

9 206 28 12 166 1 3 6 2 60

10 488 95 10 383 0 4 4 2 432

11 782 0 10 772 0 0 0 0 2 3 3 2 1064
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In degrees at most 8, one can quickly check that the twenty-two |J (�)| = 1 cases yield
only the good cover 6a. For example, in degree seven, all nine covers have bad reduction
at 7, as indicated by Table 4.1. The 90 cases with |J (�)| � 2 are all covered in [7]. The
moduli algebra fails to be a field only four times, always for the simple conceptual reasons
indicated in [7]. Even in these four exceptions, there is no factor of Q.

In degree nine, from the twelve |J (�)| = 1 cases, one gets only 9c. The thirty |J (�)| � 2
cases with one of λt corresponding to an involution are in [7]. We succeeded in computing
moduli algebras for the 136 remaining�with the single exception of� = (3321, 3321, 621)

with |J (�)| = 36. Since there are seven singletons here, but P1(F5) has only six elements,
this case can be excluded without any computation, for if there exists a cover defined over
Q, it would have to have bad reduction at 5. The moduli algebra for (63, 3111111, 81) is
Q × Q, and one factor of Q corresponds to Cover 9d:

�9d = (63, 3111111, 81),

f9d(t, x) = x6(x − 2)3 + t (3x − 2),

D9d(t) = 22439t7(t − 1)2.

The underlined singletons correspond to x = 0, x = 1, and x = ∞, respectively. This
normalization convention is needed for Cover 9d to fit into the framework of Section 7.
None of the other moduli algebras that we computed in degree n = 9 has Q as a factor.

In degree ten, the ten cases with |J (�)| = 1 do not yield a good cover. The three
|J (�)| � 2 cases with one of the λt corresponding to an involution and another to an
order-three element are given in [7], all with A(�) a field. Of the remaining 380 cases,
we succeeded in computing the moduli algebra A(�) in 301 of them. We obtain one good
cover, Cover 10c, coming from one of the factors of A(82, 31111111, 91) = Q × Q:

�10c = (82, 3111111, 91),

f10c(t, x) = x8(2x − 3)2 − t (4x − 3),

D10c(t) = 236318t8(t − 1)2.

Here, our underlining convention is exactly as it was for 9d. Of the remaining 79 cases,
25 were eliminated because they had seven or more singletons, and the remaining 54 were
eliminated by either a mod 5 or a mod 7 computation.

In degree eleven, the ten cases with |J (�)| = 1 do not yield a good cover, as indeed all ten
covers have bad reduction at 11. Nor are any good covers obtained from the 772 cases with
|J (�)| � 2. Indeed, 76 cases, including all thirteen cases with |J (�)| � 354, are eliminated
as above by the simple fact that the λt together contain at least seven singletons.

All the moduli algebras considered in the proof of Proposition 4.1 are ramified within
{2, 3, 5, 7, 11}, as a consequence of the upper bound in (2.7). It may happen that a factor
of a moduli algebra A(�) is ramified only within S = {2, 3}. Certainly this is the case
if the factor is Q. As more complicated examples, let �1 = (333, 32211, 621) and �2 =
(333, 3321, 4311). The corresponding moduli algebras A(�1) and A(�2) each have degree
six. To compute them, we use the fact that each �i has four singletons. For �1, we normalize
the defining equation by requiring that the singletons 6, 3, and 2 correspond respectively to
x = ∞, x = 0, and x = 1. For �2, we normalize by similarly requiring that 4, 3, and 2
correspond to x = ∞, x = 1, and x = 0, respectively.
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There are six possibilities for the x-values corresponding to the singleton 1, and we find
them to be the roots of

F1(x) = 7x6 + 318x5 + 4515x4 + 5944x3 − 336x2 + 1056x + 160,

and

F2(x) = 8x6 − 3744x5 + 23409x4 − 63288x3 + 161838x2 − 209952x + 91854.

These polynomials are both irreducible, with Galois group A6 and field discriminants 2838

and 21238 respectively. The polynomials

f1(x) = x6 + 3x5 + 3x4 + 2x3 − 3x2 − 3x − 1

and

f2(x) = x6 − 8x3 + 9x2 − 6

have smaller coefficients and define the same sextic fields.
However, the cases �1 and �2 are the only cases that we computed in the course of

proving Proposition 4.1, whose moduli algebras contain fields of degree at least 6 and
discriminant of the form ±2a3b. Similarly, we have encountered no such fields in our com-
putations with moduli algebras in higher-degree n. It therefore seems that moduli algebras
are not a promising approach for constructing number fields ramified within {2, 3}.

As a final remark in connection with �1 and �2, note that 5 divides F1(0) = 25 · 5
and F2(1) = 53. Similarly, note that 7 divides F1(∞) = 7 and F2(0) = 2 · 38 · 7. So, for
i = 1 and i = 2, the six conjugate three-point covers Xi,j corresponding to �i have bad
reduction at both 5 and 7. In other words, the upper bound in (2.7) is exact. This remark
shows another aspect of the difficulty of keeping all ramification within {2, 3}.

5. Covers 12a, 12b, 12c, and 12d as specializations of two four-point covers

We carried out extensive (but not exhaustive) searches in degree 12, and found four good
three-point covers. Having found these covers, we pursued the situation further, and found
two one-parameter families of four-point covers:

�12A = (3333, 222222, 81111, 2110),

f12A(s, t, x) = (3s2x4 + 6sx2 + 16sx + 3)3

+64st (9s2x4 + 8s2x3 + 18sx2 + 72sx + 48s + 9),

D12A(s, t) = −2128344s81(s − 3)3t8(t − 1)6(64st + (3s − 1)3(s − 3)
);

�12BCD = (3333, 33111111, 444, 2110),

f12BCD(s, t, x) = 2
(
18(s + 2)2(s2 − 2s − 2)x4 − 36(s + 2)s2(s − 1)x2

− 16(2 + s)2s2x + 3s3(s − 16)
)3

−9(s + 2)3(s − 4)
(
6(s − 1)(s + 2)x3 − 9s2x − 4s2)4

t,

D12BCD(s, t) = −263373(s + 2)96s88(s − 4)74t8(t − 1)4

×(
(s + 2)(s − 1)4(s − 4)t − (s2 − 2s − 2)3).
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The ramification invariants now have the form (λ0, λ1, λ∞, λG(s)). One always has one-
parameter families when dealing with four-point covers because the extra ramification point
t = G(s) can move. The map G : P1

s −→ P1
t comes from the last printed factor of Dn(s, t) in

each case. This map G is itself a three-point cover, with ramification invariant (31, 22, 31)

in the case 12A and (33, 411, 411) in the case 12BCD. The covers were calculated by
modifying our computational techniques for three-point covers. We still use (2.2), but now
we allow A(x)B(x)C(x) to have n + 3 roots in C ∪ {∞}, rather than n + 2.

Our original three-point cover 12a is 12A specialized at s = 1/3. Similarly, 12b, 12c,
and 12d are respectively 12BCD specialized at s = 1, s = ∞, and s = 2:

�12a = (633, 222222, 81111),

f12a(t, x) = (x + 1)6(x2 − 2x + 9)3 + 64t (9x4 + 8x3 + 54x2 + 216x + 225),

D12a(t, x) = 2143325t9(t − 1)6;
�12b = (3333, 33111111, 84),

f12b(t, x) = 2(54x4 + 16x + 5)3 − t (9x + 4)4,

D12b(t, x) = −2633114t8(t − 1)4;
�12c = (3333, 4311111, 444),

f12c(t, x) = 2(18x4 − 36x2 − 16x + 3)3 − 9t (6x3 − 9x − 4)4,

D12c(t) = −263373t8(t − 1)5;
�12d = (3333, 3321111, 444),

f12d(t, x) = (36x4 + 36x2 + 64x + 21)3 − 36t (6x3 − 9x − 4)4,

D12d(t) = 2134373t8(t − 1)5.

The four-point covers also have other interesting specializations to three-point covers
satisfying our reduction condition (1.3). At s = 3, Cover 12A becomes Cover 10a of [10,
Section 5], with generic Galois group P
L2(9), which is in turn connected to Cover 6a,
as explained there. At s = ∞, Cover 12A becomes Cover 9c of Section 3. At 1 ± 2

√
3/3,

Cover 12A becomes two conjugate covers, each with monodromy group S12. Similarly,
Cover 12BCD at s = 1±√

3 becomes two conjugate covers with monodromy group S12. In
Section 9, we explain how our two four-point covers each give new number fields beyond
those coming from the three-point covers 12a, 12b, 12c, and 12d.

6. Cover 18a and its associated dessin

We carried out modest searches for good covers in degrees 13–24, and found only one
more:

�18a = (36, 29, 96111),

f18a(t, x) = 4(x6 + 12x4 − 16x3 + 18x2 − 24x + 10)3

+27(2x − 1)6(4x3 + 3x2 + 48x − 32)t,

D18a(t) = −2813177t12(t − 1)9.

In general, the dessin of a three-point cover F : X −→ P1
t is the inverse image of [0, 1]

in X. In the case 18a, this inverse image in the x-plane is drawn in Figure 6.1.
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Figure 6.1: The dessin of Cover 18a, with the loop 13-14 expanded from its attachment
point on its right by a linear factor of 30, to make it clearly visible.

In Figure 6.1, the eighteen points in X18a,� = F−1
18a(1/2) are labelled by a number

in {1, . . . , 18} printed nearby. Equally well, these numbers index the eighteen segments
in F−1

18a((0, 1)), and we will regard these segments as the objects being permuted by the
gt . The six points in F−1

18a(0) are the six triple junctions of the dessin. The nine points in
F−1

18a(1) would not ordinarily be visible, as they are merely the double junctions; to make
them visible, they are drawn as dots.

From the dessin, one can read off the monodromy: g0 rotates segments counterclockwise
about the triple junctions, while g1 rotates segments about the double junctions. Explicitly,

g0 = (1, 3, 5)(2, 6, 4)(7, 9, 11)(8, 12, 10)(13, 15, 14)(16, 17, 18),

g1 = (1, 3)(2, 4)(5, 9)(6, 10)(7, 8)(11, 17)(12, 18)(13, 14)(15, 16),

g∞ = (1, 9, 8, 6, 4, 10, 18, 11, 5)(7, 17, 15, 14, 16, 12)(2)(3)(13).

As stated at the end of Section 3, the mass m(�18a) is 1 1
18 . Rather than appealing to the

mass formula and a sum over the characters of S18, one can confirm geometrically that the
part of m(�18a) corresponding to transitive permutation representations is 1, by checking
that any dessin belonging to �18a is isotopic to the drawn one. The remaining part arises
as (1/6) · (1/3). Here the 1/6 corresponds to the degree-six genus-one cover belonging to
(33, 222, 6); it has Galois group C6. The 1/3 corresponds to the degree-twelve genus-zero
cover belonging to (3333, 222222, 9111); it has Galois group T 233, of the form 34.S4.

7. Covers 28c and 33a as exceptional members of a family

It is often natural to consider families of three-point covers indexed by discrete
parameters. The best-known example is the doubly indexed family including 9c mentioned
at the end of Section 3, corresponding to trinomial covers.
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In this section, we consider the family of partition triples

�a,b,n = ((a, n − a), (3, 1, . . . , 1), (b, n − b)). (7.1)

Here, n runs over positive integers while a and b each run over integers in [1, n − 1], so
that we have a triply indexed family.

7.1. Defining equations

Our underlining in (7.1) indicates how we will normalize our defining equation, namely
by making the singletons a, 3, and b correspond to x = 0, x = 1, and x = ∞, respectively.
Thus we need to look among the irreducible polynomials in C[t, x] of the form

f (t, x) = xa(x − z)n−a + tλ(x − y)n−b, (7.2)

and find those such that (x−1)3 divides f (1, x). We are interested only in cases where d :=
GCD(a, n−a, b, n−b) is 1, as otherwise the rational function −xa(x−z)n−a/(λ(x−y)n−b)

in C(x) is a dth power, and so the associated monodromy group would be in the wreath
product Cd � Sn/d , and thus not An or Sn.

Proposition 7.1. Let a and b be positive integers less than n, such that a, n − a, b, and
n−b are all distinct. Then there are exactly two irreducible polynomials f (t, x) of the form
(7.2) satisfying

(x − 1)3|f (1, x). (7.3)

These are

fa,b,n,±(t, x) = xa(x − z±)n−a + tλa,b,n,±(x − y±)n−b,

where

� = a(n − a)b(n − b), (7.4)

z± = ab ± √
�

a(a + b − n)
, (7.5)

y± = ab ∓ √
�

an
, (7.6)

λ± = −(1 − y±)b−n(1 − z±)n−a. (7.7)

Proof. We will explain how one arrives computationally at the given fa,b,n,ε . It will be
clear from the process that these are irreducible solutions to (7.3), and that there are no
others.

The ABC equation (2.2) takes the form

xa(x − z)n−a − (x − 1)3g(x) = −λ(x − y)n−b, (7.8)

where g(x) is a degree-(n − 3) monic polynomial. The derivative of (7.8) with respect to x

is

(nx − az)xa−1(x − z)n−a−1 − (x − 1)2(3g(x) − g′(x) + xg′(x)
)

= −λ(n − b)(x − y)n−b−1. (7.9)

Both Equations 7.8 and 7.9 have three terms, naturally labelled from left to right by 0, 1,
and ∞. Consider the linear combination

(n − b) × (Equation (7.8)) − (x − y) × (Equation (7.9)),
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chosen so that the terms from ∞ drop out. Writing the terms from 0 on the left and the
terms from 1 on the right and factoring, we obtain[

(n − b)x(x − z) − (x − y)a(x − z) − (x − y)x(n − a)
]
xa−1(x − z)n−a−1

= [
(n − b)(x − 1)g(x) − 3(x − y)g(x) − (x − y)(x − 1)g′(x))

]
(x − 1)2. (7.10)

Since z = 1 would make f (t, x) reducible, the fact that 1 is a double root of the right-hand
side of (7.10) forces 1 to be a double root of the bracketed factor on the left-hand side of
(7.10), giving us

−bx2 + (ny + az + bz − nz)x − ayz = −b(x − 1)2. (7.11)

Here, the left-hand side of (7.11) is the expansion of the bracketed factor on the left-hand
side of (7.10); the proportionality factor −b on the right-hand side of (7.11) is forced by
comparing the x2 terms. Comparing the x terms and then the constant terms gives

ny + az + bz − nz = 2b,

−ayz = −b.

Solving this system for y and z yields (7.5) and (7.6). Substituting x = 1 in (7.8) then
yields (7.7).

7.2. Discriminant

The next proposition gives the discriminant of each fa,b,n,ε(t, x) as an element of
Q(

√
�)[t], up to a common sign.

Proposition 7.2. The discriminant of fa,b,n,ε(t, x) with respect to x is

Dε = ±zn
ε y

(a−1)(n−b)
ε (yε − zε)

(n−a−1)(n−b)λn−2
ε aa(n − a)n−atn−2(t − 1)2. (7.12)

Proof. We know that the discriminant of fa,b,n,ε(t, x) has the form �εt
n−2(t − 1)2 from

(2.5). At issue is the determination of �ε .
In general, let

f (t, x) =
( ∏

i

Ai(x)mi

)
+ tC(x), (7.13)

where the Ai(x) are separable polynomials without a common root. Then, up to sign, the
discriminant of f (t, x) is( ∏

i<j

Res(Ai, Aj )
mi+mj

)( ∏
i

disc(Ai) Res(Ai, C)mi−1m
mideg(Ai)

i

)
t
∑

i (mi−1) + . . . ,

(7.14)
where ‘. . .’ indicates higher-order terms in t . The required discriminants and resultants are
trivial to evaluate, since both our Ai have degree 1, and we obtain (7.12).

7.3. Bad reduction

Let Xa,b,n,± be the three-point cover given by fa,b,n,±(t, x) = 0. To analyze the
bad reduction of these two covers, we use the following formulas, which are elementary
consequences of Propositions 7.1 and 7.2:
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y+y− = b(a + b − n)

an
,

(y+ − z+)(y− − z−) = (a − b)2b

a(a + b − n)n
,

(1 − y+)(1 − y−) = (a − b)(n − b)

an
,

(1 − z+)(1 − z−) = (b − a)(n − a)

a(a + b − n)
,

D+D− = b(2b−n−bn+n2)a(1+a−n)n(n − a)n(n−a)

×(n − b)(b−n)(n−2)(b − a)2a+2ab−2n−3an−bn+2n2
nn (7.15)

×(a + b − n)−2a−2ab+n+3an+bn−2n2
t2n−4(t − 1)4.

From (7.15), we see that both Xa,b,n,+ and Xa,b,n,− have bad reduction within the set of
primes S dividing na(n − a)b(n − b)(b − a)(a + b − n).

Generically, � is not a perfect square. In this case, Xa,b,n,+ and Xa,b,n,− are conjugate
covers, and they each have bad reduction set exactly S. Exceptionally, � is a perfect square.
Then the bad reduction sets S+ of Xa,b,n+ and S− of Xa,b,n,− may differ. Both contain
the set Slocal of primes dividing 3a(n − a)b(n − b), by the lower bound of (2.7). Also,
S+ ∪ S− = S.

Table 7.1 lists out all the triples (a, b, n) known to us with n/2 < a < b < n,
GCD(a, n − a, b, n − b) = 1, and Slocal ⊆ {2, 3}, the first of these being a normaliza-
tion condition to avoid repetitions. For each triple (a, b, n), we use Proposition 7.2 to
determine how the primes in S − Slocal are distributed between S+ and S−. The conclusion
is that besides (a, b, n, ε) = (6, 8, 9, +) giving 9d and (a, b, n, ε) = (8, 9, 10, +) giving
10c, one also has

�28c = ((16, 12), (3, 125), (27, 1)), �33a = ((27, 6), (3, 130), (32, 1)),

f28c(t, x) = x16(2x − 3)12 + t (8x − 9), f33a(t, x) = x27(3x − 4)6 − t (9x − 8),

D28c(t) = −2396381t26(t − 1)2; D33a(t) = −21603252t31(t − 1)2.

Table 7.1: Triples (a, b, n) and the bad reduction sets S+ and S−. Boldface entries are primes
besides 2 and 3 in S+ ∪ S−.

a n − a b n − b n b − a n − a − b S+−{2, 3} S−−{2, 3}
6 3 8 1 9 = 32 2 5 − 5

8 2 9 1 10 = 2 · 5 1 7 − 5, 7

16 12 27 1 28 = 227 11 3 · 5 5, 7, 11 −
27 6 32 1 33 = 3 · 11 5 2 · 13 − 5, 11, 13

27 8 32 3 35 = 5 · 7 5 233 5, 7 5

81 64 144 1 145 = 5 · 29 327 245 5, 7, 29 5

243 16 256 3 259 = 7 · 37 13 243 · 5 5, 13, 37 7

486 27 512 1 513 = 3319 2 · 13 5 · 97 5 13, 19, 97
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(a)

(b)

Figure 7.1: (a) The dessin of cover X16,27,28,+; (b) The dessin of cover X28c = X16,27,28,−.

7.4. Monodromy

View Xa,b,n,ε,� = F−1
a,b,n,ε(1/2) as indexing the set of edges of the dessin of Xa,b,n,ε ,

that is, the set of components of F−1
a,b,n,ε((0, 1)). Figure 7.1 shows the two dessins for

(a, b, n) = (16, 27, 28), and this figure will guide the discussion for the rest of this section.
Unlike in Figure 6.1, the real and imaginary coordinates in Figure 7.1 are drawn using the
same scale, so that edges leaving a valence-k juncture are separated by the angle 2π/k.

Under the normalization condition n/2 < a < b < n, one has

0 < y+ < 1 < y− < z− < z+
from the explicit formulas (7.5) and (7.6). In the drawn case (a, b, n) = (16, 27, 28), these
inequalities become

0 < 0.803 . . . < 1 < 1.125 < 1.5 < 2.1.

Geometrically, x = 0 is the left-hand junction, x = 1 is the triple junction in the center,
and x = z± is the right-hand junction; these junctions belong to t = 0, t = 1, and t = 0
respectively. Also x = y± is ‘the center’ of the bounded region in the complement to the
dessin, x = ∞ being ‘the center’ of the unbounded region. In general, the bounded region
has n − b − 1 spokes into it, while the unbounded region has b − 2 spokes into it; our four
(a, b, n) fail to represent the general case in the sense that n − b − 1 is always zero.

To describe the monodromy of Xa,b,n,ε , we will not identify the edge set Xa,b,n,ε,� with
{1, 2, . . . , n}, as we did in the previous section for X18a,�. Rather, we will incorporate some
of the structure of the situation into our labelling system. Let µk denote the kth roots of
unity in C. Let µ′

k = µ2k − µk . We write

Xa,b,n,+,� = {L(w)}w∈µ′
a

∐
{R(w)}w∈−µn−a ,

Xa,b,n,−,� = {L(w)}w∈µa

∐
{R(w)}w∈−µ′

n−a
.
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Here, L stands for ‘left’ and R for ‘right’. The label L(w) indicates the segment leaving the
left-hand juncture x = 0 with tangent direction w. Similarly, R(w) indicates the segment
leaving the right-hand juncture zε with tangent direction w. There is a natural action of
complex conjugation σ01 on Xa,b,n,ε,�, and this is given by

σ01L(w) = L(w),

σ01R(w) = R(w).

Similarly, the monodromy of Xa,b,n,ε is given as follows.

Proposition 7.3. Normalize by n/2 < a < b < n. Then the permutation g0 acts on the
edge set Xa,b,n,ε,� by rotation counterclockwise about the two t = 0 vertices, that is, by

g0L(w) = L
(
e2πi/aw

)
,

g0R(w) = R
(
e2πi/(n−a)w

)
.

The permutation g1 acts on Xa,b,n,ε,� by rotation counterclockwise about the t = 1 vertices,
that is, by the three cycle

g1 =
{(

R(−1), L
(
e2πi(n−b)/(2a)

)
, L

(
e2πi(b−n)/(2a)

))
if ε = +,(

L(1), R
(
e2πi(a−b)/(2n−2a)

)
, R

(
e2πi(b−a)/(2n−2a)

))
if ε = −. �

8. Polynomials with fewer terms

8.1. Width in general

Let

f (x) = anx
n + an−1x

n−1 + . . . + a1x + a0

be a degree-n polynomial over a ground field k. The width w of f (x) is the number of
monomials appearing in f (x). So w is the number of nonzero values of aj , and one has
w � n + 1.

Let L be a degree-n extension field of k. Then the width w of L is the smallest width of
a polynomial f (x) ∈ k[x] satisfying L = k[x]/f (x). So if k has characteristic zero, one
has w � n, as one can always choose f (x) with an−1 = 0.

For characteristic-zero fields L of degree n = 5 (Hermite, 1861) or n = 6 (Joubert,
1867), one always has w � n− 1 because both an−1 and an−3 can be made simultaneously
zero; see [6]. Otherwise, there do not seem to be general results, but it can be expected that
typical degree-n number fields would have width quite near n.

In general, polynomials f (t, x) = A(x) + tC(x) defining three-point covers often have
small width. Suppose that λ0 has a singleton e and λ∞ has a singleton d. Then we can take
A(x) = xeÃ(x) and C(x) of degree n − d . Then, if e + d = n + 2 + j with j � 0, one
has the vanishing coefficients an−d+1, . . . , ae−1, so that the width of f (t, x) ∈ Q[t, x] is
at most n − j .

8.2. Width in our setting

Table 8.1 gives the widths of the polynomials fn of the previous sections. In f6a , one
has a5 = a3 = 0, reflecting the general fact about sextics cited above. For the degree-
12 polynomials and f18, one has only an−1 = 0. For 9c, 9d, 10c, 28c, and 33a, interior
coefficients vanish, as described in the previous paragraph.
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We see no theoretical reason to expect a priori that our extensions of Q(t) and Q(t, s)

would have smaller width than the width of their natural defining polynomials, fn(t, x) or
fn(s, t, x). In this section, however, we present polynomials gn(t, y) and gn(s, t, y) that
define the same extensions but have smaller width, as indicated by Table 8.1. We expect that
in all cases the width of gn is the width of the extension; that is, the gn cannot be improved
upon in the sense of width.

The existence of narrower polynomials was first suggested in our study of the individual
number fields of the next section. We applied the PARI command polredabs [9] to replace
a given irreducible fn(τ, x) with a monic polynomial hn,τ (x) ∈ Z[x] having the property
that hn,τ (x) minimizes the root sum

∑ |αi |2 among all monic polynomials in Z[x] defining
the same root field as fn(τ, x). The behavior of our largest case n = 33a was typical. Of
the 23 rational numbers τ considered in the next section, the widths of h33a,τ (x) were 7
(eleven times), 12, 13, 33 (nine times), and 34. Moreover, the eleven cases of width 7 all
had the same form, namely

h33a,τ (x) = x33 + a20x
20 + a13x

13 + a7x
7 + a6x

6 + a1x + a0.

In general, we then found gn(t, y) ∈ Z[t, y] such that for all τ in question there is a
cτ ∈ Q× with gn(τ, y) = c−n

τ hn,τ (cτ y). The interpolation process in the case of the two
four-point covers was similar, but more involved. In each case, we algebraically confirmed
the correctness of our new polynomial by finding an element y in Q(x) or Q(s, x) with
minimal polynomial gn(t, y) or gn(s, t, y).

8.3. The narrower polynomials

Our narrower polynomials gn(t, y) and gn(s, t, y) and their discriminants are displayed
in the rest of this section. We also give y as a function of x, and intersperse several comments.

g6a(t, y) = 2y6 + 3ty4 + 4ty3 − t2(t − 1),

y = (x2 − 2)(x − 1)

3x − 4
,

d6a(t) = 21136t10(t − 1)2(4t − 1)2;
g9d(t, y) = y9 − 12t2y3 + 27t3y + 16t3,

y = x2(x − 2),

d9d(t) = 224327t25(t − 1)2.

For 12A, 12BCD, and 18a, we use the abbreviation u = t − 1; for 12BCD, we also use
the abbreviation r = s + 2. Also, the quantity ck(t) in a discriminant formula represents an
irreducible polynomial in Z[t] of degree k, playing a role similar to c1(t) = 4t − 1 for 6a.
Similarly, cj,k(s, t) represents a polynomial of degree j in s and degree k in t .

Table 8.1: Widths of the polynomials fn of the previous sections and the polynomials gn of
this section.

n : 6a 9c 9d 10c 12A 12a 12BCD 12b 12c 12d 18a 28c 33a

width(fn) : 5 3 6 5 12 12 12 12 12 12 18 15 9

width(gn) : 4 3 4 5 7 7 9 6 9 9 8 6 7
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g12A(s, t, y) = −243s3(s − 3)y12 + 486s3uty10 + 432s3u2ty9 + 729s2u2t2y8

+216s2u3t2y6 + 216su4t3y4 + 16u6t4,

y = 3s2x4 + 6sx2 + 16sx + 3

16s

×3s3x6 + 9s2x4 + 24s2x3 + 9sx2 + 24sx + 32s + 3

9s2x4 + 8s2x3 + 18sx2 + 72sx + 48s + 9
,

d12A(s, t) = −268364s33(s − 3)t44(t − 1)66(64st + (s − 3)(3s − 1)3)c3,3(s, t)
2;

g12a(t, y) = g12A(1/3, t, y);
g12BCD(s, t, y) = 27t4u2y12 − 216r2st3uy9 − 162r2s2t3uy8

−36r3s2t2((s − 4)t − (s + 20)
)
y6 − 216r4s3t2y5 + 243r4s4t2y4

−16r5s3(13s − 28)ty3 + 108r5s4(s − 4)ty2 + 12r6s4(s − 4)2,

y =
(
6r(s − 1)x3 − 9s2x − 4s2

)2

18r2(s2 − 2s − 2)x4 − 36rs2(s − 1)x2 − 16r2s2x + 3s3(s − 16)

× 3(s − 4)r2

18rx2 + 6rsx + s(−8 + 5s)
,

d12BCD(s, t) = −267347(s − 4)4s44(s + 2)66(t − 1)10t44

×(
(s − 4)(s − 1)4(s + 2)t − (s2 − 2s − 2)3)c6,4(s, t)

2;
g12b(t, x) = 32y12 − 256ty9 + 768t2y6 − 486t3y4 − 160t3y3 − t4,

y = 54x4 + 16x + 5

9x + 4
,

d12b(t) = −279360t44(t − 1)4;
g12c(t, y) = Coefficient

(
g12BCD(s, t, sy), s12);

g12d(t, y) = g12BCD(2, t, y).

In general, both the numerator and the denominator of the rational function y divide
the product A(x)B(x)C(x) or A(s, x)B(s, x)C(s, x). Cover 18a provides a representative
example. Write y = f9(x)/(6f1(x)f6(x)). Then A(x) = 4f6(x)3, B(x) = f9(x)2, and
f1(x)|C(x).

g18a(t, y) = 1728t6y18 − 576t4u3y12 − 512t3u5y9 − 432t3u5y8

+152t2u6y6 + 32tu8y3 − 21tu8y2 + 2u9,

y = 2x9 + 36x7 − 48x6 + 162x5 − 360x4 + 330x3 − 153x + 56

6(2x − 1)(x6 + 12x4 − 16x3 + 18x2 − 24x + 10)
,

d18a(t) = −2137351t102(t − 1)153c6(t)
2.

The coefficients of each yk in all our polynomials are simpler than one might expect.
Put g9c(t, y) = f9c(t, y) and g10c(t, y) = f10c(t, y). Then in the cases n = 9c, n = 9d,
n = 10c, n = 12b, n = 28c, and n = 33a, all the coefficients of gn(t, y) have the form ctm.
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Moreover, except for 160 = 255 appearing as a c in 12b and 408240 = 2436517 appearing
as a c in 33a, all these c are of the form ±2a3b.

g28c(t, y) = y28 − 216ty14 − 864ty13 − 729ty12 − 512t2y − 432t2,

y = x(2x − 3),

d28c(t) = −2132381t50(t − 1)2c2(t)
2;

g33a(t, y) = y33 − 1728t2y20 − 55296t3y13 + 408240t4y7 − 262144t4y6

−531441t5y + 442368t5,

y = −x4(3x − 4),

d33a(t) = −21603102t157(t − 1)2c3(t)
2.

9. Summary of the number fields constructed

For each of our nine new polynomials fn(t, x), one can substitute rational numbers
τ �= 0,1 for t to obtain separable polynomials in Q[x]. If one chooses these specialization
points suitably, then the root algebra Q[x]/fn(τ, x) has algebra discriminant of the form
±2a3b, and thus the splitting field K is also ramified only within {2, 3}.

9.1. Specialization points

We use the notation of [10]. Let T ∗∞,∞,∞ consist of 2, 3, 4, and 9 and their orbits under
S3 = 〈t �→ 1/t, t �→ 1 − t〉. Explicitly, with rows indicating the orbits, we have

T ∗∞,∞,∞ =




−1, 1/2, 2,

−2, −1/2, 1/3, 2/3, 3/2, 3,

−3, −1/3, 1/4, 3/4, 4/3, 4,

−8, −1/8, 1/9, 8/9, 9/8, 9




.

Then certainly the τ in T ∗∞,∞,∞ work for all nine polynomials, as even the polynomial
discriminant of fn(τ, x) has the form ±2a3b. Further, for a given cover Xn, let p, q and r

be the least common multiples of the parts of λ0, λ1, and λ∞, respectively. Then there is a
larger set T ∗

p,q,r for which there may be extraneous primes in the polynomial discriminant
of fn(τ, x), but not in the algebra discriminant.

9.2. Galois groups of specializations

The nine displayed formulas for Dn(t) come into play when we study the Galois groups
of specializations. Fix a cover Xn, and write Dn(t) = (−1)s2a3btc(t − 1)d . Then, as
stated in (2.5), c and d are determined as n minus the length of λ0 and λ1 respectively. In
particular, the parities of c and λ0 agree, and similarly the parities of d and λ1 agree. So
(c, d) ≡ (0, 0) (2) exactly in the three cases where the monodromy group is An, namely
10c, 12b and 28c.

The parities of the exponents s, a, and b cannot be predicted directly from the partition
triple �n. Our summarizing Table 9.1 refines the distinction An vs. Sn by sorting fields
according to their discriminant class d ∈ {−6, −3, −2, −1, 1, 2, 3, 6}. The case d = 1,
corresponding to An, is printed in bold. In the remaining cases, Q(

√
d) is the unique

quadratic subfield of the splitting field of fn(τ, x).
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In [10] we pointed out that the trinomial cover X9c has the property that for all 35
specialization points in T ∗

9,2,8, the Galois group is as large as possible, meaning either A9
or S9, according to whether or not the discriminant class is 1. The covers 10c, 12c, 28c, and
33a all share this property of generic specialization.

In contrast, in the cases shown below, the polynomial fn(τ, x) factors as a linear factor
times a degree-(n − 1) factor.

n τ

12a −1 −24 −48

12b 125/128

12d 1/9

18a 4/3 −8 125/27 2 · 533/36 −5053/2273

In these cases, the Galois group is always Sn−1, except for n = 18a and τ = −5053/2273,
where it is A17.

Table 9.1: Summary of the known fields K ⊂ C with Gal(K/Q) either An or Sn and
discriminant of the form ±2a3b.

n −6 −3 −2 −1 1 2 3 6 s Comments

3 1 4 1 1 1 1 1 3 [3] (complete)

4 3 6 3 3 1 7 2 0, 4 [3] (complete)

5 1 2 1 1 3 1 [3] (complete)

6 1 1 2 4 13 4 6 0, 4 2 [3] (complete)

7 4 1 1 4 1 [4] (complete); 1, 1 from 9c, 10c at t=1

8 10 4 4 7 1 2 1 1 2 0, 4 2 from [10, §11,12]; all from [2]

9 4 3 8 4 13 9 10 8 3 1 35, 22, 1, 1 from 9c, 9d, 18a, [10, §12]

10 1 23 1 0 2 23 A10’s from 10c; 2 S10’s from 12A

11 2 2 1 1 3, 1, 1 from 12a, 12b, 12d

12 9 17 38 7 12 11 11 13 2 0, 4 33, 26, 24, 22, 12, 1 from

12a, 12b, 12c, 12d, 12A, 12BCD

17 1 1 1 1 1 3 1 All 5 from 18a

18 5 15 5 4 15 10 10 12 4 2 All 76 from 18a

25 1 1 From 28c at t = 1

28 23 2 All 23 from 28c

30 1 2 From 33a at t = 1

32 1 2 From [10, §12]

33 4 4 4 4 1 4 2 3 1 All 23 from 33a
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There are exactly two other exceptional specializations, these being to transitive sub-
groups of Sn. Cover 9d at τ = 4/3 has Galois group SL2(8).3 and Cover 12d at τ = 113/542
has Galois group T 258 = [34 : 2]S4 of order 2435 = 3888. One can also specialize our
polynomials at the cusps τ = 0, τ = 1, and τ = ∞. The cases yielding nonsolvable fields
of degree at least 7 are τ = 1 for 9c, 10c, 18a, 28c, and 33a.

9.3. More fields from the four-point covers

One can also specialize 12A at points beyond those considered in 12a, and 12BCD at
points beyond those considered in 12b, 12c, and 12d . At s = 1 and s = −1, the fourth
ramification point of 12A has the very low height 4, as one has

D12A(1, t) = 2135344t8(t − 1)6(4t − 1),

and

D12A(−1, t) = 2140344t8(t − 1)6(t − 4).

For the first case, we extract τ from T ∗
3,2,8 with (4τ − 1) a perfect square, obtaining

T1 = {−2, −1/2, −1/8, 1/3, 1/2, 1/4, 3/4}.
For the second case, we extract τ from T ∗

3,2,8 with (τ − 4) a perfect square, obtaining

T−1 = {−8, −2, −1/2, 4/3, 2, 3, 4}.
In fact, all these specialization points are in T ∗∞,∞,∞, which explains the relation τ ∈ T−1

if and only if τ−1 ∈ T1. From Cover 12BCD, we found only one extra field, coming from
(s, t) = (−1/2, 1/9). The cases τ = 1/4 and τ = 4 for 12A give cuspidal specializations,
with Galois group S10. Otherwise all these specializations have Galois group A12 or S12.

9.4. Real places of number fields

When setting up inverse Galois problems, one often focuses on the Galois group G first,
and the behavior of complex conjugation σ ∈ G second. Table 9.1 gives the possible values
of s, where σ has cycle type 2r1s . The first column corresponds to s arising from fields
with negative discriminant, in which case s ≡ n − 2 (4). The second column corresponds
to fields with positive discriminant, in which case s ≡ n (4).

For a given three-point cover Xn, the number s of real roots of the defining polynomial
fn(τ, x) depends only on the interval (−∞, 0), (0, 1), or (1, ∞) containing τ . Moreover,
if λt has only odd parts, like our λ1 = 31n−3, the two intervals with endpoint t yield the
same s. So specializing three-point covers does not lend itself to producing a wide range
of s. In fact, the only ambiguity for s on Table 9.1 in degrees n � 9 is for n = 12 with
d > 0. In this case, s = 0 if and only if the field comes from 12a or the new part of 12A or
12BCD. For d equal to 1, 2, 3, and 6, there are 6, 7, 6, and 5 such fields, respectively.

9.5. Distinctness of fields

We are considering many pairs (n, τ ) yielding an An or Sn Galois field Kn,τ ⊂ C with
n � 7. One might have expected ‘accidental’ repetitions, such as K27b,−48 = K27d,32/81
for the Galois group W(E6), discussed in [10, Section 9]. However, in every case here, if
(n, τ ) �= (n′, τ ′), then the resulting fields Kn,τ and Kn′,τ ′ are distinct.
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