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BOUNDED POINTWISE APPROXIMATION OF SOLUTIONS 
OF ELLIPTIC EQUATIONS 

A. BONILLA AND R. TRUJILLO-GONZALEZ 

ABSTRACT. We characterize open subsets U of RN in which the bounded solutions 
of certain elliptic equations can be approximated pointwise by uniformly bounded 
solutions that are continuous in U. This result is established in terms of certain capacities. 

For closed subsets X, this characterization allows us to approximate bounded so
lutions in X° uniformly on relatively closed subsets of X° by solutions continuous on 
certain subsets of the boundary of X. 

1. Introduction. Vitushkin's theorem [16] on uniform approximation of holomor-
phic functions on compact subsets of the complex plane gives, in terms of the continuous 
analytic capacity, the necessary and sufficient conditions on compact subsets K of the 
complex plane in order that holomorphic functions in the interior of K and continuous 
on K could be approximated by rational functions with poles off K. Vitushkin's result 
has been extended to unbounded closed subsets of the complex plane by Hadjiiski [7] 
making use of a covering lemma by A. M. Davie [4]. 

In a natural extension this scheme has been considered in the theory of approximation 
of solutions of elliptic operators. For these spaces we recall the work of Bagby for the 
I/-norm [1], Verdera for the C^-norm [15], O'Farrell with Lipschitz norm [9] and for 
solutions of elliptic systems with the C^-norm by Tarkhanov [13]. In [1] Bagby proves 
a theorem on approximation in the mean of solutions of certain homogeneous elliptic 
equations. One of the most important ideas in Bagby's paper is the definition of a set 
of capacities with the objective to construct approximating functions with fixed coeffi
cients in their Laurent expansion up to a fixed order. Bagby's scheme requires to define 
one capacity for each possible Laurent expansion of the functions to be approximated. 
Using this idea, Tarkhanov proves in [13] the analogue of Vitushkin's theorem for C"-
approximation of the solutions of homogeneous elliptic systems of differential equations 
on compact subsets of RN. 

Gamelin and Garnett [6] considered Vitushkin's scheme in order to approximate 
bounded analytic functions on open subsets U of the complex plane with compact 
boundary by analytic functions on Uand continuous on U. This choice of approximated 
and approximating functions required a weak type of convergence, namely the bounded 
pointwise convergence. In this paper, with Tarkhanov's result as a starting point, we 
characterize proper open subsets U of RN such that the class of continuous functions on 
U that satisfy on U a homogeneous elliptic equation is dense with respect to bounded 
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BOUNDED POINTWISE APPROXIMATION 497 

pointwise convergence in the space of bounded solutions on U. This result is in some 
sense an extension of Gamelin and Garnett's theorem to a larger class of equations and 
to more general sets U without any restrictions on the boundary of U. 

Let X be any compact set of the plane where the functions continuous in X and 
analytic on X° are dense with respect to bounded pointwise convergence in H°°(X°). If 
E is relatively open subset of dX and F C X° is closed relative to X° U E, then any 
function in H°°(X°) can be approximated uniformly on F by functions analytic on X° 
and continuous on E. This result, due to A. Stray [12, Theorem 2.1], makes a decisive 
use of Gamelin and Garnett's theorem. Thus, our characterization of bounded pointwise 
density gives an extension of Stray's theorem to proper closed subsets of IR̂  and for 
solutions of the elliptic equations considered. 

2. Preliminaries. We begin by giving some notation which will remain in effect for 
the rest of the paper. For any subset^ of IR̂  we use the standard notation of A0 ,A, dA\o 
describe the interior, the closure and the boundary of A respectively. The characteristic 
function of A is denoted by XA- We will use the letters C, M, R to denote constants 
that can change its value from line to line. We write C = C(P,TV,...) to indicate that C 
depends on P, N,... and so on. For any function/ we denote the supremum off on A by 
\\f\\A. In case that,4 = R* we only write \\f\\. 

Let 2)(RN) be the complex vector space of all C°° functions in RN with compact 
support. Its dual, the space of Schwartz distributions, is denoted by 2y(RN). We use 
the notation (T, <p) to denote action of the distribution T G (ff($iN) on a function 
<p G (D(RN). The class of functions defined on a locally compact Hausdorff space X 
vanishing at infinity is denoted by C0(X). 

lfa = (<*i,... ,aN) G N^,welet \a\ = a\ + • • • + <*#, a! = a\\--aN\,xa = x"1 --x^" 
for x = fa,..., JCJV) G RN, and Da = (d /dxx)

ai • • • (d /dxN)aN. If the polynomial Q is 
given by Q(0 = £ aa^

a, we let £ ( 0 = £ aa£,a and Q(D) = £ aaD
a. 

Consider in RN the equation P(D)f = 0 generated by a homogeneous polynomial 
^ ( 0 = T,\a\=pPa£>a of degreep with complex coefficients such that 

1. P satisfies the ellipticity condition: P(Q f 0 if £ <E RN \ {0}. 
2. p < N. 
Under these assumptions, the differential operator P(D) considered admits a funda

mental solution V G L1
1
0C(IR

7V) whose restriction to IR/v\{0} is a real-analytic homogeneous 
function of degree p — N[S, Chapter III]. 

Let Tk denote the space of all homogeneous polynomials of degree k in n variables 
with complex coefficients. This space has the Hilbert space structure with the inner 
product [10, Chapter III,Section 3.1] 

{RuR2}=Ri(D)R2=R2(D)Rl = £ oc\c^\ 
\a\=k 

where R\ and R2 are elements of 2^ with 

Ri(0= E ^ a f o r ^ G ^ ; / = l , 2 . 
|a|=A: 
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498 A. BONILLA AND R. TRUJILLO-GONZALEZ 

Let Hi(P) denote the orthogonal complement of the vector subspace P(£)[!Pk_p] of 
(Pk. Then we can write 

For each multi-index a with \a\ = k we introduce the polynomial fA£(£) = H\p\=k na^ 
that represents the projection of £a on ^4(P). These polynomials characterize -?4CP) in 
the following way 

PROPOSITION 2.1 ([14, LEMMA 2.6]). The polynomial h(Q = E\a\=k c«Ca belongs to 
94k(P) if, and only if, for every multi-index a with \a\ = k we have ca = T,\p\=k n(3aCp-

Consider now the following polynomials which will play a fundamental role. For any 
multi-index a, define ^Cx(y) by 

^(y) = ( - i )*E^/« 

Given F C R", let 0(F) denote the vector space of solutions of P(Dy = 0 in a 
neighborhood of F. For the rest of the paper K will denote a compact subset of RN. We 
now establish the theorem of representation for the functions in 0(RN \ K) that vanish 
at infinity. 

THEOREM 2.2 ([14, LEMMA 4.6]). Letfe 0(RN\K) vanish at infinity. Ifx0 is a point 
ofKandro = supyGaA:{|^ —xo|}, then, in the complement of the closed ball B(x$, r^aN2), 

(2.1) f(x) = YJD
aV(x-xQ)ca, 

a 

where the series converges absolutely and uniformly on closed subsets of the complement 
ofB(xo, roaN2). Moreover, the coefficients ca with \a\= k are defined by 

ca = ca(f,xo) = j^(y-xo){P{DY){y)dy 

and satisfy the condition ca = T,\p\=knpaCp-

We have an equivalent representation of the coefficients ca that will be very useful in 
the next section. Consider the Green Operator G(g,f) of the differential operator ^(0) 

\pn+ij\=p 

[3, Section 14.3.4] where dy\j] - A/=i ,« dy(, and ly represents the unit vector on the 

jcy-axis. Then any function/ E 0(RN \ K) vanishing at infinity can be represented in the 
neighborhood of the infinity given in the theorem by 

f(x) = -JrG(V(x-y)J(y)), 
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where T is its boundary. This representation gives the equivalent definition of the coef
ficients ca as 

ca = ca(f, xo) = - Jr G(Ma(y - *o),/(y)). 

We point out that this representation of the coefficients ca does not depend on the 
choice of the surface T provided that T is contained in RN \ K, surrounds K once and is 
oriented so that the outwards normal vector points toward infinity. 

The relevance of Vitushkin's result for holomorphic functions in the plane is the 
sufficiency of just one capacity to fix three coefficients of the Laurent expansion of the 
admissible functions [5, Chapter VIII]. Here, we follow the scheme established by Bagby 
[ 1 ] and for each possible Laurent expansion of the function to be approximated we define 
one capacity. 

Let Q be an open subset of RN, K a compact subset of Q and //(£) = J2\a\=k c«£a a fixed 
element of ^(P) with k G N. Denote by %H(K, Q) the set of functions/ G 0(RN \ K) 
vanishing at infinity, with Laurent expansion 

f(x) = A E ^ v(x)c« + o{\xY'N~k) as x -+ oo 

for some scalar A G C and such that |[/*||n = supxGO \f(x)\ < oo. 
Let C(Q) be the set of all continuous functions on Q, and denote CH{K, Q) = 

S#,Q)nC(Q). 

DEFINITION 2.3. We define the following capacities: 

(2.2) 1H(K,Q)= sup \(P(DY,H)\= sup I[ G(H(y)J(yj) 

li/1ln<l ll/1ln<l 

(2.3) aH(K,Q)= sup \(P(P)f,H)\ = sup \[G(H(y%f(yj) 

MQ<1 V\\n<\ 

If F is an arbitrary precompact subset of Q, then we set 7//(F, Q) = sup7//(A^, O) and 
a#(F, Q) = sup OCH(K, Q) where the supremum is taken over all compact subsets K of F. 

These capacities are similar to the capacities defined by Tarkhanov in [13] for the 
C™ -approximation. For the main properties of this capacities see [13]. Here we mention 
two equivalent definitions of those capacities that will be useful later. 

LEMMA 2.4. The identity 

iH(K,n) = ±H'H} 

inf|[/1|n 

holds, where the infimum is taken over all functions f G 0(RN \ K) that vanish at infinity 
with 

f(x) = £ Da V(x)ca + o(\xf-N~k) as x -+ oo. 
\a\=k 
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If we take the infimum over the functions on CH(K, CI) then we get 

From now on we take Q = RN so we write 1H(F) = 7//(F, RN) and aH(F) = aH(F, RN) 
for simplicity. 

Another useful tool for the resolution of our problem is the Localization Operator that 
we define below. 

DEFINITION 2.5. For a fixed g e ©(IR^) we define the Localization Operator Vg: 
(Df(RN) -+ iy(RN) by 

vg(f) = v*[gP(D)n iffe&(RN). 

The main properties of the Localization Operator are incorporated in the following 
lemmas. For a complete study see [1, Section 5] or [13, Section 3]. 

LEMMA 2.6 ([13, SECTION 3]). Ifg e (D(RN) andf e <Df(RN) then 

1- Vg(f)=gf+Y, i^o aaP[DPV*fiygl 
\<*+P\=P 

2. Vg(f) is continuous at every point of continuity off and vanishes at infinity. 
3. P(D) Vg{f) = gP(Dy. Hence, Vg(f) is a solution of the operator P(D) off the support 

ofg and whereverf is, andf— Vg(f) is a solution in the interior of the set on which 
g equals to 1. 

LEMMA 2.7. Letg G <D(RN) satisfy suppg c 5(0,5) and \\Dag\\ < #H<H a l /or any 
multi-index a. Then \\Vg(f)\\ < C\\f\\ for any bounded measurable function f 

3. Bounded pointwise approximation. Let U be an open subset of IR .̂ We denote 
by O°°(L0 the subspace of 0(U) of bounded functions on U, and by fA.(U) the subspace 
of 0(U) of continuous functions on U. Clearly, 0°°(U) is a Banach space with the 
supremum norm in U. 

DEFINITION 3.1. We say that Sl(U) is bounded pointwise dense in 0°°(U) if each 
/ E 0°°(U) is the pointwise limit on U of a sequence {fn} in J%(U) satisfying \\fn\\u < 

The characterization in terms of capacities of the open sets where this kind of ap
proximation holds was established by Gamelin and Garnett in [6] for P(D) = d in the 
complex plane. The independence of the constant M with respect to the function/ can 
be easily established by a category argument. 

We begin with two lemmas. The first lemma is a higher dimensional version of a 
result of A. Davie [4], but for our proof we follow the construction given in [2]. Davie's 
lemma allowed Hadjiiski [7] to generalize the Vitushkin theorem to unbounded sets. 

LEMMA 3.2. Let D. be a proper open subset ofRN. Then, for any positive function p(x) 
in Co(Q), there exists a sequence {#;}£ = {B^XJ^TJ)}^ of open balls whose closures 
lie in Q such that: 
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i. n = u£ty 
2. No point ofQ lies in more than Z = Z(N) balls Bj. 
3. Ifx G Bj then Tj < p(x). 

4. There is a C*>-partition of unity {§j}™x subordinate to {Bj}^ with ||Z)a$/|| < 

R\a\r7 far any multi-index a. 
5. For all xe RN, 

(3-D Smin(ll]reiF)<C, 

C being an absolute constant. 

PROOF. Take any positive function p G Q(Q), and consider the increasing sequence 
of compact subsets of Q defined by 

Vk = {xeCl: p(x) > 2"*}, jfc = 1,2,... 

that cover Q. For each integer k define ak = min(l,dist(^, RN \ Q)) and /?* = 

m i n ( l , d i s t ( ^ , R " \ ^ i ) ) . 
Now, choose recursively a sequence {mk}^ of integers satisfying mk-\ < mk and 

(3k > 2k~mk+l. For k = 1,2,... let {B^}^ be an enumeration of the balls of radius 
|2~m* for which the coordinates of their centers are integral multiples of 2~mk. 

Let £o be the smallest k for which V^ is nonempty. We construct a covering starting 
with the balls B^ that intersect V^. Recursively, for k > ko we select those balls Bkiq 
which intersect Vk and are not contained in the union of the balls that have already been 
selected. The covering of Q considered consists of the coecentric balls with a double 
radii; we renumber this sequence {2B^q} as {Bj}^. 

Note that, by the choice of mk, any ball of the ^-generation meets only the balls of the 
(k — 1) and (k + l)-generation. Moreover, this latter property, along with the choice of 
centers and radii, guarantees that the maximum number of balls that contains any point 
does not exceed an absolute constant Z. This covering {Bj} of Q satisfies 1), 2) and 3). 

It is easy to get a partition of unity satisfying 4). We choose <j> G C£°(RW) with 

0 < (j> < 1 such that </>(x) = 1 in |JC| < ^ , </>(x) = Oif |JC| > § and ||Z)a</>|| < R{a{. Then, 

fory G N, we define </>J(JC) = < K ^ % <p\(x) = <t>\{x\ and (pj(x) = <l>j(x)Tf~} (1 - </>/(*))• 

Since {\Bj} covers Q. and each function <j>j equals one for |JC| < y/2 • 2~m*, we 
conclude that {</>,} satisfies 4). 

To get 5) we first prove that for any k 

(32) ?n''P^r)scn''diifeu^j) 
for any k and any point JC G R^, with C = C(N) an absolute constant, and where the sum 
ranges over the indices q such that 2Bk^q is included in the covering {Bj}™x. 

Indeed, fix x G R^ and consider the annulus A(JC, l\2~mk, (/ + 1)§2-W*). Then, the 
number of centers xkjq contained in this annulus is less than N4NZlN~l [1, Lemma 7.1]. 
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Now, taking into account that it is possible to meet centers in each annulus only for / 
greater than 

_ idist(s,Ugflfc,g) 
0 2 \2'mk ' 

we prove (3.2) 

(2~mk) /2\N+l xr °° 1 \Z k) / / \ / V t J uw I 

oo 1 

< C £ - < C 
, t / 0 2 ' ~ dist(x,U„ #*,,)' 

We can now prove 5). Fix x £ Q. Then, dist(x, U, #*,,) > ak - 3 • 2m* > ft - 3 • 2_m* > 
2*"1-"*. By (3.2), this yields 

* - — • ' ' * - — < c. Vmin 1, -.—J—frj- < C V m i n 1, ,. , , , „ x < CV y V ' I X - J C ^ J - V V 'dist(x,U,^,?)J - V 2^-i-m* 

On the other hand, if x € Q, we can assume that x e Vt\ V\-\. Again, (3.2) allows us 
to divide (3.1) into three sums: 

y v |x x7| / v ^ ^ ^ j ^ /+3/ v aisnx, \jq^k,q)J 

Let us estimate each part. For the first one, take into account that dist(jc, \Jq Bk^q) > 
Pk-3- 2~mk > 2k-l~mk, since x is not in ^_2 . Hence, 

Z-2 . / 2 ^ A ^ (=? 2 ^ < (=? 1 

4 m i n l ' dist(x, u, ***> J - & & - U 2k~x' 

The second one is trivially bounded by 4 . Thus , it only remains to est imate the third 
sum. Since dist(x, U^ Bk,q) > Pk-3 w e n a v e 

oo r 2~mh \ °° 2~mh °° 2~w*~3 °° 1 

^ 3 V dlSt(x ,U^^)7 1^3^-3 k=i+3 Pk-3 k=i+3^ 3 

In the last two inequalities we have made use of the recursive properties of the sequence 

With these estimates, we finish the proof of the lemma by taking C to be the maximum 
of the constants calculated above. 

The next lemma is an extension to solutions of more general differential equations of 
a localization result for analytic functions in the plane due to Gamelin and Garnett [6]. 

LEMMA 3.3. Let U be an open subset ofRN with a compact boundary andf G 0°°(U) 
vanish at infinity. Let { L̂ -}/=i v..?m be a finite open covering ofd Usuch that in each UD Uj,f 
is apointwise limit of a sequence {hj^}^ in JZ(UClUj) satisfying ||A/,W || unUj < M\\f\\ unUj 
with M independent off. 
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Thenf can be approximatedpointwise on U by a sequence {fn} C 2L(U) satisfying 

\\fnh<m\u, 

where A depends only on the covering {Uj}. 

PROOF. Take/ = 0 off U Let {(Pj}JLi C £>(RN) satisfying supp ipj c Uj9 0 < y}< 1 
and £ <pj = 1 near a U Then,/ = £ y ^ F^(/). 

For every j G { 1 , . . . ,m}, we choose a sequence {/*/,„}^ in A(UD Uj) such that 
||^/>||t/ru/; < Af|l/,||t/nc/y a nd /*/>(*) —* f(x) for any JC G UDUj.We can assume that 
/̂,/i € C(R^) and fy^ —* 0 off £/ [ 10, Chapter VI]. Hence, there exists a bounded function 

hj such that {/*/,«} converges to hj in the weak-star topology of L°°(RN). 
Consider gy,„ = V^(h^n\ and define Gn = £/g7> Then Gn G Sl(U) and ||G„|| < 

AiM|[/*||, where Ai depends only on {^y}y=ir..,w. 
Since supp ipj C Uj, the pointwise convergence of {/*/>} t o / on Ly n L̂  implies the 

same convergence of <Pj\n to </?/ on U. Hence, for every x in U, 

lim gy,n(x) = lim (<^(x)/*y>(x) + E aap[EPv* hj,nD
aipj](x)) 

= ftWW+ E aap[DPv*fiyipj](pc) 
\a\jO 

\a+p\=p 

+ E aaJ D^V(x-y)hj(y)Da
n(y)dy 

\a\jO JdU 

\a+0\=p 

= VtpjtfXx) + E <*apHj,a,p(x), 
WW* 

\<*+P\=P 

whereHj^p = [D^V* XduhjDa(pj] G A(U) and ||i$,a,/j|| < A2Af||/1|, with A2 depending 
only on {^}7=ir..,w. Denote by Hj = £ N^0 aapHj^p. 

|ar+/3|=p 

The sequence/ = G„ - £ £ , J$ satisfies/ G -#(L0, | [ / | | < (Ai + A2)M|[/*|| and 
fnix) —> Y!jL\ Vipj{f)(x) =f(x) as n —* oo for every JC G £/. This completes the proof. 

Now we establish the main result of this section. As said before, Tarkhanov's scheme 
of approximation in C7"— norm solutions of elliptic systems is the starting point for our 
result, as it is Vitushkin's scheme for Gamelin and Garnett's characterization of bounded 
pointwise approximation given in [6]. The characterization of those proper open subsets 
17 of R^ where J%(U) is bounded pointwise dense in 0°°(U) is given in terms of capacities 
7 and a. 

THEOREM 3.4. Let U be a proper open subset ofRN. Then, the following assertions 
are equivalent: 

i) J%(U) is bounded pointwise dense in 0°°(U). 
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ii) For each r > 1 there exists r\ > 0 such that 

(3.3) 1H{B(X,S)\U)< fi<xH(B(x,rS) \ U) 

for any He He (k G N), all x G R^ and all 8 > 0. 
///) 77zere exisf constants So > 0, r > 1 awd 77 > 0 swe/z that ifH G U^0 .?4 then, for 

every point x G R^ and for all S < <5o, 

(3.4) 1H(B(X,8) \ U) < riaH(B{x,rb) \ U). 

PROOF. First we prove that iii) implies i). Fix 5 < So a n d / G CP°{U). For this S 
we consider a ^-neighborhood Q<§ of 3 U, Lemma 3.2 then yields a sequence of balls 
{JB^(JC/,T/)}^I and a partition of unity {</>/}j?i for Q^ satisfying l)-5). Without loss of 
generality, we can assume ay < ^ for any j . 

Set / = 0 off U and write fj = V^.(f). By property 3) of the chosen partition of 
unity and Lemma 2.7 we can wri te/ = £ / + G, where \\f}\\ < M\\f\\ for each/ with 
M = M(P, N) and G G 0(R"). 

To prove the approximation statement for/ it is suffices to find functions Oy G C(RN) 
satisfying 

a) suppP(D)0/ C B(Xj, rPcTj) \ U; 
b) ||Oy | |<M'|[/1| (M'^M'iP^N^)); 
c) / and O/ have the same coefficients in their Laurent expansions at infinity with 

indices |a| <p. 
Assume for the moment the existence of these functions and define <X>§ = £y 0/ + G. 

Then we have a sequence {O^}^>0 in £L(U), that converges pointwise t o / in U as 6 —• 0, 
and is uniformly bounded by M"||/1|, with M" = M"(P, N, ry, r). 

Indeed, by c) the Laurent expansion of/ — O, has the expression 

fj(x)-<t>j(x)= £ DaV(x-xj)ca 

l«l>p+i 

for any x outside some ball centered at xj. The uniform boundedness of fj and <I>y 
allows us to estimate the coefficients ca in the following way. Take <p € C^(RN) with 

supp ip C B(xj, {f + 1)T>), v? = 1 in B(Xj, r*aj) and | |Z)>|| < / ? w ( ( ^ + l)ij)" |or|. Then, 

(-1 y /R„ p(D)[¥»c)i»40' - ^)](j5(y) - <bj(yj) <b\ 

< (El^l) 11// - tyll SUP /^[vWfl^Cv - */)] £fy 

x_„ A ^ ( ( ^ + l>r,)WfH 

<»> -«^<- '^ST 
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where we have mainly made use of the Leibniz formula, the properties of ip and the 
estimates of the derivatives of the polynomials Ma [14, Lemma 2.2]. 

Estimate (3.5) makes it possible to estimate the evaluation of Jj — O, at any point, as 
follows: 

\fj(x)-Qj(x)\ < £ \DaV(x-xj)\\ca\ 
\a\>p+\ 

< HMVl-ixr, Vg,,l»-^-"°'(M-P>t 

{1=Q\ \X — XJ\ J ( / + ! ) ! / \x — Xj N+\ - 2 r " \ 5 l |*-*y| 1-77XTJ7-I U—TJNTT-

So, if |JC - jcy| > 2dtP{f + 1)T/, we have 

^ + 1 

(3-6) \fj{x)-<t>j(x)\<M3\\f\\r^ 
1J\ 

On the other hand, for |JC — xj\ < 2aN2(r^ + l)r) we can write 

(3.7) \fj{x) - 0,(*)| < \\fj\\ + \\<bj\\ < 2M\\f\\K ^_Xjfl' • 

Formulas (3.6) and (3.7) give 

(3.8) \fj(x) - Oj(x)\ < C\\f\\ min(l, ^ J ^ ) 

for any x E R*,where C = C(N, P, r, 77). 
The estimate (3.8) and the property 5) of the covering {Bj} allow us to bound uniformly 

the function O^ as a consequence of the following estimate 

\f(x) - <B»(x)| < £ \fiix) - 9j(x)\ < C\\f\\ £ m i n ( l , _* ) < C|[/1|, 
y y v I* xyl y 

valid for any point x eRn, with C = C(P, N, r, TJ). 
Now we prove the pointwise convergence t o / on U. For a fixed x £ £/, denote by J 

the distance of x to d £/. Then, recalling the construction of the covering {Bj} from the 
proof of Lemma 3.2 above, we have 

oo ? _ w * 

\f(x)-%(x)\ < £ — £[dist(x,\JpBkj,) 
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Since m\ —> oo when 8 —> 0, we obtain O^x) —>f(x) for 5 —• 0. 
It remains to prove the existence of functions Oy satisfying a), b) and c). If we 

consider the Laurent expansion of each/ at xy-,/(x) = £« Da V(x — Xj)ba, then the choice 
of the function ipj, along with Lemmas 2.6 and 2.7, yields / G %0(Z?(xy-, ay) \ U). Now 
Lemma 2.4 and the estimate (3.4) imply 

(3.9) {b0,bo} < M\\f\\lbo(B(xhoj) \ U) < Mr,\\f]\abo(B(Xj, raj) \ U). 

From (3.9), the definition of a^0 guarantees the existence of a function O? G C(RN) 
with suppP(Z))0? C 5(xy, roy) \ £/, bounded by 2Mry|[/|| and with the expansion 

<t>J(x) = boV(x-Xj) + o(\xrN). 

Take/^ = / - O , 0 . Then, s u p p / W ? c 2?(*,-, ray)\£/, ||/*|| < (A/+2MT/)||/1| = M0|[/|| 
and 

Fj(x)= £ b°aD«V(x-xj). 
H>i 

Since //i(£) = E|«|=i # U a ^ M\(P\ bY Proposition 2.1 and Theorem 2.2, it follows 
that Fj belongs to $//, (B(xj, raj) \ if). Therefore, again Lemma 2.4 and (3.4) give 

(3.10) {HuHx}<MMVlHx{B(Xj,rGJ)\U) < M0T,\\f\\aHl (B{xj,i>°j) \ U). 

Equation (3.10) provides a function Oj G C(R*) with supp/>(£>)$] C B(xj, r2^) \ U, 
|| Oj || < 2Mor/ll/H = Mi H/ll and a Laurent expansion of the form 

<»](*)= E ^^(x-x.o+odxr^ 1 ) . 
| o r |= l 

Iterating this procedure, we get at the p-th step a function O? G C(RN) with 
suppP(D)0; C *(*,-, fPaj) \ U9 ||«f || < 2^1/11/11 = A^ll/H, and 

I«I=P 

The function 0>j = £?=0 ^ j satisfies a), b) and c) by construction. This completes the 
proof of this implication. 

That ii) implies iii) is trivial, so to conclude the proof of the theorem we shall show 
that i) implies ii). 

Fix H G ^4,8 > 0, r > 1 and a point x0 G RN. Take/ G $H(B(X0,5) \ I/) satisfying 

11/11 < 1 and 
(3.11) 2\(P(DY,H)\>lH(B(x(h8)\U). 

Consider 1 < r' < r, and define W= UU{\x-x0\ > ^8}. Then Wx = {| JC — JC0 | > 8} 
and Wi = {|* — *o| < ^8} cover 8 W. The functions {f„(x)} = {/(* + fa — x0))} belong 
to !A(W\), are uniformly bounded on W\, and converge t o / pointwise on this set. On 
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the other hand, since W2 D W C U and/ G CP°(U), our hypothesis assure the existence 
of a sequence {f%} C A{W2 Pi W) converging pointwise t o / on W2 H FT and uniformly 
bounded on PT2 Pi W, by M, say. Applying Lemma 3.3 we get a sequence {fn} in J%(W) 
that converges pointwise t o / on ^ and is uniformly bounded on W, say by M', with M' 
independent of/ Since r' < r, it follows that suppP(D)^ C #(JCO, ^ ) \ £/ and, without 
loss of generality, we can assume that {fn} C C(RN). 

To prove this implication we need for each n G N a function Ow G C(R^) satisfying: 
1. suppP(D)Ow C B(x0, r8) \ U. 
2. ||On|| < Afi with Mi independent of/and/ , . 
3- (fn —f) and Ow have the same coefficients in their Laurent expansion at infinity 

with indices |a| <k. 
Assume again for the moment the existence of these functions and continue with the 

proof of (3.3). The cited properties of On imply the following ones: 

a) suppP(D)(fn - OB ) C B(xo, r8) \ U. 
b) \\fn-<!>n\\<M'+Ml=M2. 
c) fn(x) - OW(JC) = XH(D)V(x - JC0) + o(\x\P-N~k) as x -> oo. 
d) (P(py,H) = (P(D)(fn - ©„),#). 
The latter statements allows us to estimate ar//(#(xo, r8) \ if) as follows: 

(3.12) aH(B(x0,rS)\U) > \WW.^R)\ > ±-<yH(B(Xo, r6)\ U). 

That gives (3.3), with 77 = 2M2. 
We now prove the claim concerning the existence of the functions Ow. Consider the 

Laurent expansion of/ — / at JCO, 

fn(x)-f(x) = Y:DaV(x-xo)ba, 
a 

which converges absolutely and uniformly on closed subsets of the complement of a 
neighborhood of xo. Since \\fn —f\\ < 1 + M', (3.5) permits us to estimate ba by 

\ba\ = \jMa(y-x0)P(D)(fn -f)(y)dy\ < * M ( 1 + A/), 

with K\a\ = K\a\{P, N, 8, r, a). 

Consider now a function x E 2)(#(xo, r8) \ if) with J x = 1 > a n d define 

<t>°n(x) = boJv(x-y)X(y)dy. 

Then 0° G C°°(R"), suppP(D)0^(jc) C 5(JCO,"5) \ U, | |0°|| < M0(l + Af) with 
M0=M0(P,N,8,r, U), and 

0>°(jt) = Z>0 K(JC - x0) + o ( | x ^ ) as x -> 00 
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TakeF°n = (fn-f)- ©°. Then \\F°n\\ < (1 +M0)(1 +M'), suppP(£>)^ C B(pc0, ri)\ U9 

and 

F°n(*)= E ^ ^ ( ^ - X O ) . 

H>i 

Using (3.5) again we have 
| ^ | < ^ H ( 1 + M 0 ) ( 1 + M / ) . 

Similarly, we define 

®J(*)= Tlb
0
a[v(x-y)Dax(y)dy 

|a|=l 

to produce a function Q>x
n € C 0 0 ^ ) satisfying ||<D„|| < Mi(l + M') with M, = 

M,(P, JV, 6, r, U), suppP(Z))<Di(jc) C B(x0, rS) \ U, and 

®i to = £ W " P(* - *>) + ofl*!"-""') as x -» oo. 
|a|=l 

Now set Fj = F°n - <&i, then ||Fj|| < (1 + M{)(1 + M'), suppP(D)Fl
n C B(x0, rS) \ U 

and 

Fln(*)= E 6 a ^ ( * - * 0 ) . 
|of|>2 

Continuing this process by induction, we construct at the &-th step a function <D* G 
C 0 0 ^ ) given by 

« J W = E bk~l fv(x-y)Da
X(y)dy 

\a\=k 

satisfying suppP(D)0*Qc) C B(x0lr8) \ U, \\On\\ < Mk{\ + M') with Mk = 
Mk(P,N,8,r,U)9and 

®n(x) = E ^ a F(* - *o) + odxp7^-^) as x -» oo. 
| o r |=* 

To finish the proof it suffices to take 0„ = E^ 0 °« € C°°(RN) that clearly satisfies 1), 
2) and 3). The proof of the theorem is complete. 

4. Approximation by functions continuous up the boundary. The characteri
zation of bounded pointwise density established in the previous section allows us to 
prove Stray's theorem for solutions of the differential operators considered, replacing 
the compact subsets of the plane with proper closed subsets of R^. 

For any set X and any E C dX, we denote by 0|°(X) the functions of 0°°(X°) that are 
continuous in E. 

THEOREM 4.1. Let X be a proper closed subset ofRN where 5l(X°) is dense with 
respect to bounded pointwise convergence in 0°°{X°). Then there exists a constant k 
such that ifE C dXis relatively open to dX, h G CP°{X°) andF C X° is relatively closed 
in X°UE, then for any s > Owe can find a function/ G 0^(X) such that \\h — / | | F < £ 
a«J |[/1| <*||A||. 
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PROOF. By Theorem 3.4, the hypothesis provides constants r\ > 0 and r > 1 such 
that 
(4.13) 1H{B(X,S) \X°) < naH(B(x,r6) \X>) 

for any x G RN, any 5 > 0 and any H G U/GN H(F)-
Take sequences {Vn} and {Kn} of open and compact sets respectively satisfying: 
a) Kn C Vn for every «GN; 
b) V„nVm=<bif\n-m\ > 1; 

c)^ = u%^; 
d) F „ n F = 0 for every « E N; 
e) For any compact K in RN \ (dX \ E), then KC\Vn^$ only for a finite number of 

open subsets V„. 
Now, for each integer n we choose 5„ > 0 such that I = J(AT„, RN \ Vn)/8n is 

sufficiently large. Later on we will specify the precise size of L. 
For this S„, following a construction due to Bagby [ 1, p. 779], we can obtain a sequence 

of points {x^k}^ and a sequence of functions {(fn^}^i satisfying: 
i) vn,k£C™(B(xn,h8n)); 

ii) E & ^ E E l i n R " ; 

iii) | p > ^ | | < ^ H ^ H ; 
iv) Each point of RN is contained in no more than Z balls Bnk = B{xn^8n) with Z 

independent of <5„; 
v) If In = {£ : Bnjk nKn? 0}, then /„ n In+2 = 0 for every n. 
Set /z = 0 off Jf. Take now G„7£ = V^nk{h). From (4.13), for every k there exists a 

function <3>nk G C(R^) such that: 

i) suppP(D)ow,, c % , / y \ r ; 
2) | | 0 ^ | | < M p | | ; 
3) Gn^(x) and Ow^(x) have the same coefficients in their Laurent expansions at infinity 

with indices \a\ <p. 
For each n G N, define the function hn = Hkei„(Gn,k ~ ^n,k)- From 3) we have that 

(3.8) holds for any Gnk — Q>n,k(k G /„). Hence, by v), for any point x G RN and any / > 1 
the number of points x„^ contained in the annulus A(JC, 16„, (/ + iy>M) is no greater than 
N4NZlN~l for [1, Lemma 7.1], and the value of hn(x) is bounded by 

/oo £#+1 \ , oo 1 , 

(4.14) |A„(x)| < C1U1|[Y, Jj^mN+lzlN~l + ™oJ < C\\f\\(m0 + g £ ) , 

where mo is the number of centers contained in the ball of center JC and radius bn. Since 
mo is no greater than N4NZ, from (4.14) we conclude the uniform boundedness of the 
sequence {hn} byM'\\f\\, with Af = M'(P,N). 

Fix 0 < £ < 1 and choose <5„ such that B(y, ^ ) n #rt?£ = 0 for any k G In and any 
7 G R^ \ F„. From the choice of Sn and therefore the value of L, no point xn^ lies in the 
annulus A(x7 §£„, (§ + 1)SW), and by (4.14) we can write 

(4.15) |A»(y) l<q |A | | (£ ^ ) < 2 ^ r l | A | | . 
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The last inequality holds with an appropriate choice of S„. 
Define g = h - £ ^ } h2n-\. Then ||g|| < M2||A||, g is in 0°°{X°) and is continuous in 

#2/1-1 for every « E N. 
We now repeat the process for g instead of h, considering now the pairs (A^, Vm) to 

obtain a function/ = g — £ ^ g2« E O 0 0 ^ ) , continuous in £ that approximate honF 
in the following terms: 

IIA-/HF < p-gik+iig-/iif < IE*2-I | +b>»l 
II \ \ F II II 

< E ll*2»-i 11^^,+Ellft-llR^ < (E^)^ll*ll-

The last inequality follows from (4.15). This concludes the proof of the theorem. 

REMARK. In case when P(D) is the laplacian in RN with N > 2 and X is the closed 
unit ball B, the space 0°°(X) is the well known harmonic Hardy space h°°(B), and it is 
easy to prove the bounded pointwise density of Ji(B) without making use of the capacity 
estimates [11, Chapter IV, §2]. Thus, Theorem 4.1 holds. 
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