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Abstract

In this paper we prove a uniqueness theorem for minimal discs in R3 spanning a polygonal boundary.
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1. Introduction

A classical problem considered by Schwarz, Weierstrass and Riemann was to deter-
mine minimal surfaces bounded by straight lines. These authors obtained existence
results for minimal surfaces with boundary a given polygon, where the sides of the
polygon could be of finite or infinite length.

Jenkins and Serrin [6] proved an existence and uniqueness theorem for minimal
graphs bounded by straight lines. They obtained simple, necessary and sufficient
conditions to solve the Dirichlet problem in a compact convex domain bounded by a
polygon assuming values +oo, —oo and continuous data on different straight segments
in the boundary.

In [9], the authors construct a deformation of some particular Jenkins-Serrin graphs
(see Figure 1) which consists of properly embedded minimal discs bounded by straight
lines, contained in a wedge of a slab (see Figure 3). These examples arise as a solution
to Plateau's problem for a polygonal non-compact boundary consisting of a twice U
shaped contour. These surfaces can be used as a new type of barrier for the maximum
principle application. As a consequence, in [9], the authors have proved that any
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[2] Properly embedded minimal surfaces 363

FIGURE 1. A Jenkins-Serrin graph.

properly immersed minimal surface in a slab wedge of angle less than it lies in the
convex hull of its boundary. Furthermore, they have proved non existence results for
minimal surfaces with planar boundaries which generalize some classical results by
Nitsche [12] (see also Rossman's work [15] for a good survey).

One of the most interesting questions in regards to Plateau's problem is to determine
how many minimal surfaces can be spanned in a given boundary. The answer to this
question is not generally known, not even if we fix the topological type of the solutions.
The difficulty increases if, in addition, the boundary is not compact.

An existence and uniqueness theorem for properly immersed minimal discs whose
boundaries consist of two disjoint straight lines and a segment which joins them
orthogonally has been recently obtained in [10]. In [4], Fang have considered the
non-compact Plateau's problem for surfaces of annular type bounded by a pair of
non-compact convex curves in parallel planes, obtaining existence results for certain
symmetric boundaries.

The aim of this paper is to obtain a uniqueness theorem for the surfaces in the
family of examples exhibited in [9]. To be more precise, we deal with the uniqueness
of properly embedded minimal surfaces whose boundary Ted consists of the following
configuration of straight lines:

Fix 6 e [0,7r[ and d > 0, and consider two half-lines r,+ and rf in K3, meeting
at an angle of 6. If 0 = 0 this means that the straight lines are parallel and distinct.
Let q* and q^ be two points in r,+ and rj~, respectively, such that they are symmetric
with respect to the inner bisector of these half-lines. If and only if 9 ^ 0, we allow
q* = q\. We choose q\ and q^ in such a way that either q? = <j,~ or the half-lines
I* and £J" on r,+ and rj~ starting at q* and q^, respectively, do not intersect. Write
d = dist(^,+, q~).

Let JTI be the plane determined by If and l\ and let n2 denote a plane parallel
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lì 

FIGURE 2 . The curve r M . 

and distinct to it\. Let l \ and l2 be the orthogonal projections to n2 of l \ and l\, 

respectively. Denote by q2 (q2) the orthogonal projection to n2 of q? ( ^ f ) , and label 

by ¿0 (^o) m e segment [q+, q2] ([qi, q2]). Finally, we write 

a = U(C). I 7 d = (j(*r) 
1=0 1=0 

and define 

Ted = T + d U r e d . 

We consider the following generalized Plateau's problem: 

PROBLEM. Determine a properly immersed minimal surface X : M -> IR3 satisfy

ing: 

(1) M is homeomorphic to the closed unit disc D minus two boundary points Ex 

and E2, that we call the ends ofM. 

(2) X(d(M)) = r u . 
(3) If d > 0, X is an embedding. 

(4) In the limit case £Q = IQ (that is, d = 0), the maps X\M^Y+ and X\M-Y- are 

injective, where y+ and y~ are the two connected components ofd(M). 

(5) X ( M ) lies in the convex hull, <£(red), ofTed. 

In the limit case 6 = 0, it is known that 0 < d < \\v\\, where v is the vector with 

origin q* and end q2, and the example is uniquely determined as one of the above 

mentioned Jenkins-Serrin graphs. See the remark on page 370. 

Concerning to the general case 6 > 0, we have proved the following: 

MAIN THEOREM. There exists de > 0 such that: 
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(a) (b)

FIGURE 3. The two solutions in case 9 = TZ/3, d = 0.56||u||. Figure (a) corresponds to an unstable
example, and Figure (b) corresponds to a stable one.

(A) • Ifd 6 ] 0, de[, the above Plateau's problem has only two solutions.
• Ifd = 0 or d = dg, the above Plateau's problem has a unique solution.

(B) For d > dg, there are no solutions.

As we mentioned above, the existence part of this result can be found in [9].
Anyway, in Section 2 we briefly describe this family of surfaces. The statement of
this theorem also involves the uniqueness of the solutions, which is the subject of
this paper. This result is an elaborate consequence of Theorem 3.8, Theorem 3.12,
Theorem 3.17, Theorem 3.24 and Theorem 3.32 in this paper.

Finally, note that the above assumption (5) cannot be derived from the ones de-
scribed in (l)-{4). As a matter of fact, in Figure 4 we illustrate two examples
satisfying (1), (2), (3) and (4), but none of them is contained in the convex-hull of its
boundary.

This paper is organized as follows. In Section 2, we give several results we need
in this paper. We also describe the family of minimal surfaces arising as solutions of
Plateau's problem above, and recall its geometrical properties. In Section 3, we obtain
the main uniqueness results for the space of solutions. In Subsection 3.1 we prove
that M is conformally equivalent to a twice punctured closed disc with piecewise
analytic boundary (see Paragraph 3.1.1), and in Paragraph 3.1.2 we prove that the
meromorphic data of X extend to the closed disc. In the case G/n e Q, it is not hard
to see that these results are a consequence of the Cone Lemma, proved by Hoffman
and Meeks in [5]. Our approach also satisfactorily answers the case 9/n £ Q. In
Subsection 3.2, we prove that any solution of Plateau's problem above inherits the
symmetries of its boundary. This fact is a consequence of the reflection method of
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(a) (b)

FIGURE 4. (a) A minimal disc bounded by VBd, for 9 = n/3 and d = 0.56||iJ||. (b) A minimal disc
bounded by TM, for 6 = 0 and d = 0.40||u||.

Alexandrov. In this sense, we generalize the ideas of Schoen to our particular case
of non-compact boundary with unbounded slope. Finally, in Subsection 3.3 we make
use of the results in the preceding subsections to determine a model of the complex
structure and Weierstrass representation of any solution of our Plateau problem.

2. Background and notation

The aim of this section is to fix the principal notation used in this paper, and to
summarize some results about complete minimal surfaces.

Let X : M —*• R3 be a proper conformal minimal immersion, where M is a
Riemann surface with piecewise analytic boundary homeomorphic to the closed unit
disc D minus two boundary points EY and E2, that we call the ends ofM.

REMARK. We say that M is a Riemann surface with piecewise analytic boundary
if and only if M is a subset of an open Riemann surface M', the conformal structure
of M — 3(Af) is that induced by M' and 9(Af) consists of a set of piecewise analytic
curves. Meromorphic (respectively holomorphic) functions and 1-forms on M are, by
definition, the restriction of meromorphic (respectively holomorphic) functions and
1-forms on M'.

The Weierstrass representation of X is denoted by (g, r)). Recall that g is a
meromorphic function and r] a holomorphic 1-form on M. Both of them determine
the minimal immersion X as follows:
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where

(1) 0i = - d - 82)V, <t>i=l-^+g2)r), <t>3=gr)

are holomorphic 1-forms on M satisfying

(2)

Furthermore, g is the stereographic projection of the Gauss map AT : M -*• §2 .
In this paper we often use the following classical results about minimal surfaces

with common points.
Let Mi and M2 be two minimal surfaces in IR3. Assume p0 is an interior point of

both Mi and M2 and suppose TPoMx = TP0M2. Up to a rigid motion, assume that
p0 = (0,0, 0) and TPoM1 = {x3 — 0}, so that both M\ and M2 are given near p0 as the
graphs of two real analytic functions ul(xux2) and u2(xi,x2), respectively.

The difference u(xux2) = ux (xl, x2)—u2 (xt, x2) can be expanded as a power series
u(xx, x2) = YlT=i fk(xi,x2)ina neighbourhood of the origin, where eachfk(xi, x2) is
a homogeneous polynomial of degree k in *[ and x 2 . lffk(xi,x2) = 0 , 1 < & < v — 1 ,

and / , , ( ^ i , x2) does not vanish identically, then we say that M] and M2 have a contact

of(v — \)th order at p0. If v — 1 = 1, we say that they have an ordinary contact. In
case v = 1, the surfaces are transverse at p0.

THEOREM 2.1 (Order of contact). Two minimal surfaces Mx and M2 have a contact
of order v — 1 at p0 if and only if M\ intersects M2 along v curves ^x,... ,^v in a
neighbourhood ofpo- Ifv — 1 > 0, these curves intersect each other at po at an angle
n/v. They divide a neighbourhood ofpo in Mx into 1v open sectors, such that Mx lies
on one side ofM2 in one sector and on the other side in the next sector.

Furthermore, if mi is the multiplicity of the Gauss map ofMt at p0, i = 1,2, then

v — 1 > Minimum {mx, m2}.

In particular, when M2 is the tangent plane TPoM\ at p0, the multiplicity of the
Gauss map g of Mx at p0 is v — 1 if, and only if, TPoMi intersects the surface along
v curves %,... ,^vina neighbourhood ofp0. As above, these curves intersect each
other at p0 forming angles different to 0 and n. They divide a neighbourhood ofp0

into 2v open sectors, such that Mx lies on one side of the tangent plane in one sector
and on the other side in the next sector.

We say that p0 is an ordinary point of contact if the multiplicity of the Gauss map
at po is 1. Obviously, at an ordinary point of contact the tangent plane to a minimal
surface intersects the surface along two orthogonal curves.
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Minimal surfaces containing straight lines have special properties. These were
studied by Schwarz, who obtained the following result:

THEOREM 2.2 (Schwarz's Reflection Principle). If a minimal surface contains a
piece of a straight line I in its boundary, then the union of the surface and its 180
degrees rotation about t is a minimal surface which has I as an axis of symmetry.

Two good references about these results are [13, Section 437] and [3, Section 3.4].
Subsection 3.2 is devoted to proving that the minimal surface X(M) inherits the

symmetries of its boundary. The proof of these facts is a suitable version of the
reflection method of Alexandrov [1] and, as such, is based essentially on the Hopf
maximum principle. We state two theorems which summarize the well-known versions
of the maximum principle which we require.

THEOREM 2.3 (Interior maximum principle). Suppose Mh M2 are minimal sur-
faces in R3. Suppose p is an interior point of both Mi and M2, and suppose
TpMl = TpM2. Assume that TpM} = [x^ = 0} so that both M\, M2 are given
near p as the graphs of two real analytic functions ut and u2, respectively. lfu\ > u2

in a neighbourhood of p, then M\ = M2.

An elementary consequence of this result is the non-existence of compact nonplanar
minimal surfaces with boundary contained in a plane II. This result remains true in
the non-compact case if in addition the surface lies in the slab determined by FI and a
plane IT parallel to FI. See [11, Lemma 2.1] for details.

THEOREM 2.4 (Maximum principle at the boundary). Suppose Mu M2 are minimal
surfaces in R3 with boundaries fii and fi2. Suppose p is an interior point of both f}x

and fi2, and suppose TpM{ = TpM2, Tpfii = Tpfi2. Assume that TPMX = {JC3 = 0} so
that both Mi, M2 are given near p as the graphs of two real analytic functions U\ and
u2, respectively. lfu\ > u2 in a neighbourhood of p, then Mx = M2.

We conclude these preliminaries describing the family of minimal surfaces con-
structed by the authors in [9]. We also include a summary of the main geometrical
properties of these examples.

Take n e [1, 2] and r e ] - 1, 1[. Put r = -COS(JE0), X0 € ]0, n[. Consider the
Riemann surface

Jf = {(z, w) € C* x C/w2 = (z- eixo/n) (z - e-ixa'n)),
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Yo

(a) (b)

FIGURE 5. (a) The domain z(M). (b) The surface M.

and define in the z-plane:

5+ = {Xe-"iln : A. € ] 0, 1]}, s; = {ke"i/n : A. € ] 0, 1]},

5+ = {ke-"1'" : k € [1, +oo[}, s~ = \ke"iln : k e [1, +oo[},

50
+ = {«-" : t € [xo/n, 7T/n]}, s~ = {e" : t € [xo/n, ^ / n ] } .

Then, label C C ^K as the connected component of z~l(€ - ( U L o ^ u SD))
containing the point

P0 = ( l ,

Define

(3) = C,

where C means the closure of C in Jf.
Finally, label y,+ = z~l(s?), y,r = z'1^) for i = 0,1,2. Denote

i=0 1=0

It is clear that 3 (M) = y+ U y~. Furthermore, note that z\Y* and zl^- are bijective
maps onto sf and 5~, respectively, i = 1,2. However, y0

+ and yo~ consist of two
copies of SQ and SQ, respectively. See Figure 5 for more details.

Since z(M) is simply connected and 0 £ z(M), then the function z" + z~" + 1r is
well defined on M. We choose the branch of z" satisfying 1" = 1.
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This choice of the branch of z" implies that the function z" + z~" + 2r has neither
zeroes nor poles on M — 3(M).

Hence, the function <p((z, w)) = Vz" + z~" + 2r has a well defined branch on the
(simply connected) domain M — 3(M), that can be extended continuously to M. For
convenience, we choose the branch satisfying <p(P0) < 0. Moreover, note that given
zo € ( ^ U SQ) and denoting (P+, P~] = z~\zo), we have (p(P+) = -(p(P~).

We consider the meromorphic data on M

(4) g = iz, 03 = B-,
Z(p

where B > 0.
For simplicity, we write

dz
xT — — ,

Zip

and as usual, we denote

(0i. <h, fo) = j ( -«d /z + z)rr, (1/z - z)rr, 2r r) .

As M is homeomorphic to a closed disc minus two boundary points, then

Z . »/f __». nj3

(5) X(P) = Re / (0,,02,03)

is a well defined conformal minimal immersion of M in OS3.

REMARK. If n — 2 and r e ] — 1, 1 [, the immersions associated to the Weierstrass
data (4) are known and correspond to some Jenkins-Serrin graphs (see Figure 1).
Following the notation of [6], these minimal graphs are the only ones with boundary
values +oo, 0, +oo, 0 on a rectangle. See Karcher's work [7] for a good setting.

For the reasons explained in the last remark, we are going to restrict our attention
to the case n < 2, and in what follows we suppose n e [1,2[.

Concerning to its symmetries, let Sh, Sv denote the antiholomorphic transformations
on M

Sh((z, w)) = (1/z, w/z), Sv((z, w)) = (I, w).

Notice that Sh(P0) = SV(PO), and

goSh = 1/g, goSv = -g~,

(6) sA*(03) = - 0 7 , s*v(ch) = 07;
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so elementary arguments imply that Sh (respectively Sv) induces on X (M) a symmetry
with respect to the plane JC3 = 0 (respectively jct = 0).

The following theorem has been proved in [9].

THEOREM2.5. Let 6 e ]0,it] and r e ] - 1,1[.
Take n = 2n/(6 + n) and consider the Weierstrass data (M, g,<h), where M is

described in Figure 5-(b), and

g = iz, fa = B Z ===, B > 0.
ZA/Z" + z— + 2r

Then, the minimal immersion

fi Q o r 1 - g)<h, l-(g~

satisfies:

(i) X(M) is a properly immersed minimal disk with two boundary ends in K3.
(ii) X(d(M)) = r = \Jj^(lt U IJ), where:

(1) The curves IJ and t\ are half-lines contained in a plane x^ = k, k > 0, they
are symmetric with respect to the plane X\ = 0, and the straight lines containing them
meet at an angle 6.
(2) The curve l\ (respectively t^) is the image under the symmetry with respect to

the plane x3 = 0 ofl\ (respectively l\).
(3) The curve £Q (respectively 1$) is the vertical segment joining the end points of

£j and £\ (respectively l\ and t^).

(iii) IfO e ]0, n[, X(M) is contained in the convex-hull &(V) ofF. IfO = n,
X(M) is contained in the intersection of the slab —k<x^<k and one of the two
halfspaces determined by the plane containing £f, I7, i = 0, 1, 2.

(iv) X (M) is invariant under the symmetries with respect to the planes Xi = 0 and
*3=0.

(v) Up to a suitable choice of B (reseating), we can suppose k = 1/2. Then,
denote by d oriented distance between £Q and £Q. This means that

(1) |rf|=dist(£0
+,£0-);

(2) d < 0 if and only if it n l~ ^ 0, 1 = 1, 2, andd>0 otherwise;
(3) d = 0 if and only ift^ = IQ.

Obviously, the function d depends on r and 0. Moreover, for each 6 € ]0,7t], there
exists a unique r9 € ] 0, 1[ such that d(re) = 0. The function d(r) is negative in]re, 1[
and positive in] — I, re[. Furthermore, limr_*_i d(r) = 0 and d(r) has an unique
critical point r'9 e ] — 1, re[. The number de = d(r'e) is the maximum of the distance
function d(r) on ] — 1, re].
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(vi) X is an embedding if and only ifd > 0. Ifd = 0 (that is, r = rs), thenX\M_Y+
and X\M_y- are injective, where y+ and y~ are the two connected components
ofd(M).

Up to rescaling, and in what follows, we suppose that k = 1/2, and so, X(M) lies
in the slab - 1 / 2 < JC3 < 1/2.

The numbers r e ] — 1, 1 [ and 9 e ] 0, n] are analytical parameters of our family
of surfaces. To be more precise and when it is necessary, we can refer to X6r as the
immersion arising in above theorem for the values r and 9. Analogously, we write
M9r = M as the underlying complex structure of the disc.

Then we can write the family J( of surfaces arising from Theorem 2.5 as follows:

(7) ^ = { X 0 r : M 0 r ^ R 3 / r < = ] - l , l [ , 9 e ] 0 , n ] } .

Note that 9 has a clear geometrical meaning: the angle that I* makes with l~,
i = l,2. The meaning of parameter r concerns to the underlying complex structure
of the surface.

3. The uniqueness results

In this section we prove a uniqueness theorem for the surfaces X9r, r € ] — 1, r9],
9 e ] 0, TC[. For the uniqueness in case 9=0, see the remark on page 370.

From a topological point of view, embeddedness is a very natural assumption that
plays a fundamental role in some geometrical arguments. For this reason, we restrict
our attention to the embedded case. From a technical point of view, some arguments
in Subsection 3.1 (see Lemma 3.4) only work under this topological assumption.

Moreover, we also exclude case 6 = n. These surfaces are not contained in
the convex hull of their boundaries, and in order to obtain the same results as in
Subsection 3.1 and Subsection 3.2, this case needs to be treated slightly differently.
Anyway, it can be shown that the surfaces Xnr admit a similar uniqueness theorem.
Furthermore, this particular family of surfaces has a very natural interpretation in the
Lorentz-Minkowski three dimensional space (see [8] for details).

For the remainder of this paper, we assume that

9 € ] O , T T [ .

For 9 € ] 0,7r[, we consider two half-lines rj1" and rj~ in R3, meeting at an angle of
9. Let q+ and q\ be two points in r,+ and rj", respectively, such that they are symmetric
with respect the inner bisector of these half-lines. We allow q+ = q^. Label by 1+
(tj) the half-line on rj1" (r[), starting at qf (<7,~), and choose q* and q\ in such a way
that either q+ = q^ or l\ n l\ = 0.
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FIGURE 6. The curve r.

Let Tix be the plane determined by l\ and ll and label n2 a plane parallel to nx and
distinct. Let l2 and £2 be the orthogonal projections to n2 of If and £j~, respectively.
The orthogonal projection of q+ and q^ are denoted by q2 and q^. We label by 1%
the segment [q+, q£] and £Q as [gf, q^]. Finally, we write

and = r+ur
i = 0

Up to a homothetic transformation, we can suppose that the distance between it\
and 7r2 is 1. We label d as the distance between £j and IQ . Notice that the possibility
1+ = t~ is allowed, and so d could be zero.

In the remainder of this paper, we use a set of Cartesian coordinates, such that

• £Q and IQ have the direction of *3-axis;
• the planes it\ and TT2 coincide with the planes x3 = 1/2 and JC3 = —1/2,

respectively;
• the origin is the midpoint of (qf + q2)/2 and (gj~ + q2)/2 and;
• the jc2-axis is the inner bisector of the orthogonal projection of I* and £~ to

the plane x3 = 0, i = 1, 2.

Throughout this section, X : M -*• K3 is a proper conformal minimal immersion
satisfying:

1. M is homeomorphic to the closed unit disc D minus two boundary points Ex and
E2, that we call the ends of M. The boundary of M has two connected components
that we have called y+ and y~.

2. X(3(M)) = T.
3. If d > 0, X is an embedding.
4. In the limit case IQ = £^, X\M_y+ and X\M-Y- are injective. As a consequence,

the points on t0 = £% = £Q are double. (For this reason, throughout the paper, we
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will distinguish between M and X(M).)
5. X (M) lies in the convex hull, £(T), of F.

3.1. The underlying complex structure and Weierstrass data This subsection
aims at describing the complex structure of M and the behaviour of the Weierstrass
data. We prove that M is conformally equivalent to a closed disc with piecewise
analytic boundary and twice punctured at the boundary. As a consequence of this, the
Gauss map and Weierstrass data will admit a meromorphic extension to the ends. The
principal ideas of this subsection are inspired by Osserman's work [14].

3.1.1. The underlying complex structure. This paragraph is devoted to the study of
the conformal type of the disk M, and the main result corresponding to Theorem 3.8.
To obtain this theorem, we need some information about the Gauss map of the
immersion X. This information is summarized in Theorem 3.1 below.

Let a2 = (0, 1,0). Observe that, a2 is the unitary vector in the direction of the inner
bisector of £2 and t2 pointing to «?(F) (see Figure 6).

As a first step, we want to prove the following result.

THEOREM 3.1. There exists a neighbourhood of ~a2, U(a2), in S2 such that, counting
multiplicities,

n(N-l({a,-a))) = l, VaeU(a2),

where N : M -> §2 is the Gauss map ofX.

To obtain this theorem, we need additional results.
The plane x2 = t is denoted by U'h, t e R. Notice that the fact X (M) c <£"(F) and

the interior maximum principle imply FI°2 DX(M) = £Q U £Q .

DEFINITION 3.1. For t> 0, we define a, = X~l (X(M) n n^ ) .

Taking into account that X is proper and X(M) c ^(F), we obtain that a, is
compact, for every t > 0. Furthermore, a, is a set of properly immersed analytic lines,
because it is the nodal set of a harmonic function.

CLAIM 3.2. n?2 and X (M) are transverse along £j U l^. In particular, the set oQ

consists of two disjoint regular curves on d(M).

To see this, it suffices to observe that n°2 and X (M) are transverse along £„ U IQ .
If not, using the order of contact theorem (or the maximum principle at the boundary),
we obtain that X (M) has points in both sides of n?2, which is absurd because X (M) c

(D.
On the other hand:
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(a) (b) (c)

FIGURE 7. The topological possibilities for a,, (a) The ends E\, E2 are in the same connected component
of M —a,, (b) a] and a} intersect at Po e M, then X(P0) is an ordinary point of tangential contact
between X(M) and n ^ . (c) The curves er,1 and a} are disjoint and E\, E2 are not in the same connected
component of M —a,.

CLAIM 3.3. The plane n ^ and the surface X (Af) are transverse on tfUl^uQul^,
W > 0.

Indeed, given a point in P € (l+ U l~x U l\ U l^) D n ^ , the normal vector at P
lies either in the orthogonal plane to t[ or in the orthogonal plane to l\, but «2 does
not belong to any of both two planes, which implies that n ^ is transverse to X (Af)
at P.

REMARK. Using Claim 3.3 we deduce that one, and only one, curve lying in a,,
t > 0, approaches one of the four points in a, D d(M).

On the other hand, taking into account that a, is compact and the interior maximum
principle, we deduce there are no regions in M bounded by curves in a,.

Since M is simply connected, then a, is the union of two regular simple curves,
a) and a,2, with at most one point in common. Furthermore, if a] and af intersect
at Po e M, then the order of contact theorem implies that X(P0) isan ordinary point
of tangential contact between X (M) and Flj .̂ The three topological possibilities that
could occur for a, have been illustrated in Figure 7.

LEMMA 3.4 (Boundary behaviour). Up to relabellings, the immersion X satisfies

1. X(y+) = r+andX(y~) = T";
2. X~l (it) U X~l (£p diverges to £, and X~l(£+) U X~l(£;) diverges to E2.

PROOF. If d = dist(^o, £„) > 0, then Statement 1 of Lemma 3.4 holds by an easy
connectedness argument.

In the case 0 > 0 and d = 0, suppose that X{y+) ^ F+. As X(y+) is a connected
divergent curve over X(dM), then X(y+) must be, up to relabellings, I* U £0 U £^,
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Label by y0
+, y$ the two connected components of X"1 (^0)- From Claim 3.2, both

components are two regular arcs in 3(M) and Tl^2 is transverse along £0- Thus, there
exist two open neighbourhoods i/(y0

+), f/(yo~) in M of y0
+, yo~ . respectively, such

that X (£/(yo
+))> x (U(Yo)) Me graphs over n°2. In particular, there exists t' > 0

small enough such that, for each t < t', X(a,) consists of two curves, one of them
starting at 1+ and ending at l2, and the other one starting at l~{ and ending at t\. As
both curves lie in FI^, then they meet at least one point. This means that X(M) — £0

presents self-intersections, which is absurd.
In order to prove Assertion 2, recall that M is homeomorphic to a closed disc

minus two boundary points, and so, Assertion 1 in the lemma implies that X~l(£^)
and X~l (£2) diverge each other to different ends, and the same happens for X~l(£j)
and*"1 (£;-).

If £\ and l2 diverge to the same end, then, without loss of generality, we can
assume that £+, t2 diverge to Eu and so €j~, It diverge to E2. Let £/(£,), 1 = 1,2, be
two open disjoint neighbourhoods of the ends. As X is proper, then there is a t" > 0
large enough such that, for every t > t" a, c U(Ei) U U(E2).

Therefore, the remark on page 375 says that a, consists of two disjoint regular arcs,
a] and of, where ol

t C U(Et), i = 1,2. It is clear that X(crt
l) is a curve starting at

I* and ending at £J, and X(a,2) starts at l\ and ends at l\. As both curves lie in
Y\'-2 n <?(r), then they intersect, which is contrary to our assumptions. •

In what follows, we label y? = X~'(£t), y~ = X~l(£-), i = 1, 2. We define also
y0

+ = X-1 (£0
+ U ID n y+ and yo~ = X"1 (i+ U *„) n y~.

Observe that

Y+ = Yo U K,+ U y+, y- = y~ U y~ U y2".

The following lemma is a consequence of the remark on page 375 and basic facts
from the Morse Theory. We include the proof for completeness.

LEMMA 3.5. Counting multiplicities, $[N~l({-a2, a2})] = 1.

PROOF. Let us call srf = {t 6 K+/£'1, E2 lie in the closure of the same connected
component of (M — o,)}, and 38 = [t € R+/y^, y^ are in the same connected
component of (M — a,)}.

Observe that srf and 88 are not void. For, note that Claim 3.2 yields 0 e s#'.
Moreover, in the proof of Lemma 3.4 we have seen that for t > 0 large enough, a,
consists of two disjoint arcs belonging to two disjoint small neighbourhoods of the
ends. As we can choose these neighbourhoods not intersecting y0

+ U yo~, then / € 38.
From the remark on page 375, it is not hard to see that srf D 38 = 0. Furthermore,

/ 6 [0, +oo[— (&/ U 38) if and only if a, is connected and contains a unique point of
ordinary contact with normal vector in [—a2, a2}.
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The set [a,,t e [0, +oo[} consists of the level curves of the proper Morse function
{X, a2). Since M is a closed disc minus two boundary points, basic Morse theory
(see Claim 3.2, Claim 3.3 and the remark on page 375) gives that srf = [0, to[ and
9$ = ]to, +oo[, t0 > 0. Moreover, ah contains a unique point of ordinary contact and
a,, 17^ to, do not. This concludes the proof. D

PROOF OF THEOREM 3.1. Let fi : ] 0, 1 [ ->• M — 3 (M) be a continuous curve which
diverges to both ends E\ and E2. Define &/ and 98 as in the proof of Lemma 3.5.

Let t be a point in &f, such that a, n ^(] 0,1[) = 0. Then, as we have seen during
the proof of Lemma 3.5, there exists e > 0 such that t — e > 0 and [0, t + e[C srf. As
X is proper, we can choose e small enough such that L D X(fi(] 0, 1[)) = 0, where L
is the open slab in R3 bounded by Ws~

f and n £ f .
Let & be the set of planes n c K3 such that n D T c LOT, and label

V = {5(n)/n 6 ^*} C §2, where a(U) is the unit normal vector to FT satisfy-
ing (3(11), a2) > 0. It is clear that V is an open set in §2, containing a2 = a(U^2).
From Claim 3.2, Claim 3.3 and shrinking L if necessary, we can assume that any plane
in & is transverse to X(M) along P.

On the other hand, let J$? be the closed halfspace bounded by n£f with inner
normal vector — a2. As X is proper, then the set ̂  = X"'(Jf) is compact. Moreover,
since t e &/, then the proof of Lemma 3.5 gives ±52 ^ N&). As N&) is a
compact subset of §2, then there exists an open neighbourhood V of a2 such that

Thus, f/(a2) = V n V is the neighbourhood that we are looking for. Indeed, given
a unitary vector a € U(a2), let FI° be a plane orthogonal to a and contained in &,
and for any f > 0, define I~̂  as the plane parallel to Y\°- whose height with respect
to 2 is /.

Then, like in the proof of Lemma 3.5, we define s/(a) = [t e R+/Ei, E2 lie in
the closure of the same connected component of (M — X~x (Tl'5))}, and &(a) = {/ €
K+/y0

+, Yo are in the same connected component of (M — X'^nt))}. Reasoning
like in that proof, it is not hard to get s/(a) = [0, fet and 38{a) = %, +oo[, where
to > 0. Therefore, there exists a unique point of ordinary contact in Fl?, and there are
no such points in I"^, t ^ to. •

Consider 99 as in the proof of Lemma 3.5.

DEFINITION 3.2. For t e 98, we define D\ as the closure of the connected compo-
nent of M — a, containing £,, i = 1,2, where a, = X~l(X(M) C\ Wa2).

Observe that D) is homeomorphic to P — {1}, and its boundary is the union of three
analytic curves 'laid end to end'. One of them is, up to relabelling, a,' (see the remark
on page 375), and the other two, a) and b\, are divergent curves lying in 3(M).
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a\ b\

FIGURE 8. The topology of D\.

For the remainder of this paragraph, we use a set of coordinates such that a2 —
(0,0,1).

As n ^ is transverse to X (M) for every t e @, we deduce that:

REMARK. For any t € 3S, the map g has neither zeroes nor poles on D\, i = 1,2
and so rjg has no zeroes in these sets.

LetX3 : M —*• R be the third coordinate function, and let X3 its conjugate harmonic
function. Thus, h = X3 + iX^ is a holomorphic function satisfying h'(z)dz = r)g,
where z is a conformal parameter in D't. In particular, from the preceding remark
one has

(8) h'(z) ^ 0, for every z e D',, i = 1,2.

LEMMA 3.6. For any t € 38, the map h : D\I -> h(D\) is bijective.

PROOF. Since (X3)|~!(s) = o's, it suffices to prove that (X^)\ai is injective, for
every s > t.

On the other hand, as al
s is a regular curve and h' never vanishes, then Xj is

monotone on ol
s. This concludes the proof. •

Lemma 3.6 implies that h is a biholomorphism from D\ — 3 (DJ) onto /i(DJ —3(DJ)),
and (8) implies that it extends to the boundary in a regular way.

Now, we can prove the following:

LEMMA 3.7. For t € 88 large enough, we have

R < \g(P)\ < l/R, for every P e D\, i = 1, 2,

where R € ] 0, 1 [ is a suitable constant depending on t.
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PROOF. Let U be the stereographic projection of U(a2) U (— U(a2)) over the Rie-
mann sphere. Taking into account the choice of the frame, U is a neighbourhood of
{0, oo} in C = C U {oo}.

Let Po be the unique point of M such that g(P0) € {0, oo} (see Theorem 3.1). As
g is continuous, there is a compact neighbourhood V of Po satisfying

(-=)
8(V)U[--)(V)CU.

If we define

then AT is a compact neighbourhood of g(Po). Using Theorem 3.1, we deduce that
g~l(K) = V, and so g(M - V) n K = 0. _

If we take t large enough such that D\ C\ V = 0, then g(D\) n K = 0, i = 1,2.
Since AT is a neighbourhood of {0, oo}, we can guarantee the existence of a constant

1 > R > 0 satisfying the statement of the lemma. D

For the remainder of the paragraph, we fix t e & as in Lemma 3.7, and for the sake
of simplicity, we write D', a', a' and b' instead of D't, a't, a\ and b\, respectively.

If we consider Weierstrass data (g, r?) on D', then the induced metric

is complete.
We can now state the main result of this paragraph.

THEOREM 3.8 (Underlying complex structure). The neighbourhood D' —a' is con-
formally diffeomorphic to D+ — {0}, where

P+ = {zeC/|z| < 1,1m (z) >0}.

In particular, the Riemann surface M is conformally diffeomorphic to a closed disc
with piecewise analytic boundary M minus two boundary points {E\, E2).

PROOF. We split the proof in several claims.

CLAIM 3.9. The bilinear form ds2 = \r]g\2 is a complete metric on D'.

As g has neither zeroes nor poles in D', then rjg has no zeroes on D'. Taking
Lemma 3.7 into account we deduce that ds < Rds. As ds2 is complete, then ds2 is
complete too.
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CLAIM 3.10. The map

h:(D',ds2)-+(h(D'),dso2)

is an isometry, where ds0
2 represents the Euclidean metric in the complex plane.

Hence, (/i(D'), ds0
2) is complete.

To see this, let us consider X(s) a differentiable curve in D', then one has

LdAV = [\ng\= f \h'(z)dz\ = L W (hok).

This means that h is a length-preserving map. In view of Lemma 3.6, this implies that
h is an isometry.

CLAIM 3.11. h(a') and h(b') are divergent curves in C.

For, it suffices to recall that X(a') and X(b') are divergent pieces of straight lines
in T, and so our choice of the frame gives that Re(/i(a')) = Xj(a') and Re(h(b')) =
X3(b

l) diverge to +00, i = 1,2.
From Claim 3.10 and Claim 3.11, we deduce that h(D') is a simply connected

region in C, and

3 (h(D')) = hip') U h(a') U h(b% i = 1,2.

Furthermore, these three curves 'laid end to end', and

• h(a') is compact;
• h(a') and h(b') diverge to 00.

Hence, D' is conformally diffeomorphic to a closed disc with piecewise analytic
boundary, and once punctured at the boundary, i = 1,2.

Finally, let us observe that D, — a, is biholomorphic to D+ — (0).
Let X : D' -*• R3 be the conformal minimal immersion obtained from X (D' — a')

by successive Schwarz reflections about straight lines. Here, D' is an open Riemann
surface, that is 3(5') = 0.

Label J : D'' —> D' as the automorphism induced by the rotation about the Jt3-axis
by angle 26. Let q : D' -*• D'/{J) be the natural projection, and observe that D'/{J)
is conformally equivalent to O* = D> — {0}.

Represent by 5 the antiholomorphic involution on D' induced by the 180 degrees
rotation about a straight line in X(D'). Then it is easy to see that J o S = S o J. This
implies that 5 induces an antiholomorphic involution S on the quotient D'/{J) = D*,
fixing 0. Then, up to a conformal transformation, S(z) = z, and so D, — a, is
biholomorphic to D>+ - {0}. This completes the proof. •
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3.1.2. The Weierstrass data. In this paragraph we prove that the Gauss map and
Weierstrass data extend continuously to the ends (see Theorem 3.12 for details). As a
consequence, the immersion X has finite total curvature.

At this point we return to the original frame given at the beginning of this section.
In particular, if we write X(P) = (Xl(P),X2(P),X3(P)),onehasX3\y2+Uy2- = - 1 / 2

THEOREM 3.12. The maps X3 and g extend continuously to Eit i = 1,2. In
particular, the total curvature ofM is finite.

Furthermore the limit tangent plane to M at Ej is Jti, i — 1,2.

PROOF. The harmonic function X3 is bounded, and X3\y+Uy- is constant. From
Theorem 3.8, X3 extends continuously in a natural way to Eh i — 1,2.

For the second part of Theorem 3.12, we need to prove several claims.

CLAIM 3.13. Let Qt € y* (respectively y~), and let E, be the tangent plane to
X(M)atX(Qi), i = l,2.

Denote by Jtfj the closed halfspace bounded by E, which contains planes parallel
to E, and disjoint to &(T) (and so, disjoint to X(M)).

Then, there are no domains fi, C Af — 3(M) such that

• X (£2,) lies on the closed halfspace Jift.

Indeed, if a such domain exists, then the distance from points of £2, to E, is bounded.
So, the claim is an easy consequence of [11, Lemma 2.1].

CLAIM 3.14. For any P € y? u Y\ U Yi u Yi> counting multiplicities, one has

l 9.

We prove this claim in the case X(P) e £[. The proofs of the other three
possibilities are similar.

Label by E the tangent plane to X(M) at X(P), and observe that t+ c E. Let us
consider A = X~l (E n X (M)). Since A is the nodal set of a harmonic function, then
A is a set of properly immersed analytic curves.

It is straightforward to prove that A n X~l(V — £*) has at most two points, one
of them in j / 0 ~ and the other one in y2". In particular, d(M) — A has at most four
connected components.

On the other hand, the interior maximum principle gives us that there are no compact
simply connected region of M bounded by curves in A. Since M is simply connected,
this implies that:
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• If S is a curve in A starting at ]/,+, then either S diverges to an end or the end
point of S belongs to X"1 ( r - if) n A.

• When two curves in A originates from y,+, they do not intersect.

As M is simply connected, elementary topological arguments imply that M — A has
at least as many connected components as curves in A approaching y,+ plus one. If
$[g~l (s(P))] > 9 then, using the order of contact theorem, there are at least 9 curves
in A starting at P e y*. Hence, we deduce that M — A has at least ten connected
components.

Taking into account that d(M) — A has at most four connected components, there
are six components whose boundary is included in A.

Moreover, the order of contact theorem implies that at least five components of
M — A lie above S, and another five below.

Therefore, we deduce the existence of a domain $2 e M — d(M) verifying

• 9(fi) C A;
• X (Q) lies in the closed halfspace J f with boundary E, which contains planes

parallel to E and disjoint to <f (O,

which is contrary to Claim 3.13. This proves Claim 3.14.
At this point we can now prove the following:

CLAIM 3.15. The following limits exist:

Pey+ Pey-

Consider I e [if, l\, l\, l^}, and let a : [0, +oo[->- M be the parametrization by
arc length of X~x{t).

We are trying to prove that limj_,.+0O/ (s) exists, where / = g o a.
First, observe that the normal vectors along I lie in a meridian of §2. Then,

/ ([0, +oo[) c w, where w is a suitable straight line in C. Suppose this limit does not
exist. Then there are two sequences {/?„} and {qn} in [0, +oo[ such that:

• limn pn = limn qn = +oo,
• Pn < qn, for every n € N,
• limn/(pn) = a, \\mnf(qn) = b,a,b evt,a^b.

Let c be a point in w between a and b. As limn f(pn) =a and limn / (qn) = b, there
exists n0 € H such that

c, -rln/(K,^[)^0, for«>/i0,

which is contrary to Claim 3.14.

Taking into account Theorem 3.8 and the Uniformization Theorem, we deduce that
M is conformally equivalent to a closed disk minus two boundary points (or a sector
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[z € C* : arg(z) e [ti,t2]}), where the biholomorphism extends piecewise analytically
to the boundary. At this point, we need the following technical result by Lindelof:
Let tx < t2, t2-ti< 2n, S = [re" : r > Q,tx < t < t2) andf : S ->• C be bounded
and continuous, holomorphic in S. Suppose that for some a, b 6 Cwe have

lim / (re'") = a, lim / (re"2) = b.

Then a = b and lim^oo / (z) = a.
We refer the reader to [2, pages 132-133].
This theorem and Claim 3.15 imply that g extends continuously to the ends.
Finally, note that 0 > 0 implies that g(Y,+) and g(y~) lie in different great circles

of §2. Thus, g(y?) ng(y~) C {0, oo} and so the limit normal vectors at the ends
must be vertical, that is the limit tangent plane at £, coincides with nh i = 1,2. This
concludes the proof. •

As a consequence of Theorem 3.12, one has the following corollary.

COROLLARY 3.16. For t e 38 large enough X(D't) is a graph over the plane nit

PROOF. Take t e SB large enough and such that g(D\) does not intersect the equator
{Z € C/|z| = 1}.

Label p3 as the orthogonal projection from X(M) to the plane x3 = 0. Taking into
account that X(M) C<^(F) and the definition of D't, it is not hard to see that p-i\X(D>,) is
a local diffeomorphism onto Q'r where £2J is the unbounded convex domain in the plane
*3 = 0 limited by p3(*+), fctfr) and p3(a/) = {(*,, x2, x3) e R3/JC3 = 0, x2 = t}.

As X is proper, then the same occur for the map p3lx(o;)- So, p3lx(D;> is a covering
map, and taking into account that fij is simply connected we deduce that p3lx(o;) is
one-to-one. This concludes the proof. D

3.2. The symmetries of the surface. The aim of this subsection is to show that
X(M) possesses the same planes of symmetry that r . So, we generalize the ideas used
by Schoen in [ 16] to our particular case of non-compact piecewise analytic boundary.

3.2.1. The vertical symmetry. In this paragraph with the frame fixed at the
beginning of Section 3, we prove that X (Af) is invariant under symmetry with respect
to the plane ̂ i = 0.

We need to introduce some notation. For ( > 0 w e define

1. 8, = X(M)n{Xl=t),
2. M+(t) = {(*,,X2,JC3) € X(M)/Xl > t),
3. M_(t) = {(xux2,x3)eX(M)/xl<t},
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4. M*(r) = {(2t - xux2,x3)/(xi,x2,xi) € M+(t)}, symmetric to M+(t) with
respect to the plane {xt = t},

5. M*(f) = {(2t - xux2,xi)/(xux2,x3) e M_(f)}, symmetric to M_(f) with
respect to the plane [xt = /}.

In general, given a set A c R3, we denote by A+(r) (A_(f)) the elements of A on
and above (on and below) {JCI = t], and A+(t) (A* (0) its reflection about the plane
{*, = t).

Let p, : I 3 -> {JCI = 0} denote the orthogonal projection.
If A, B C R3, we say that A > B provided for every x e {xl = 0} for which

pr ' (M) n A ^ 0 and pTl({x}) D B ^ 0, we have

Infimum [^ (p7'({x}) D A)] > Supremum [x, (p71({jc» D B)].

THEOREM 3.17. The surface X(M) is symmetric with respect to the plane {JCJ =0},
and M+(0) and M_(0) are graphs over {jct = 0}.

PROOF. For any t > 0, define

A, = M;wnM.(0.

CLAIM 3.18. Foranv f > 0, A, D (r ; ( / ) U T_(0) = 8, D T.

Since X (M) C A H and / > 0, then T_(0 n M*+{t) = S, n T.
Furthermore, by the interior maximum principle, and using once again that X (M) c

) , no points of X (Af) — F lie on the boundary of £(F). So, it is not hard to deduce

;(onM_(o = a,nr.
Taking these facts into account, we deduce easily that A, — S, cannot intersect

F_(r) U F* (0, which proves the claim.
Define now

Jx = {t € ] 0, +oo[ /M+(t) is a graph over the {x2, x3)-plane and M* (/) > Af_ (0).

We want to prove that Jx = ] 0, +oo[. To do this, we need several results.
Let s0 > 0,50 e 38, and consider (Definition 3.2) D'^ as the closure of the connected

component of M — aJ0 containing £,, i = 1, 2, where CTJO = X~ ' (^ (^ ) H [x2 = s0}).
If 50 > 0 is large enough, then, by Theorem 3.12 and Corollary 3.16, XiD'^) is a

graph over the (*i, ;c2)-plane, f = 1,2, and

(9) x3\XiDig) > 0, Ar3lx(D )̂ < 0.

See Corollary 3.16 for details. For simplicity label £>' = D^ - o'o, i = 1,2.

CLAIM 3.19. / /X-'(A( - 5,) c f i ' U D2, then A, = 8,.
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Suppose that A, — 8, ^ 0. Since A, is locally the intersection of distinct mini-
mal surfaces, it follows that A, is a one-dimensional real analytic variety, properly
immersed in R3.

On the other hand, as X(D') are graphs over the plane ;t3 = 0 and the projection
of X(D') onto this plane is a convex domain, then X~l(8,) n D' consists of a simple
arc diverging to Eh i = 1,2. Taking into account Claim 3.18, we have

X"'(A, - 8,)) c ((D1 U D2) - d(M)) .

Moreover, since any curve in A, — 8, is properly immersed in R3, then no such curve
diverges to an interior point in a^, i = 1, 2.

On the other hand, the definition of D' and (9) yield that

;r'(A,) n D' = x~l (x(D%(t) nx(D')-).

So, AT"1 (A, - 8,) n D 7 0 implies

X~'(A, - 8,) n £>' = X~l (X(D%(t) n X (£>')-) - 3(M) ^ 0.

Therefore, it is not hard to see that there exist two simply connected closed regions
Sl{ C X(D')_(O and J22 C X (£>')+(0 bounded by the same curve in A, (eventually
£2, could be unbounded, i = 1, 2).

Summarizing, Q{ and Q2 are bounded graphs over its common orthogonal projec-
tion Qo onto the (x{, x2)-plane, and 3(^20 = 3(^2)-

If £20 is compact, then the interior maximum principle gives a contradiction.
If Qo is unbounded, then observe that the functions on Qo which determine the

graphs Qi and ft2 are asymptotic to the same finite value at infinity. The maximum
principle at infinity for minimal graphs leads to a contradiction once again. This
proves the claim.

CLAIM 3.20. There exists t' > 0 large enough such that [t', +oo[c J^.

LeU' > 0 such that X" ' (M + (0 ) C DlUD2, and observe that X~l( A,) c DlUD2,
for t > t'. Hence from Claim 3.19, A, = S,,t> t'.

It is clear that X~l(M+(t)) consists of two simply connected components, one of
them in D1 and the other one in D2, for t > t', and thus M+(t) is the union of two
disjoint graphs G\_(t) and G2

+(t) over the same simply connected domain G+(t) in
the (*!, j:2)-plane.

From (9), we have that p,(G^(/')) n pi(<%(*')) = 0-
Let us see that M+(t) is a graph over the plane {x} = t],t > f'.
First, observe that p,|J r is injective, t > t'. Indeed, note that 8, C {*i = t\ is a

graph over a connected piece of the straight line xs — t = x3 = 0, and so the function
x2 leach component of s, is an increasing function.
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FIGURE 9. The set p, (M+(t)).

Moreover, a similar argument gives that the set a's f~l M+(t') is a connected curve,
for any s > s0 (recall that, from Definition 3.2, D' = D'^—a^ and D'^ is the closure
of the connected component of M — a^ containing to Eh i = 1, 2.)

On the other hand, the functions xj\asnM+^) are monotone, for s > s0. Otherwise,
there would exist some points in M+(f) whose normal vector lie in {*i = 0) D S2.
Thus, we could take t > t' in such a way that 8, contains a point with normal vector
in {*] = 0} n §2. Hence, from the order of contact theorem and taking into account
that X(D') are graphs over the plane JC3 = 0, i = 1,2, we deduce that A, — 8, ^ 0,
which is absurd.

This proves that M+(t') is a graph over the plane {jct = t'}, and so the same holds
for M+(t), t > f.

Taking into account that A, = 8,, t > f' and X(M) C <^(F), we deduce that
M*+(t) > M_(t), t > f. The claim holds.

It is obvious that J\ is closed in [0, +oo[.
Next step demonstrates that:

CLAIM 3.21. The minimum of\f\ is 0.

First note that X(M) c A H implies that {0, oo, i, - /} n g(d(M)) = 0, and so

(10) N(8(M)) n {Xl = 0} = 0.

Assume that /b = Minimum(^) > 0.
Let jrbethecompactsetX(M-(D'UD2)). Observe that JT = X~X{J^J, where

J^o is the closed half spacer < s0. In particular, M*+(t)^J(r_{t) = Jf;(f)nM.(f) =
A, n Jif, for t > 0.

Taking into account that t0 € J\, we deduce that JP+ik) is a graph over the

In particular, no point in Jf+(to) — (8^ U T) has normal vector included in {xi = 0).
From equation (10) we obtain also that N(Jf+ (to) D F) n {*, = 0} = 0. Furthermore,
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the maximum principle at the boundary yields that no point in Sh nj^.((b) has normal
vector lying in [xi — 0}. So, we conclude that

N(je+(to))n{xi=O} = 0.

Since Jt+(to) is compact, there exists e0 > 0 small enough such that to — e0 > 0,
N(J#+(t)) D {*i = 0} = 0 and Jt+(t) is a graph over the (x2,X3)-plane , for t e
[to - €o, t0].

Otherwise, we could find sequences [tn] in DS+, and [Pn], {(?„} in X, satisfy-
ing:

• M / k,
• Pn, Qn € X+(tn), Pn # Qn andp,(Pn) = p ^ Q J , for every n € N.
. {Pn} -> P0 € J^Ob), {Qn} ^ GO 6 J^Ob).

Since J^.(/b) is a graph over {x( = 0}, the cases Po ± Qo and {Po, <2o) n (J^.(<b) -
5to) ^ 0 are impossible. Therefore, we would deduce that Po = Qo € "V and thus,
N(X-l(P0)) e {x, = 0}. This is absurd.

In particular, A , n J f c ~#l(«b — *o)> for t > /b — e0-
On the other hand, A^ = 5^. If not, Claim 3.18 implies that any point lying in

A,;, — 8^ is an interior point of contact between M+(fo) andM_(Jb)- Using the interior
maximum principle, we obtain Ml(to) = M_(*o). This is absurd because «b > 0 and
thus F is not symmetric with respect to {jti = t0}.

Therefore, by using that Ato = 8^ and that J^ is compact, we deduce the existence
oft, e ] 0, €0] such that A, n X = 8, n X, t > to - ex.

Thus, A , - 8, CX(D1UD2), and from Claim 3.19 we get A, = <5,,forf > /b-f i -
This implies that M+(t) is a graph over {xi = 0}, Wt > to — €{. Otherwise,

M+(to — €i) — Jt would not be a graph over {xi = 0 } . Thus, we could find two
different points in M+(to — e{) — X with the same orthogonal projection on [xl = 0}.
From the choice of s0, both points would lie in the same X(D'), i € {1,2}. Hence,
there would exists t > to — €{ such that 8, n X (D1 U D2) contains points whose normal
vector lie in [xt = 0}. So, by the order of contact theorem and using that X (Dl) and
X (D2) are graphs over the plane x3 = 0, we would deduce that A, — 5, ^ 0, which is
obviously absurd.

As X(M) C <f (F), then a continuity argument gives M*+{t) > M_(0, t > to - e,,
we deduce that to — e i € J^i, which contradicts that fo is a minimum. This proves the
claim.

The last claim yields that M*(0) > M_(0). A symmetric argument gives M*(0) >
M+(0), and so the theorem holds. •

3.2.2. The horizontal symmetry. Once again, we need to introduce some notation.
For / > —1/2 we now define

(1) 8<
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(2) M+(t) = {(x,,Jt2,je3) e X(Af)/x3 > t),

(3) M_(0 = { (X, , JC 2 ,* 3 ) € X(M)/x3 < t),

(4) M*+(t) = {(xux2,2t-x3)/(.xux2,x3) e Af+(r)},
(5) M ! ( 0 = {(Jc,,x2,2* -jc3)/(jc,,jc2,je3) € Af _(*)}•

Following the same notation as in Paragraph 3.2.1, given a set A c R3, we denote by
A+(t) (A_(f)) the elements of A on and above (below) [x3 = t), and A*+(t) (Al(r))
its reflection about the plane {*3 = /}.

Let p3 : R
3 —*• {x3 = 0} denote the orthogonal projection.

If A, B c R\ we say that A > B provided for every x e I 3 for which p3\{x\) n
A ^ 0 and pj1 ({x}) n B ^ 0, we have

Infimum[x3 (p^l({x}) n A)] > Supremum[x3 (pj"^^}) n B)].

For the sake of simplicity and in the particular case A = Af^(f) — (£j U£Q ) and B =
Af_(0 - (€J U€o) (respectively A = Af+(0 - (tf U^o) and B = Af!(/) - (£+ U£«)),
we write that M*(f) >: A/_(/) (respectively M+(t) > M*(t)) instead of A > B,
t e [0,1/2] (respectively t e [-1/2,0]).

LEMMA 3.22. The set S, is compact, and consists of a simple arc, for every t €
] — 1/2, l/2[. In particular, the Gauss map g ofX omits the points 0 and oo.

PROOF. From Theorem 3.12, we infer that S, is compact. Moreover, 8, OF has two
points, one of them in 1% and the other one in 1$. In case £j = 1$, the only point in
S, n r is, in a natural way, double.

Note that X'1 (8,) is the nodal set of the harmonic function x3 — t. Then, X~l (8,)
is an one-dimensional proper real analytic sub variety of M.

Using that [x3 = t] and X(M) are transverse along £% U £Q we deduce that one,
and only one, curve lying in X~\8,), —1/2 < t < 1/2, approaches each one of the
two points in 8, D 3(M).

On the other hand, taking into account that X~'(<S,) is compact and the interior
maximum principle, we deduce there are no regions in M bounded by curves in
X'HS,).

Therefore, elementary topological arguments give that X~l (8,) is a regular simple
curve in M.

Finally, the order of contact theorem gives that there are no points in M with vertical
normal vector. •

Define A H o = Us = 0} D S(O, and observe that p3(X (Af)) C

LEMMA 3.23. The mapp3\X(M} : X(M) - • S(O0 is not surjective.
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FIGURE 10. The curve S,.

Moreover, there exists € > 0 such that

PaCX-'G*, = 0} D (X(M) - T))) = {(0, t, 0)/t € [e, +oo[}.

PROOF. Consider the plane {x [ = 0} and denote a0 = X~l({xl = 0}n(X(M)-O).
Let us see that a0 consists of a single regular analytic curve diverging to the two ends
ofM.

We know that a0 is a proper one dimensional real analytic subvariety of M — 3 (M).
Furthermore, from the order of contact theorem, the singularities of a0 occur at the
points with normal vector orthogonal to {xx = 0 } , where a finite set of curves of a0

meet at equal angles.
From Corollary 3.16, only one curve of a0 approaches the end £,, i = 1,2.
Note also that a0 does not contain any curves approaching a point in 3(M). In case

d > 0, that is, £Q ^ 1$, it is obvious. Suppose that £Q = t^. First, observe that
clearly no point in y,+ U y,~, i = 1, 2, is a accumulation point of a0- So, we have to
prove only that there are no accumulation points of a0 in y0

+ U yo~.
To do this, consider Sv : M -> M the antiholomorphic involution induced by the

symmetry of X(M) with respect to the plane {jq = 0} (see Theorem 3.17). The
normal vector of any fixed point of Sv lies in {x{ = 0}. From the order of contact
theorem and taking into account that X(M) c ^ ( r ) , it is not hard to prove that the
normal vector of any point in y0

+ U yo~ does not lie in {xt =0} . In particular, no point
of y0

+ U Yo is fixed by Sv. Therefore, if a curve a c a0 approaches a point lying in
y0

+ U YQ, no point of a is fixed by Sv. Hence, the curves a and Sv(a) are distinct and
mapped under X on the same curve in IR3. This contradicts that X\M-^M) is injective.

Summarizing, any divergent curve in a0 approaches only either Ex or E2 and
only one such curve diverges to the ends. Since there are no compact domains in
M — 3 (M) bounded by curves in ot0 (use the interior maximum principle), we deduce
that a0 consists of a single regular arc in M — d(M) joining E\ and E2. Furthermore,
c*o is the fixed point set of Sv.
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To finish the proof, observe that p3 (X (a0)) is a closed connected piece of the *2-axis.
Since the interior maximum principle implies X(M - 3(M)) C (<f (F) - d(£(F)), it
is not hard to prove that

0}

is not onto. This concludes the proof. •

Our purpose is to prove the following result.

THEOREM 3.24. The surface X (Af ) is symmetric with respect to the plane {x3 = 0}.
Furthermore, M+(0) - (€j U i^) and M_(0) - ( # U l^) are grapfa over {x3 = 0}.

PROOF. Let # = {P € M/|g(P)| = 1}, and observe that # is a one dimensional
real analytic variety containing y0

+ U yo~. This variety consists of the critical points of
the projection on the plane x3 = 0.

We label (£ — y0
+ n y,+ and QJ = yo~

 n ft". ' = 1.2- Taking into account that
X (M) c <^(O and the order of contact theorem, gf a n ^ Gf ^ e n o t branch points of
g,i = 1,2.

Then, y^ (yo~) is the only curve of # which approaches gj1" (C~);'• = 1.2.
On the other hand, using once again that X(M) C ^(F) and the order of contact

theorem, we conclude that \g(P)\ ^ 1, for P € y,+ U y~, i = 1, 2.
These facts and Theorem 3.12 imply the existence of t' > 0 satisfying M+(f') n

X (S?) = M+(r') D (€Q U £Q ). Hence, using a symmetric argument, we deduce that <S
is compact.

Thus, if t' is taken as above, then p^M^o-u+uq) has an injective differential at any
point.

CLAIM 3.25. Lett' £] 0, 1/2] such that

77ien M+(r') — (£Q U ^ ) iy a ^rap/i over rte (xt, x2)-plane.

The claim is trivial for t' = 1/2. Suppose /' < 1/2.
First note that p3 is injective along (I* U l\ U 6,-) - (£j U l^)).
Define u = p3(S,0 and ^ ( r ) 0 = p3(<^(r)). As v - (££ U ^ ) has no self-

intersections, then <^(F)0 — L> has two connected components T! and T2. Up to
relabeling, we suppose that T] is the bounded component, and so T2 is the unbounded
one. See Figure 11.

SinceX(3(M)) = r ,X(M-3(M))n3(^ ( r ) ) = 0,X(M) c £(V) and(Af,.(O-
(£Q U £Q)) fl X(^) = 0 , then p3U+(/')-(«Ju^us,.) is a local diffeomorphism onto its
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FIGURE 11. <^(r)o — v has two connected components Ti and T2.

image in AHo- Hence, T = p3(M+(t') - (€j U €„ U 8,.)) is an open subset of
<^(r)0. Moreover, pi\x(M) is proper, and so T n T, is a closed subset of T,, i = 1, 2.
Therefore, either T, c T or T n T, = 0,1 = 1, 2.

From Theorem 3.17 and Lemma 3.23, T D Tj = 0, and so Y2 C T, which easily
implies T = T2.

All these arguments give easily that p3U+(,')-(tfu<o) is a proper local homeomor-
phism onto T U u , that is p3U+(r')-(#u<o) is a covering map.

As T U u is simply connected, then p3U+(()-«+u£o) is a homeomorphism, that is,
M+(f') - (£Q U £Q ) is a graph over {x3 = 0}. This proves the claim.

Define now the set

S2 = {t e [0, l/2[ /M+(0 - {(+ U £~) is a graph over the (x,, *2)-plane

CLAIM 3.26. J2 is not empty.

Letf'besatisfying(M+(/')-(^ou^o))nx(^) = 0, and taker € [(2f+l)/4, l/2[.
From Claim 3.25, M^it) is a graph over the plane x3 = 0, and so it is obvious that
M+(0 - ^ - ( 0 - Thus, t e J^, as we want to prove.

For any / € ]0, l/2[, label A, = M*+{t) n M_(0- Observe that Theorem 3.12
implies that no curve in A, diverges to £,-, i = 1,2, that is, A, is compact, t € ] 0, l/2[.

Furthermore, for each t € ] 0, l/2[, we write P[, P2' for the only two points in the
subset X"1 (5, n (1% U £„)). With this notation we can assert:

CLAIM 3.27. Ift zJ1,t> 0, then P{ is not a branch point ofg, i = 1,2.
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Consider t e S2, t > 0. As M%{t) > M_(0, (X(M) - T) c
and / > 0, then A, c 8, U £j U £„. Otherwise, there would be an interior contact
point between M+(f) and M_ (t), and so, by the interior maximum principle, M\{t) =
A/_(r), which is absurd.

If P\ is a branch point of g, then the order of contact theorem implies that A,
contains at least three curves which intersect each other at this point and forming
equal angles. On the other hand, Lemma 3.22 implies that X(M) and [x3 = t} are
transverse.

So, at least one of these curves in A, approaching P/ is not contained in 8, L)IQ Ul jj",
which is absurd. This contradiction proves the claim.

Clearly S2 is a closed subset of [0, l/2[. Moreover,

CLAIM 3.28. The minimum of ' J2 is 0.

Let t0 € S2 and suppose that to > 0. Since M+(to) — (IQ U Ô )1S a graph over the
plane {JC3 = 0} and Ml(k) > Af_Ob), then Af+Ob) n X(&) C C U l^. Otherwise,
8^ — {X (P*), X (P2

k>)} would contain a point of X (&), and so the maximum principle
at the boundary would imply that Af£(/b) = M_(/b), which is absurd.

Hence, by Claim 3.27, the points P/6 are not ramification points of g. Using
that X (&) is compact, there exists e > 0 small enough such that fc - e > 0 and
M+(to-e)r\X(&) C (iJU^"). From Claim 3.25, M + ( / b - e ) - ( C u ^ o ) is a graph
over {x3 = 0}.

Therefore,

(11) A , - « 0
+ U f 0 - U « , ) c M _ ( ) b - f ) , V r e f o - e , l / 2 [ .

We are going to prove that A, c (8, Ui^U 1^), t e [to - e, f0]-
As we have said before, r0 € J2 yields A<, - ( ^ U1% U £Q ) = 0-
Let t' € [r0 - e, to[ and write ^ = Infimumf/ € [r', /0]/A, - (8, U £j U ^ ) = 0}.

Notice that A,, — (<$,, U £^ U £„) = 0. Otherwise, and taking into account that
(X(M) - T) c (^(r) - 3 ( ^ ( 0 ) , we could see that M ^ ) and M_(/,) would have
an interior point of contact in M_ (to — €). Thus, the interior maximum principle would
imply Ml(tx) = M^(t{), which is a contradiction (recall that tt > 0).

In particular, the order of contact theorem gives that M+(tx) and M-(tt) are trans-
verse along A,, - {X (P,"), X (P2'')} C 5,, U€j U ^ , and {X (P,"), X (P2'')} are points of
ordinary contact. In case IQ = ô > m i s means that the four sheets of M_ (fi) U Af£ (/])
are transverse at any point of £jn A,, = t^ DA,,, except at the point X(P/') = X(P2),
where just two couples of sheets are tangent.

If?! > f', then the definition of tt and(ll)imply the existence of sequences {/n}n€N

in]f, f,[, {pn)nzH inM+(/n)-(Sr, U€+U€Q) and{?n}neN in M_(/b-O - ( ^ U€jU£o)
such that: limn_0Orn = r, andqn = p*(tn). Without loss of generality, we can suppose
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that [pn}neN and [qn}neN converge to p 0 e M+(tx) and q0 e M_(to - e). Since
q0 = PQOI), we have q0 e A,, ("I Af_0b — e). Therefore, and taking into account that
Jo - € < tu we get q0 e ( ( ^ U IQ) - {X(P^), X(P2")}). This obviously contradicts
that Ml(tt) and M_(^) are transverse at q0.

Hence, we deduce that r, = f', and since t' is an arbitrary point of [to — e, to[, we
have

A, c(S,u£+u€-) , re ] /o-e, /b ] .

Since Ml(to) > M_0b) and X(M) c ^ ( F ) , a continuity argument gives M*(f) >:
M_(t), t € [»b — e, to]- This proves that [/b — e, r0] C ^2» and so the claim.

Last claim implies that M+(0) - (£j U l^) is a graph over {JC3 = 0} and M* (0) >;
M_(0). If we repeat symmetrically the same arguments from below, we get that
M_(0) - (£% U £Q ) is a graph over {x3 = 0} and Ml(0) >z M+(0). This concludes the
proof. •

This theorem has two interesting consequences.

COROLLARY 3.29. There are only two branch points R£ € y+ and Rg € y~
of g along Yo U Yo- Furthermore, g has multiplicity two at these points and

PROOF. Theorem 3.24 implies that <S = X'^SQ) U y0
+ U yo~. If we label R£ =

Yo n X"1 (<50) and RQ = yo~ D X~l(S0), then elementary properties of meromorphic
functions give that RQ and RQ are branch points of g with multiplicity two. •

COROLLARY 3.30. The limit normal vectors at the ends are opposite.

In what follows and without loss of generality, we assume that

(12) g(Et) = 0, g(E2) = oo.

3.3. The geometrical uniqueness In this subsection, we determine the conformal
structure and Weierstrass data associated to the minimal immersion X : M -*• K3

described at the beginning of this section.
Define

r+ = ike-0"2 :ke]0, 1]}, r~ = [-ke9i/2 : A. e ]0, 1]},

r+ = [ke-eil2 : X e [1, +oo[}, r~ = {-keei/2 : k € [1, +oo[}.

Recall that g{Ex) = 0 = (l/g)(E2), and as before, Q+ = Yo
+ n y / , Qj = Yo n y / ,

y = 1,2. Since X(M) c ^ (F) , it is not hard to see that g(P) ^ g(Qj~) (respectively
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FIGURE 12. The region A and the curve g(d(M)).

g(P) * g(<2~)), for P e (Yj
+ ~ (6/1) (for P e (yf - {QJ})). Then, it is now clear

that g(Yj
+) = r+, g(yf) = r~,j = 1 , 2 .

On the other hand, from Corollary 3.29, we have that g\iQ+,R+) and g)[Q-,R-) are
injective, j = 1,2, and Theorem 3.24 yields g(y^) = g([Qf, RQ]) and g(yo"~) =
g{[Qj,Ro])J = 1,2. Note that g(e+) = e^'2 and g(Qj) = eie'2. Moreover,
X(M) C ^ ( r ) implies that:

. g(R+) = «-**, g(/?0-) = -«*'", where <b € ] - or/2,0/2[.
• ^(/») ^ ±i , for P e y0

+ U y0".

Then it is easy to conclude that g(y0
+) = rQ a nd (̂Ko") = rô > where r£ and rj" are

given as

r0
+ = {e" : t e [-0/2, -to]}, 4 = {-eu : t € [«b,

Summarizing, we deduce that g(3(M)) = U^=o(r/ u rH-
Let Adenote the connected component of C—(g(3(M))U{0}) containing! = V—T.

Note that (r0
+ U r~) c 3(A). See Figure 12.

The following lemma is a consequence of the information included in Subsection 3.1
and Subsection 3.2.

LEMMA 3.31. The map g : M - • C satisfies:

1. g(M — 3(M)) = A and g\M-a{M) '• M — 3(M) -*• A is a biholomorphism.
2- g(y}

+) = rf, g(yf) = rj, j = 1,2. Furthermore, g\y+, g\yr are injective, 1
7=1 ,2 .

3-
j = 1,2.

= ^ and = ro~ Moreover, injective,
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PROOF. TO see that g(M - d(M)) = A, let us observe that g(M - 3(M)) is a
connected component of C — (g(d(M)) U {0}). From Lemma 3.22, it is obvious that
g(M — 3(M)) is an open subset of C* (holomorphic non constant functions are open).
Moreover, as M = M U {£,, E2] is compact, then Theorem 3.12 gives that g(M) is a
closed subset of C. In particular, the set W = g(M -d(M))n(C-(g(d(M))U[0}) -
g(M)D(C-(g(d(M))U{0}) is aclosed subset of C-(g(3(M))U{0}). Therefore, either
W = €- (g(d(M)) U {0}) or W is a connected component of C - (g(d(M)) U {0}).
Since there are points co € g(M — d(M)) such that -co £ g(M — 3(M)) (see
Lemma 3.5), then W is a connected component of C — (g(d(M)) U {0}). Taking
into account that the points in r£, ro~ lie in the boundary of W, we easily deduce that
W = A. So, g(M - 3(M)) = A.

To finish the proof of 1, define y = d(M). Since M is conformally a closed disk
with piecewise analytic boundary (see Theorem 3.8), then y is a piecewise analytic
curve homeomorphic to §'. Moreover, as g\M has no poles and g extends continuously
to M, then we know that for any co 6 A = g(M — 3(M)),

g-

Thus, if we define / : A -> 1 by / (co) = JJ(g '(&>))> the function / is continuous
on A, and so it is constant. Since there exists <w 6 A such that f (co) = 1 (see
Lemma 3.5), we deduce that/ = 1, that is, ^ : M — d(M) —> A is a biholomorphism,
which proves 1.

To prove 2, use 1 to check that g\y+ has no branch points, and the same occurs
for /,", y2

+ and y{. The remaining of 2, and 3 were proved at the beginning of this
subsection. •

At this point we are able to prove the principal result of this section.

THEOREM 3.32. The immersion X : M -> K3 is, up to a horizontal translation,
one of the minimal surfaces X9r described in (7), for a suitable r e ] — 1, re\.

In particular, £Q = IQ if and only ifr = re.

PROOF. Let M' denote the Riemann surface obtained from M by successive Schwarz
reflections about y;

+ and y~,j = 1 , 2 . Note that d(M') ^ 0.
Let X' : M' -» K3 be the corresponding minimal immersion, and label g' as

its Gauss map. Obviously, g'\M = g. Observe that X'(M') is invariant under the
translation T defined as the composition of the 180 degrees rotation about 1+ and
1%. The translation T induces a holomorphic transformation without fixed points T :
M' ->• M'. We denote Mo = M'/{T') and p0 : M' - • Mo as the natural projection.
Write Xo : Mo -> R3/(T) as the minimal immersion satisfying Xo o p0 = X'. It is
clear that 3 (Mo) # 0 .
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Clearly, po\M : M —> po(M) is a biholomorphism. In what follows, we identify
M and po(M), and so, we consider M as a subset of Mo.

The symmetries of X (M) deduced in Subsection 3.2 together with the 180 degrees
rotations about the horizontal lines, generate a group of symmetries of X'(M') which
contains a rotation about a straight line parallel to the x3-axis by angle 0, followed by
a symmetry with respect the plane x3 = 1/2. We call this symmetry J .

We denote by Sv and Sh the antiholomorphic involutions on Mo induced by the
symmetries with respect to the planes xx = 0 and x^ = 0, respectively. Write L+ and
L~ for the antiholomorphic involutions on Mo induced by the 180 degrees rotations
about the straight lines containing 1% and l^, respectively.

Note that J is the composition of the 180 degrees rotation about the straight line
containing l\ and the symmetry with respect to the plane xx — 0, and so it induces on
Mo the holomorphic transformation Jo = Sv o L+.

We denote by g0 • Mo —> C the Gauss map of Xo, and observe that, up to natural
identifications, go\M = g-

As M is simply connected, log(#) has a well defined branch on M, and so the same
occurs for g", where

lit
(13) n = .

n + 0
We choose the branch of log(g) in such a way that arg(log(g(P))) = 0, whenever
g(P) € R+. This choice is possible as consequence of Lemma 3.31. Furthermore,
if P e d(M) - (y0

+ U ft"), then taking into account that g0 o Jo = e2jri/Bgo and
Lemma 3.31, we get gn(P) = gn(MP))-

On the other hand, it is clear that Mo = UJli Jo (^)» and recall that go\M = g. As
above, we can define suitable branches hj of (go\jj(M))",j 6 N, in such a way that

• ho = g" is the above fixed branch .
. If P 6 4 (3(A/) - (Y0

+ U K D ) , then /,, (P) = hj (70(P)).
. If P € /j{ (M) n ^ + 1 (M) , then hj (P) = ^+,(P) .

We easily deduce that gj has a well defined branch on Mo satisfying g£o Jo = g£ and

Hence, if we write f : Mo —> M0/{J0} for the natural projection, then there exists
a holomorphic transformation f0 : M0/(J0) -> C*, satisfying g£ =fo° ?•

Taking into account our choice of the branches, we have:

• glivt u y2
+) = go"(yf u Yi) = {-i*""2/*. > 0}.

• So I[Q;.«0
+)

 a n d «o l[O;.*o i a r e i nJe c t i v e ' 7 = 1 , 2 . Furthermore, g^([ g t , /?+]) =
/' and gfflQj, Ro 1) = /".; = 1 , 2 , where

/' = {«- '7re[«jr /2-f f , -n ib]} ,

I" = [e-'/t € [-2ar + nn + nfe, n^/2 - jr]}.
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• gn
Q(Mo - d(M0)) = /o((Mo/{7o> - d(M0/{J0))) = C*-l, where / = /' U /".

Furthermore, from Lemma 3.31, it is not hard to prove that

: Mo/{Jo) ~ 3(Afo/{Jro» ~> C* - I

is a biholomorphism.
Let 5? be the Riemann surface

& = {(y, v) € C x C/u2 = (y - e-nk>i)(y - «-<*+»>')}.

The set y~l(C* — I) has two connected components in 5?, and both of them are
biholomorphic to C* — /. We label the closure of one of these connected components
byA0.

From above arguments, and in a natural way, we can define a map

/o : Mo/'{Jo) -+ Ao

such that y o / 0 = f0. It is not hard to see that f0 is a biholomorphism. In what
follows and for simplicity, we put f0 = fo-

Note that/o(3(Mo/<7o))) = 9(A0) = /+ U l~, where /+ and l~ are the two lifts of I

It is clear that

£ = /o o K : Mo -*• Ao,

is an unbranched cyclic covering.
We want to describe in a more precise way the Riemann surface Mo and the

Weierstrass data of Xo. This step is fundamental in order to obtain a model of the
complex structure of M and Weierstrass data of X.

To do this, we are going to determine the covering §.
Remember that Jo is the conformal transformation on Mo induced by the coun-

terclockwise rotation about a straight line parallel to the jc3-axis by an angle of 0
followed by a symmetry with respect to the plane x3 = 1/2 on X'(M'). Let cx and
c2 be counterclockwise circuits in Ao around zero and z~l(l), respectively, and c),
i = 1,2, their lifts to Mo. The end points of cj will differ by a deck transformation of
the form Jo

ki, it, el, i = 1,2. The choice of Jo implies that ki = I and k2 = 0. The
numbers &i and k2 determine the induced map from FI i (Ao) onto 2ord (yo) whose kernel
corresponds to ^(n^Afo)), where ord(/0) is the order of the automorphism JQ (that
is, the number of sheets of the cyclic covering £). As usual, 2 ^ = Z.

Any cyclic covering of Ao is equivalent to £ if the associated representation has the
same kernel.

At this point, we distinguish two cases: ord (70) < oo and ord (Jo) = oo.
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Case 1: ord(J0) < oo. Note that ord(J0) < oo if and only if n e ]1,2[ D Q.
Label m = n/0 = n/(2 — n) and observe that m € [1, +oo[ n Q. Write m = p/q,
where p, q e N and gcd (p, q) = 1. Since Jo is a rotation by angle 9 followed by a
symmetry, then ord (Jo) = 2p.

Let y be the covering Riemann surface of 5? where the function u =. yl^2P) is
well defined and where

p -.y ^ 5?

is the natural projection. This covering is cyclic with group of deck transformations
of order 2p and generated by

If we define *#0 = p~l(A0) and take into account the above arguments, we infer
that the cyclic covering

is conformally equivalent to £.
Up to this biholomorphism, we may assume ^#0 = Mo, Jo = Jo- The functions y

and v, up to composition with the covering map p, are meromorphic functions on Mo.
Taking into account that y = g%, we deduce also that, up to a suitable choice of the
initial condition of the biholomorphism, g0 = up+q.

Summarizing, we have fixed the conformal structure of Mo and the meromorphic
function go-

Label (0°, (ft®, </>j) as the holomorphic 1-forms of the Weierstrass data of Xo. Let
us determine <j>°.

It is clear that JQ(<P®) = —$, and so the meromorphic function / 3 = $/dy
satisfies / 3 o Jo = —/3. This implies that / 3 = uph3, where /i3 is the lift to Mo of a
meromorphic function on Ao.

As X0(3(M0)) consists of the projection to M?/{T) of a set of straight lines in R3

parallel to the *3-axis, it is easy to check that j/3(P)y(P) e R, for any P e d(M0).
Furthermore, the antiholomorphic involution_5* induced by the horizontal symmetry
satisfies g0 o Sh = \/~go~ and S*h(4>°) = -$. This implies that y o Sh = \/y,
voSh = e^^v/y and (yf3) o Sh = Wv

Thus, given P e 3(M0), we^have (y/3)(5»(P)) = -(yf3)(P).
Any connected component / of 3 (Mo) is a homeomorphic copy of /+ U l~, and since

v(Sh(P)) = — v(P), VP € 3(Mo), the above analysis yield that the meromorphic
function vu/3 : Mo ->• C takes the same values on the points of / which are symmetric
with respect to Sh. Furthermore, as Sh has fixed points, u o Sh = l/U, and so the
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function R = yvh3 takes the same values on the points of / which are symmetric with
respect to Sh too.

Summarizing, we may define in a natural way a meromorphic function R(y) in the
y-plane C*, in such a way that

Here, ^ ( y — «-"*') (y — «"<*+}r>') represents the well defined meromorphic function
on Mo given by

Case 2: ord (/0) = 00. In this case, n e [ l , 2 [ - Q .
Let 5? be the covering Riemann surface of 5? where the function u = log(v) is

well defined and label

as the natural projection. The map p is an infinitely many sheeted cyclic covering,
and its group of deck transformations is generated by

Jo((y, u), u) = ((y, w), u + 2ni).

Defining J?o = p~'(Ao) and reasoning as in the 1-st case, we infer that the cyclic
covering

is conformally equivalent to ̂ .
Up to this biholomorphism, we may assume ^#0 = Mo and Jo = Jo. The functions

v and v, up to composition with the covering map p, are meromorphic functions on
Mo. Taking into account that y = g^, we deduce also that, up to a suitable choice of
the initial condition, g0 = e"1".

As in the 1-st case, ( $ \ <f>%, 0°) are the holomorphic 1-forms of the Weierstrass
data of Xo.

It is obvious that JQ(<P°) = ~4>t-> an<l s o m e meromorphic function / 3 = 4>°/dy
satisfies f3 o Jo = —/3. This implies tha t / 3 = eu/2h3, where h3 is the lift to Mo of a
meromorphic function on Ao.

Reasoning as in the 1-st case, we have yo Sh = 1/y, voSh — en*il2vfy,uoSk = —H.
Hence ft3 = R(y)/(,yv), where R(y) is a meromorphic function in the y-plane C*,
and so

f° #
 Riy) f3-.

y/y(y - e-"*')( "(*+>r>0

https://doi.org/10.1017/S1446788700002512 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700002512


400 Francisco J. Lopez and Francisco Martin [39]

where y/y(y — e-nk>')(y — eai*t+")i) is the well-defined function on Mo defined by v e"12.
In both cases, we have concluded that

(14)
y/y(y - e-n*i)(y -

but Mo is different in 1-st and 2-nd cases.
However, and in both cases, the function R(y) : C -> C is constant. Indeed, if we

consider D' = £"'(£)), where D is a small enough neighbourhood of either 0 or oo,
then any connected subset D" of M' whose projection onto Mo is D' can be identified
in a natural way with £)'. Hence, the immersion X0\iy can be identified with X'|D».

Furthermore, Theorem 3.12 yields that the third coordinate function

*;=**( , . « w _ , *

of X' is bounded at D". The Great Picard Theorem implies easily that R(y) has no
essential singularities at 0 and oo, and thus, R (y) is a quotient of polynomial functions.
As g' has no zeroes or poles in M' (see Lemma 3.22), the same holds for g0, and so
we deduce that R(y) = Cyk, C € C*, k € Z. Using once again that X3 is bounded
around any end, we deduce that k = 0, and thus R(y) = C is constant.

Taking into account that Jy o Sh = ifjy, voSh = en"i/2 v/y and S*h ( $ ) = -0?,
it is not hard to check that, up to rigid motions,

C = —e""'/4, fi €
n

Thus, (14) becomes:
D enni/4

( 1 5 ) v = ^o
n, 03° = . </y

n »/y(v — 6~"*°')(y g"«3+jr>')

Consider the Riemann surface {(x, v) € C* x C/v2 = (JC -t-g*0')^ —£"*"')}> and define
A i as the closure of one of the two connected components of x ~' (A) (see Figure 12).

From Lemma 3.31, it is straightforward to check that, for a suitable choice of the
branch of VC* + £*")(•* — e^'), the map

f : M - > A , , F(P) =

is a conformal diffeomorphism. So, A! and the holomorphic 1-forms </>; = (F""1)*
(4>f\M)> j = 1, 2, 3 are Weierstrass data for the immersion X.

Therefore, up to this biholomorphism, we have

g=x, </>3 = ft
n — e-nk>'){x" —
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where the branch of x" is determined by the initial condition 1" = 1.
After the change z = —ix, M becomes the closure of z~l(—iA) in the Riemann

surfaced = {(z, w) e C*xC/io2 = ( z -e^Xz-e -**" 1 )} , whereJC0 = n(to+n/2).
Since fee]- n/2,6/2[, then (13) gives x0 e ] 0, n[.

Up to this change, the Weierstrass data of X : M -> IR3 is given by:

(16)
2r

where r = — COS(JT0)-

These are the Weierstrass data exhibited in Section 2.
As we have assumed that the distance between the planes nx and 7r2 is 1, the value

of B is uniquely determined.
Moreover, Theorem 2.5 says that the immersion X : M -*• R3 is, up to a horizontal

translation, one of the surfaces X9r described in (7), where r e ] — 1, re[. This
concludes the proof. •
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