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THREE COUNTEREXAMPLES CONCERNING <o-CHAIN
COMPLETENESS AND FIXED POINT

PROPERTIES

by J. D. MASHBURN

(Received 25th April 1980)

A partially ordered set, is <o -chain complete if, for every countable chain, or o> -chain,
in P, the least upper bound of C, denoted by sup C, exists. Notice that C could be
empty, so an o> -chain complete partially ordered set has a least element, denoted by 0.

A function / mapping a partially ordered set P into a partially ordered set Q is chain
continuous if for any nonempty chain C in P, which has a supremum, /(supPC) =
supQ/(C). It is o>-chain continuous if for any nonempty countable chain C in P, which
has a supremum, /(supP C) = supQ /(C). A partially ordered set P has the least fixed
point property if every order-preserving function from P to itself has a least fixed point.
It has the fixed point property if every order-preserving function from P to itself has a
fixed point. It has the least fixed point property for o>-chain continuous functions if
every <o -chain continuous function from P to itself has a least fixed point.

In 1955 A. Tarski (13, Thm. 1) and A. C. Davis (2, Thm. 2) characterised complete
lattices as those lattices having the fixed point property. In 1976 G. Markowsky (6,
Thm. 11) characterised the partially ordered sets having the least fixed point property
as those which are chain complete. With the development by Dana Scott (8, 9) of
lattices as models in theoretical computer science and the generalisation of these ideas
by Smyth and Plotkin (12) and M. Wand (14) it has become important to know what
kinds of partially ordered sets have the least fixed point property for a -chain continu-
ous functions. In view of Markowsky's characterisation it was natural for Plotkin to ask
in Pisa in 1978 if o> -chain completeness follows from the least fixed point property for
a) -chain continuous functions. Kolodner has shown in (5) that the converse is true. The
following example shows that the answer to Plotkin's question is no.

Example 1. Let Pl be the partially ordered set defined by the diagram on the next
page. Let C = {cn|neN}, X = {xJneN} and Y = {yn|neN}. Then x=supX and C
has no supremum in P.

Proposition 1. Every <o-chain continuous function from Px to itself has a least fixed
point.

Proof. Let / : Px —» Pt be an o>-chain continuous function with /(0) £ 0. Because
P^ — C is co-chain complete; if f(0)eP1-C, then / has a least fixed point. Assume that
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/(O) e C and that / has no fixed point in C. If it did, it would have a least fixed point in
C, which would be its least fixed point in Px.

Since f(x) = sup f{X), there is an m e N such that for every n^m, /(xn) = /(x). This is
because no infinite chain in the image of / has a supremum.

Assume that f(x) = x. Then for all n g m, / ( y j = x, since /(yn) § / ( x j = x. The point y
is below all of these, so /(y)Sx. Because we have assumed no fixed points in C,
/(y) = x. Now, for all n<m, y<yn, so /(y)^/(yn). Thus /(yn) = x, and x is the only
fixed point of /.

Assume that /(x) ^ x. The /(y) is the least fixed point of /. This is obvious if /(y) = y.
Assume /(y) i= y. Again by the assumption that / has no fixed point in C, f(x) ^ y. Thus
for every n^m, /(yn)Sy. Therefore /(y)e Y. Since y ^ y n for all neN, f(y) = f(yn); so
/(y) is the only fixed point of /.

In (12) Smyth and Plotkin used the fact that this least fixed point will be
sup {/"(()) | ne^J} in order to find the least fixed point of an w-chain continuous
function from an <o -chain complete partially ordered set to itself. However, if the
condition of &> -chain completeness is relaxed, this supremum may not exist, as is
demonstrated by the poset Fx defined above. In Example 2 below this supremum will
always exist even though the partially ordered set is not w-chain-complete.

The following theorem is due to R. E. Smithson (11, Thm. 1.2).

Theorem 1. Let Pbe a partially ordered set with zero such that for every chain C<=P,
the set of upper bounds of C is down-directed. If every order-preserving function F: P^P
has a fixed point, then P is chain complete.

Corollary 1. Let P be a meet-semilattice. P is chain-complete if and only if every
order-preserving function from P to itself has a fixed point.

This is not the situation for <o -chain continuous functions and w -chain completeness
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as is shown by

Example 2. Let fU* = N U {«>} and let Q = (N x NJ U {0} with the following order: for
any p,qeQ, p § q if and only if

(1) p = 0 or
(2) p = 0', k), q = (n, m) and either m = °° and ; S n or / = n and k^m.

Q can be represented by the diagram below. Let X = Mx{oo} and, for every neM,
Xn ={n}xN, Now form the free meet-semilattice 8F(NN) = {A <=MN | A is finite} ordered
by containment, i.e., A S B if and only if A =>B. Let P = QUf(NN), (/, k )SA if and
only if for every (nl5 n2,. . .) e A, fc S n,.

Of course, we set 0 S A for any A e &(NtN) to preserve transitivity. Notice that P is a
partially ordered set, but not a meet-semilattice since for any (j, °°) e Q and A c ^(NN),
(n, 1)S(/,°°) and (n, 1)SA for all neM such that n S / , and these points
(1 ,1) , . . . , (j, 1) are not comparable. Thus we must add one more set of points.

Give N x ̂ (NN) the usual product order and let P2 = P UN x ^(NN). Relate the points
of N x ^(NN) to those of P by the following rules: Let (n, A)eN x&(N")

(1) for all B e W N ) , (n, A ) S B if and only if A =>B;
(2) for all (m,«) e Q, (n, A) S (m, °°) if and only if n S m;
(3) for all (j, fc)e Q, 0", k)S(n, A) if and only if 0', k)S(n,oo) and (/, k)SA.
(4) 0S(n,A)

Clearly for any (n, °°) € Q and A e A (N™), (n, °°)A A = (n, A). Since Q and &{NN) were
ah"eady meet-semilattices, P2 is a meet-semilattice.

Notice that X = {(n, °°) | n eN} is an unbounded o>-chain in P2. In fact, it is the only
incomplete w-chain in P2. Any chain in S!^ti) is finite and hence has a supremum.
Also, since each of the chains X,, = {(n, m) |m£N} where neN is complete
(sup Xn = (n, oo)); all of their subchains will be complete. Let C = {(n,, A,) |/eM} be a
chain in M x^(MN). If {n, \jeN} is finite, then C must be finite. Assume that {n,- | jeN}

oo

is infinite. Then C is bounded only by elements of ^(MN). Let A = H A- Because

At => A2 =>... and all the Aj's are finite, A ^ 0 . Let B £ ̂ (M~) such that B is an upper
bound on C. Then for every jeN, A^B and therefore A ^ B . Thus A=supC. It
follows that an w-chain in P2 is incomplete only if all but a finite number of its elements
are in X.

(1,00)o (2,00) (3,00)

(1,3)

(1,2) (3,2)

(3,3)

(1,1) (3,1)
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Proposition 2. Every to-chain continuous function from P2 to itself has least fixed
point.

Proof. Let f:P2-*P2 be an w-chain continuous function with f(O)j=O. Let F =
{/"(0) | weN}. Assume that F does not have a least upper bound. By the discussion
above, all but a finite number of elements of F are in X. In fact let us assume that
F c X . Thus for all n eN, *„ f~l/(P2) = 0 .

Now, since F is not finite, for every n eN there is an m eN such that fn(0)^(n, °°)<
f + 1 (0 ) . Hence (n,°°)</m+1(O) = /(fn(O))g/"((n,oo)). Because / is w-chain continuous,
there exists (nu n2,.. .)eNN such that for every ;eN, and every fc^^, /((/, fc)) =
/((j,00))- In particular, for every /eN, /((/, ni)) = f((j,^)). But for every /eN, (J, n,)<
{(«!, n 2 , . . .)}. Thus for every /eN, (/,«)</((/,»)) = /((/, n,))S/({(ni, n2,...)}). This is
impossible since X has no upper bound.

If FfX, then f{0)£X. If /(0)€Xn for some n, then *„ D/(P2)^ 0 , but this is not
true for any other Xm. If fiPHX,, for any n eN, then for all n eN, X,, n/(P2) = 0 . In
either case the argument used above shows that F must have a supremum, which is the
least fixed point of /.

A retract from a partially ordered set to some nonempty subset is an w -chain
continuous function which leaves the points of the subset fixed. The subset is then
called a retraction of the partially ordered set. One obvious necessary condition for a
partially ordered set P to have the least fixed point property for co -chain continuous
function is the following.
(R) If C is a nonempty <u-chain in P, U is a set of upper bounds of C, and there is a

retraction from P to P to C U U, then U has a least element.
In particular no unbounded <o -chain is a retraction of P. Both P1 and P2 have this

property.
Markowsky used a similar property for order preserving functions in his characterisa-

tion. But this condition is not sufficient. To see this an equivalent topological condition
is first needed.

Definition. Let P be a partially ordered set. Define «(P) to be the collection of all
1 / c P such that if D is a nonempty countable directed subset of P and supDeU, then

Notice that any such directed set D has a well ordered cofinal <o -chain and so the
directed set in the definition could be replaced by an oi-chain. Also, if Ue K(P) and C
is a non-empty a> -chain in P with a supremum in P, then there is some c 6 C so that
{d e C | c ^ d } c U. If not, then C-U would be cofinal in C and hence be a nonempty
cj -chain with a supremum in U which did not intersect U. From these observations it is
easy to show that K(P) is a topology. In fact it is the finest topology with the property
that if C is a nonempty a>-chain in P and peP then p = sup C if and only if every open
neighborhood of p intersects C. By restricting K(P) to those sets which are also
increasing, a topology very much like the Scott-topology (see (8)) is obtained.

Lemma 1. A subset X of P is closed relative to K(P) if and only if X is closed with
respect to supremums of nonempty co-chains.
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The proof is easy. It follows that for any peP, I p = {q e P | q g p} is both open and
closed in K(P) and hence that K(P) is Hausdorff. In fact the order of P is closed in the
product P x P relative to K(P).

Proposition 3. Let P and Q be partially ordered sets. An order preserving function
f: P—» Q is (o-chain continuous if and only if f is continuous with respect to K(P) and

Proof. Assume that / is w-chain-continuous and let l /e K(Q). Let C<^P be a
nonempty to-chain with supP Ce^iU). Then supQ /(c) = /(supP C) € U so that
/(On U±0. Thus Cnf-\U) = 0 and r\U)e K(P)

Now assume that / is topologically continuous. Let C c P b e a nonempty a>-chain
with a supremum in P and let Ueic(Q) such that /(supPC)eC7. Then supPCe
r1(t/)£K(P) and Cnf-\U)^0. Therefore / ( C ) n i / ^ 0 and so /(supPC) =
supQ/(O.

Corollary 2. Let Pbe a partially order set. An unbounded a-chain C = {c,, | n eN} is
a retraction of P if and only if there is a collection of disjoint K-open and closed subsets of
P such that P = U Dn, for each n, c^eDn, and ifpeDn and qSp , then q&Dm for some

_ nelM

m^n.
Proof. If C is a retraction of P and /: P -> C is a retract, take Dn = / " H O - K such

a collection of open and closed sets exists, the function f:P-*C denned by /(p) = Cn if
and only if p e Dn is a retract. It preserves the sups of nonempty countable chain since,
if A is a nonempty <o -chain with a supremum then sup AsDn for some n and thus,
because Dn is open, there exists b e A s o that {a e A \ b ̂  a}cDn.

Example 3. Let P3 be the subset of MS consisting of all elements x = (xls x2,...)
such that Xn =<» for only a finite number of n's and x,,+1 = « implies *„ = » . Order P3

with the usual product order. Then P3 is a lattice and every nonempty subset of P3 has
an infimum. Thus every bounded w -chain in P3 has a supremum.

Proposition 4. P3 satisfies condition R.

Proof. If C is a nonempty bounded w-chain, U is a set of upper bounds of C and
/: P -»• C U U is a retract, then sup CeU, since /(sup C) = sup f(C) = sup C. Therefore
1/ has a least element. To show that no unbounded w-chain is a retraction of P, only
one chain need be considered because an o>-chain continuous function can always be
found between one <o -chain and another.

For every n eN, let £, be the element of P3 having oo as its first n components and 1
everywhere else. Then C = {cn | neN] is an unbounded to-chain. Let D = {Dn \ neN}
be a collection of disjoint fx-open and closed subsets of P3 such that for each n, cneDn

and if p e Dn and q ̂  p, then q e Dm for some m^n. For every n, let E,, = U Dm.
mSn

Set X! = l. Assume that xk has been denned for every fcSn. Let Xn =
{xeN\(xlt . . . ,x n ,x , 1,1, . . . ) e £ ; } . If Xr, = 0 , set xn+1 = l. If not, then it must be
finite since E^ is closed and Cn^^B^. In this case set xn+1 = (maxXn) + l.
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Each Xn defined by the above process is a positive integer so x = (xu x2 .. .)eP3. But
x is not contained in any Dn. If x e Dn for some n, then y = (x l 5 . . . , x ^ , 1,1,...) e Dm

for some mSn since ygx . Thus yzEm which contradicts the definition of x,,+1.
Therefore by Corollary 2, no unbounded o»-chain is a retraction of P3.

Nevertheless, P3 does not have the least fixed point property for o> -chain continuous
functions. T h e function f:P3—*P3 denned by f(xux2...-) = (x1 + l,x2 + l,...) is an
<o -chain continuous function with no fixed points.
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