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Abstract

We consider a stochastic control model driven by a fractional Brownian motion. This
model is a formal approximation to a queueing network with an ON–OFF input process.
We study stochastic control problems associated with the long-run average cost, the
infinite-horizon discounted cost, and the finite-horizon cost. In addition, we find a solution
to a constrained minimization problem as an application of our solution to the long-run
average cost problem. We also establish Abelian limit relationships among the value
functions of the above control problems.
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1. Introduction

Self-similarity and long-range dependence of the underlying data are two important features
observed in the statistical analysis of high-speed communication networks in heavy traffic, such
as local area networks (LAN) (see, for instance, [10], [22], [26], [27], [31], [36], [35], and the
references therein). In theoretical models such traffic behavior has been successfully described
by stochastic models associated with fractional Brownian motion (FBM) (see [14], [15], [19],
[31], [33], and [34, Chapters 7.2 and 8.7]). It is well known that FBM exhibits both of these
features when the associated Hurst parameter is above 1

2 . Therefore, understanding the behavior
and control of these stochastic models is of significant interest. The non-Markovian nature of
the fractional Brownian motion makes it quite difficult to study stochastic control problems for
a state process driven by FBM. The techniques such as dynamic programming and analysis of
the corresponding Hamilton–Jacobi–Bellmann equations which are the commonly used tools
in the analysis of the stochastic control problems associated with the ordinary Brownian motion
are not available for FBM models.

In this paper we study several basic stochastic control problems for a queueing model with
an input described by an FBM process. Similar queueing models, but not in the context of
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control of the state process, were considered, for instance, in [20], [24], and [37]. We are aware
of only a few solvable stochastic control problems in the FBM setting. Usually, the controlled
state process is a solution of a linear (semilinear in [8]) stochastic differential equation driven
by FBM, and the control typically affects the drift term of the stochastic differential equation.
In particular, the linear-quadratic regulator control problem is addressed in [16] and [17], and a
stochastic maximum principle is developed and applied to several stochastic control problems
in [3]. We refer the reader to [16] and to Chapter 9 of [4] for further examples of control
problems in this setting. In contrast to the models considered in the above references, the
model described here is motivated by queueing applications and involves processes with state
constraints. At the end of this section, we discuss an example of a queueing network which
leads to our model. Our analysis relies on a coupling of the state process with its stationary
version (see [20] and [37]) which enables us to address control problems in a non-Markovian
setting, and our techniques are different from those employed in [3], [8], [16], and [17].

A real-valued stochastic processWH = (WH (t))t≥0 is called an FBM with Hurst parameter
H ∈ (0, 1) ifWH(0) = 0, andWH is a continuous zero-mean Gaussian process with stationary
increments and covariance function given by

cov(WH (s),WH (t)) = 1
2 [t2H + s2H − |t − s|2H ], s ≥ 0, t ≥ 0.

The FBM is a self-similar process with index H , that is, the process (1/aH )(WH (at))t≥0 for
any a > 0 has the same distribution as (WH (t))t≥0. IfH = 1

2 thenWH is an ordinary Brownian
motion, and if H ∈ [ 1

2 , 1) then the increments of the process are positively correlated and the
process exhibits long-range dependence, which means that

∞∑
n=1

cov(WH (1),WH (n+ 1)−WH(n)) = ∞.

Note that FBM is a recurrent process with stationary increments. Hence, limt→∞WH(t)/t = 0
almost surely (a.s.) and, consequently, limt→∞(WH (t)− ut) = −∞ a.s. for any u > 0. For
additional properties and a more detailed description of this process, we refer the reader to [23],
[24], [25, Chapter 25], [28, Chapter 7.2], and [29, Chapter III].

We consider a single-server stochastic processing network having deterministic service
process with rate µ > 0. For any time t ≥ 0, the cumulative work input to the system
over the time interval [0, t] is given by λt +WH(t), where λ is a fixed constant and WH is an
FBM with Hurst parameter H ∈ [ 1

2 , 1). We assume that the service rate µ satisfies µ > λ and
that the parameter µ can be controlled. The workload present in the system at time t ≥ 0 is
given by Xxu(t) which is defined in (2.1) and (2.2), below. Here x ≥ 0 is the initial workload
and u = µ− λ > 0 is the control variable. Assuming for simplicity that x = 0, an equivalent
representation for the process Xxu is given by (see (2.12), below, for the general case)

Xxu(t) = (WH (t)− ut)− inf
s∈[0,t](WH (s)− us), t ≥ 0. (1.1)

For a given arrival process WH , this is a common formulation for a simple stochastic network
where the server works continuously unless there are no customers in the system. The first term
above represents the difference between the cumulative number of job arrivals and completed
services in the time interval [0, t], and the last term ensures that the queue length is nonnegative,
and it is a nondecreasing process which increases only when the queue-length process is
zero. For more examples of such formulations for queueing networks or stochastic processing
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networks, we refer the reader to [12, Chapter 3] and [34, Chapter 9.2]. The above queueing
model with WH in (1.1) being an FBM was considered by Zeevi and Glynn [37], and we are
motivated by their work.

Our goal is to address several stochastic control problems related to the control of the
workload process Xxu described above. The organization of the paper is as follows. We will
conclude this section with a motivating example of a queueing network which leads to our
model. In Section 2 we introduce the model and describe three basic stochastic control problems
associated with it, namely the long-run average cost problem, the infinite-horizon discounted
cost problem, and the finite-horizon control problem. Here we also discuss some properties of
the reflection map which will be used in our analysis.

In Section 3 we study the long-run average cost problem. Here we obtain an explicit
deterministic representation of the cost functional for each control u > 0. This enables us to
reduce the stochastic control problem to a deterministic minimization problem. We obtain an
optimal control u∗ > 0 and show its uniqueness under additional convexity assumptions for
the associated cost functions. We show that the value function and the corresponding optimal
control are independent of the initial data. It is well known that the above property is true for
the classical long-run average cost problem associated with nondegenerate diffusion processes.
Here we show that it remains valid for our model driven by FBM which is highly non-Markovian.
The main results of this section are given in Theorems 3.1 and 3.2. Their generalizations are
given in Theorems 3.3 and 3.4. Our proofs here rely on the use of a coupling of the underlying
stochastic process with its stationary version introduced in [20]. In particular, we show that
the coupling time has finite moments in Proposition 3.1. Because of the highly non-Markovian
character of the FBM (it is well known that FBM cannot be represented as a function of a
finite-dimensional Markov process), coupling arguments in general do not work for the models
associated with FBM (we refer the reader to [11] for an exception). In our case, the coupling
is available due to the uniqueness results related to the reflection map described in Section 2.

We use our results in Section 3 to obtain an optimal strategy for a constrained optimization
problem in Theorem 4.1 of Section 4. Similar stochastic control problems for systems driven
by an ordinary Brownian motion were previously considered in [1] and [32]. An interesting
application of this model to wireless networks is discussed in [1]. Our constrained optimization
problem (in the FBM setting) is a basic example of a general class of problems with an
added bounded variation control process in the model. This class of problems has important
applications to the control of queueing networks, but in the FBM setting, it seems to be an
unexplored area of research.

In Section 5 we address the infinite-horizon discounted cost problem associated with a similar
cost structure. An optimal control for this problem is given in Theorem 5.1.

In Section 6 we establish Abelian limit relationships among the value functions of the three
stochastic control problems introduced in Section 2. The main result of this section is stated
in Theorem 6.1. We show that the long-term asymptotic for the finite-horizon control problem
and the asymptotic for the infinite-horizon discounted control problem, as the discount factor
approaches zero, share a common limit. This limit turns out to be the value of the long-run
average cost control problem. Our proof also shows that the optimal control for the discounted
cost problem converges to the optimal control for the long-run average cost control problem
when the discount factor approaches zero. A similar result holds also for the optimal control
of the finite-horizon problem, as the time horizon tends to infinity. For a class of controlled
diffusion processes, analogous results were previously obtained in [32].
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1.1. Motivating example

We conclude this section with a description of a queueing network related to the Internet
traffic data in which the weak limit of a suitably scaled queue-length process satisfies (2.1) and
(2.2) (which are reduced to (1.1) when the initial workload x equals 0), below. For more details
on this model, we refer the reader to [31] and Chapters 7 and 8 of [34].

We begin by defining a sequence of queueing networks with state-dependent arrival and
service rates, indexed by an integer n ≥ 1 and a nonnegative real-valued parameter τ ≥ 0.
For each n ≥ 1 and τ ≥ 0, the (n, τ )th network has only one server and one buffer of infinite
size, and the arrivals and departures from the system are given as follows. There are n input
sources (e.g. n users connected to the server), and job requirements of each user are given by the
so-called ON–OFF process {Xn,τi , i ≥ 1} as defined in [31], namely each user stays connected
to the server for a random ON period of time with distribution function F1, and stays off during
a random OFF period of time with distribution function F2. The distribution Fi is assumed to
have finite mean mi but infinite variance, and in particular,

1 − Fi(x) ∼ cix
−αi ,

where 1 < αi < 2 and ci > 0, i = 1, 2, are constants. While connected to the server, each
user demands service at unit rate (sends data packets at a unit rate to the server for processing).
The server is processing users requests at a constant rate, say µn,τ . Assume that the ON and
OFF periods are all independent (for each user as well as across users), the ON–OFF processes
have stationary increments, and the average rate of arrival of jobs (packets) from each source
(customer) is given by λ = m1/(m1 +m2). The queue length at time t ≥ 0 is given by

Xn,τ (t) = Xn,τ (0)+
n∑
i=1

∫ t

0
X
n,τ
i (s) ds − µn,τ t + Ln,τ (t),

where Ln,τ is a nondecreasing process that starts from 0, increases only when Xn,τ is 0, and
ensures that Xn,τ is always nonnegative. Physically, this implies that the server is nonidling,
i.e. it serves jobs continuously as long as the buffer is nonempty. The second term on the
right-hand side of the above equation represents the cumulative number of packets sent to the
server by all the n customers in the interval [0, t]. We will assume that Xn,τ (0) = xn,τ , where
xn,τ are fixed nonnegative real numbers for each n and τ . In this setup, τ > 0 represents the
time scaling parameter, and it is well known (see [30] or Theorem 7.2.5 of [34]) that

τ−Hn−1/2
n∑
i=1

∫ τ ·

0
(X

n,τ
i (s)− λ) ds ⇒ WH(·),

when n → ∞ first and then τ → ∞. Here WH is an FBM with Hurst parameter H =
(3 − min{α1, α2})/2 ∈ ( 1

2 , 1), and the convergence is the weak convergence in the space
D([0,∞),R) of right-continuous real functions with left limits equipped with the standard
Jα,1 topology (see [34, Chapter 3.3] for details).

From the above convergence result, it can be deduced (see Theorem 8.7.1 of [34]) that if the
service rates µn,τ satisfy the heavy traffic assumption

τ−Hn−1/2(µn,τ − nλτ) → u

as (n, τ ) → ∞, then a suitably scaled queue length satisfies equations (2.1) and (2.2), below.
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More precisely, if the above heavy traffic condition is satisfied, and τ−Hn−1/2xn,τ → x,
then the scaled queue length τ−Hn−1/2Xn,τ (τ ·) converges weakly to a limiting process Xxu(·)
that satisfies (2.1) and (2.2) if we let n → ∞ first and then τ → ∞. Hence, we see that,
with a ‘superimposed’ ON–OFF input source and deterministic services times for the queueing
processes, a suitably scaled queue length in the limit satisfies our model. With a cost structure
similar to either (2.5), (2.7), or (2.10), below, for the queueing network problem, we can consider
the problem described in this paper as a formal fractional Brownian control problem (FBCP)
of the corresponding control problem for the queueing network. We do not, however, attempt
to solve the queueing control problem in this paper. A solution of the limiting control problem
provides useful insights into the queueing network control problem (see, for instance, [13]). For
a broad class of queueing problems, it has been shown that the value function of the Brownian
control problem (BCP) is a lower bound for the minimum cost in the queueing network control
problem (see [6]). In many situations, the solution to the BCP can be utilized to obtain optimal
strategies for the queueing network control problem (cf. [2], [5], [9], etc.). Here, we study just
the BCP, which is an important problem in its own right. Our explicit solution to the FBCP can
be considered as an ‘approximate solution’ to the queueing network problem.

2. Basic setup

In this section we define the controlled state process (Section 2.1), describe three standard
control problems associated with it (Section 2.2), and also discuss some basic properties of a
reflection mapping which is involved in the definition of the state process (Section 2.3).

2.1. Model

Let (WH (t))t≥0 be an FBM with Hurst parameter H ≥ 1
2 , and let σ(·) be a deterministic

continuous function defined on [0,∞) and taking positive values. For a given initial value
x ≥ 0 and a control variable u ≥ 0, the controlled state process Xxu is defined by

Xxu(t) = x − ut + σ(u)WH(t)+ Lxu(t), t ≥ 0, (2.1)

where the process Lxu is given by

Lxu(t) = − min
{

0, min
s∈[0,t](x − us + σ(u)WH(s))

}
, t ≥ 0. (2.2)

The control variable u ≥ 0 remains fixed throughout the evolution of the state process Xxu .
It follows from (2.1) and (2.2) that Xxu(t) ≥ 0 for all t ≥ 0. Note that the process Lxu has
continuous paths, and it increases at times when Xxu(t) = 0.

The process Xxu represents the workload process of a single server controlled queue fed by
an FBM, as described in the previous section (see also [37]). For a chosen control u ≥ 0
that remains fixed for all t ≥ 0, the controller is faced with a cost structure consisting of the
following three additive components during a time interval [t, t + dt]:

1. a control cost h(u) dt ,

2. a state-dependent holding cost C(Xxu) dt ,

3. a penalty of p dLxu(t), if the workload in the system is empty.
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Here p ≥ 0 is a constant, and h and C are nonnegative continuous functions satisfying the
following basic assumptions.

(i) The function h is defined on [0,+∞), and

h is nondecreasing and continuous, h(0) ≥ 0, limu→+∞ h(u) = +∞. (2.3)

(ii) The function C is also defined on [0,+∞), and it is a nonnegative, nondecreasing
continuous function which satisfies the following polynomial growth condition:

0 ≤ C(x) ≤ K(1 + xγ ) (2.4)

for some positive constants K > 0 and γ > 0.

We will sometimes assume the convexity of h and C in order to obtain sharper results, such as
the uniqueness of the optimal controls.

2.2. Three control problems

Here we formulate three cost minimization problems for our model. In the long-run
average cost minimization problem (it is also called the ergodic control problem), the controller
minimizes the cost functional

I (u, x) := lim sup
T→∞

1

T
E

(∫ T

0
[h(u)+ C(Xxu(t))] dt +

∫ T

0
p dLxu(t)

)
= h(u)+ lim sup

T→∞
1

T
E

(∫ T

0
C(Xxu(t)) dt + pLxu(T )

)
, (2.5)

subject to the constraint u > 0 for a fixed initial value x ≥ 0. Here p > 0 is a positive constant.
Note that, sinceLxu(t) is an increasing process, the integral with respect toLxu(t) can be defined
as an ordinary Riemann–Stieltjes integral. The value function of this problem is given by

V0(x) = inf
u>0

I (u, x). (2.6)

In Section 3 we show that I (u, x) and, hence, also the value function V0(x) are actually
independent of x. In addition, we show the existence of a finite optimal control u∗ > 0 and
also prove that u∗ is unique if the functions h and C are convex. We apply the results on
the long-run average cost problem to find an optimal strategy for a constrained optimization
problem in Section 4.

In Section 5 we solve the infinite-horizon discounted cost minimization problem for the case
when σ(u) ≡ 1 in (2.1). In this problem it is assumed that the controller wants to minimize the
cost functional

Jα(u, x) := E

( ∫ ∞

0
e−αt [h(u)+ C(Xxu(t))] dt + p

∫ ∞

0
e−αt dLxu(t)

)
, (2.7)

subject to u > 0 for a fixed initial value x ≥ 0. Here the discount factor α > 0 is a positive
constant. The value function in this case is given by

Vα(x) = inf
u>0

Jα(u, x). (2.8)

We study the asymptotic behavior of this model in Section 6. When α approaches 0, we
prove that limα→0+ αJα(u, x) = I (u, x) for any control u > 0. Furthermore, we show
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that limα→0+ αVα(x) = V0(x) and that the optimal controls for the discounted cost problem
converge to those of the long-run average cost problem as α tends to 0. In Section 6 we also
consider the finite-horizon control problem with the value function V (x, T ) defined by

V (x, T ) := inf
u>0

I (u, x, T ), (2.9)

where

I (u, x, T ) := E

( ∫ T

0
[h(u)+ C(Xxu(t))] dt + pLxu(T )

)
= h(u)T + p E(Lxu(T ))+ E

( ∫ T

0
C(Xxu(t)) dt

)
, (2.10)

and p ≥ 0 is a nonnegative constant. We also prove that limT→∞ V (x, T )/T = V0(x).
Furthermore, we show that the optimal controls for the finite-horizon problem converge to that
of the long-run average cost problem, as T tends to ∞.

2.3. The reflection map

The model equations (2.1) and (2.2) have an equivalent representation, which is given below
in (2.12) by using the reflection map. Therefore, we briefly discuss some basic properties of
the reflection map and of representation (2.12).

Let C([0,∞),R) be the space of continuous functions with domain [0,∞). The standard
reflection mapping � : C([0,∞),R) → C([0,∞),R) is defined by

�(f )(t) = f (t)+ sup
s∈[0,t]

(−f (s))+ (2.11)

for f ∈ C([0,∞),R). Here and henceforth, we use the notation a+ := max{0, a}. This
mapping is also known as the Skorokhod map or the regulator map in different contexts. For a
detailed discussion, we refer the reader to [21] and [34, Chapter 13.5].

In our model (2.1)–(2.2) we can write Xxu as follows:

Xxu(t) = �(x − ue + σ(u)WH)(t), (2.12)

where e(t) := t for t ≥ 0 is the identity map.
Note that, according to the definition, �(f )(t) ≥ 0 for t ≥ 0. We will also use the following

two standard facts about � (see, for instance, [21] and [34, Chapter 13.5]). First, we have

sup
t∈[0,T ]

|�(f )(t)| ≤ 2 sup
t∈[0,T ]

|f (t)| (2.13)

for f ∈ C([0,∞),R). Secondly, let f and g be two functions in C([0,∞),R) such that
f (0) = g(0) and h(t) := f (t)−g(t) is a nonnegative, nondecreasing function in C([0,∞),R).
Then

�(f )(t) ≥ �(g)(t) for all t ≥ 0. (2.14)

We will also rely on the following convexity property of the reflected mapping. Let α ∈ (0, 1),
and let f and g be two functions in C([0,∞),R). Then, αf + (1 − α)g ∈ C([0,∞),R) and

�(αf + (1 − α)g)(t) ≤ α�(f )(t)+ (1 − α)�(g)(t) for all t ≥ 0. (2.15)

https://doi.org/10.1239/aap/1269611149 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1269611149


190 A. P. GHOSH ET AL.

The proof is straightforward. Let F(x) = x− := max{0,−x}. Then F is a convex function
and, therefore,

(αf (s)+ (1 − α)g(s))− ≤ αf−(s)+ (1 − α)g−(s).
Consequently,

sup
s∈[0,t]

(αf (s)+ (1 − α)g(s))− ≤ α sup
s∈[0,t]

f−(s)+ (1 − α) sup
s∈[0,t]

g−(s).

Since
sup
s∈[0,t]

(−f (s))+ = sup
s∈[0,t]

f−(s),

inequality (2.15) follows from definition (2.11).
The reflection map also satisfies the following minimality property: if ψ, η ∈ C([0,∞),R)

are such thatψ is nonnegative, η(0) = 0, η is nondecreasing, andψ(t) = ϕ(t)+η(t) for t ≥ 0,
then

ψ(t) ≥ �(ϕ)(t) and η(t) ≥ sup
s∈[0,t]

(−ϕ(s))+ for all t ≥ 0. (2.16)

3. Long-run average cost minimization problem

In this section we address the control problem defined in (2.5)–(2.6). First we find a solution
to the control problem for the particular case when σ(u) ≡ 1 in (2.1). This is accomplished in
Sections 3.1–3.4. In Section 3.5 we show that the general case can be reduced to this simplified
version.

3.1. Reduction of the cost structure

The controlled state space process Xxu (corresponding to σ(u) ≡ 1) has the form

Xxu(t) = x − ut +WH(t)+ Lxu(t), t ≥ 0. (3.1)

The following lemma simplifies the expression for the cost functional (2.5) by computing
limT→∞(1/T )E(Lxu(T )).

Lemma 3.1. Let Xxu be given by (3.1). Then

lim
T→∞

1

T
E(Lxu(T )) = u.

Proof. Since u > 0, using (2.12), (2.13), and (2.14), we obtain

0 ≤ Xxu(t) ≤ Xx0 (t) = �(x +WH)(t) ≤ 2
(
|x| + sup

s∈[0,t]
|WH(s)|

)
.

By the self-similarity of the FBM process,

E
(

sup
s∈[0,T ]

|WH(s)|
)

≤ K1T
H ,

whereK1 ∈ (0,∞) is a constant independent of T (see, for instance, [25, p. 296]). Therefore,

0 ≤ E(Xxu(T )) ≤ 2K1(|x| + T H ). (3.2)

Consequently, limT→∞(1/T )E(Xxu(T )) = 0. SinceWH(T ) is a mean-zero Gaussian process,
it follows from (3.1) that (1/T )E(Lxu(T ))− u = (1/T )(E(Xxu(T ))− x). Letting T tend to ∞
completes the proof of the lemma.

https://doi.org/10.1239/aap/1269611149 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1269611149


Stochastic processing system driven by a fractional Brownian motion 191

Remark 3.1. Lemma 3.1 with literally the same proof as above remains valid if Xxu satisfies
(2.1) instead of (3.1).

With the above lemma in hand, we can represent the cost functional (2.5) and reformulate
the long-run average cost minimization problem as follows. The controller minimizes

I (u, x) = (h(u)+ pu)+ lim sup
T→∞

1

T
E

( ∫ T

0
C(Xxu(t)) dt

)
(3.3)

subject to u > 0 and Xxu given in (3.1). Note that the above reduction shows that the original
minimization problem (2.5) reduces to the case p = 0 with the function h(u) replaced by
h(u)+ pu.

Our next step is to analyze the cost component lim supT→∞(1/T )E(
∫ t

0 C(X
x
u(t)) dt). The

following results are described in [7] and [20], and are collected in [37] in a convenient form
for our application. We summarize them here using our notation.

(i) The random sequenceX0
u(t)with t ≥ 0 converges weakly, as t goes to ∞, to the random

variable

Zu := max
s≥0

{WH(s)− us}. (3.4)

(ii) There is a probability space supporting the processesX0
u and L0

u (and, hence, Xxu as well
as Lxu for any x ≥ 0), and a stationary process X∗

u = {X∗
u(t) : t ≥ 0} such that

X∗
u(t) = WH(t)− ut + max{X∗

u(0), L
0
u(t)}, t ≥ 0, (3.5)

and

X∗
u(t)

d= Zu, t ≥ 0, (3.6)

where ‘
d=’ denotes equality in distribution and Zu is defined in (3.4).

(iii) The tail of the stationary distribution satisfies

lim
z→∞ z2H−2 log P(Zu ≥ z) = −θ∗(u), (3.7)

where θ∗(u) is given by

θ∗(u) = u2H

2H 2H (1 −H)2(1−H) > 0. (3.8)

In particular, all the moments of Zu are finite.

Remark 3.2. In (ii) above, the construction of X∗
u is rather simple. Consider a probability

space with two independent FBMs WH(·) and W̃H (·). By pasting WH(·) and W̃H (·) at the
point t = 0, first we construct the two-sided FBM {BH(t) : − ∞ < t < +∞}, which has
stationary Gaussian increments. Then we define

X∗
u(t) = BH(t)− ut + sup

s∈(−∞,t]
(us − BH(s)), t ∈ R.
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The random variables X∗
u(t) are finite for all t ∈ R because lim|t |→∞ BH(t)/t = 0 a.s. Note

that, for all t ∈ R,
X∗
u(t) = sup

s∈(−∞,t]
(BH (t)− BH(s)− u(t − s))

d= sup
s∈(−∞,t]

(B̃H (t − s)− u(t − s))

= sup
r∈[0,∞)

(B̃H (r)− ur),

where B̃H (·) is a two-sided FBM. Hence, (3.6) holds for all t ∈ R. Furthermore, X∗
u(0) is

independent of {WH(t) : t ≥ 0} and, clearly, (3.5) holds. For further discussion of (i)–(iii), we
refer the reader to [7], [18], [20], and [24].

Throughout the rest of the paper, we use this probability space where all these processes are
defined. Using (3.1) and (2.2), we can write, for t ≥ 0,

Xxu(t) = WH(t)− ut + max{x, L0
u(t)}, (3.9)

where
L0
u(t) = − inf

s∈[0,t](WH (s)− us) = sup
s∈[0,t]

(us −WH(s)). (3.10)

The above representations (3.9) and (3.10) agree with (3.5) if the processXxu is initialized with
X∗
u(0).

3.2. A coupling time

The following coupling argument is crucial to address the optimal control problems. In
particular, it enables us to deal with the last term of I (u, x) in (3.3).

Proposition 3.1. Let u > 0, and let the initial point x ≥ 0 be fixed. Consider the state
processXxu in (3.1) and the stationary processX∗

u of (3.5) and (3.6). Then the following results
hold.

(i) There is a finite stopping time τ0 such that Xxu(t) = X∗
u(t) for all t ≥ τ0. Furthermore,

E(τβ0 ) < ∞ for all β ≥ 0.

(ii) The cost functional I (u, x)defined in (2.5) is finite and independent ofx, that is, I (u, x) =
I (u, 0) < ∞ for x ≥ 0. Consequently, the value function V0(x) = infu>0 I (u, x) is
also finite and independent of x, that is V0(x) = V0(0) < ∞ for x ≥ 0.

Proof. For y > 0, introduce the stopping time

λy = inf{t > 0 : L0
u(t) > x + y}.

The stopping time λy is finite a.s. because

lim
t→+∞L

0
u(t) ≥ lim

t→+∞(ut −WH(t)) = +∞ a.s.

Define the stopping time τ0 by

τ0 = inf{t > 0 : L0
u(t) > x +X∗

u(0)}. (3.11)
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Here X∗
u is the stationary process which satisfies (3.5) and (3.6). Hence, τ0 = λX∗

u(0) a.s. It
follows that, for t ≥ τ0, we have L0

u(t) ≥ L0
u(τ0) = x + X∗

u(0) and X∗
u(0) ≥ 0. Therefore, it

follows from (3.9) and (3.10) that Xxu(t) = WH(t)− ut + L0
u(t) = X∗

u(t) for t ≥ τ0.

Next, we prove that E(τβ0 ) < +∞ for each β ≥ 0. Without loss of generality, we can
assume that β ≥ 1. We then have

E(τβ0 ) ≤
∞∑
m=0

E(λβm+1 1[m≤X∗
u(0)<m+1]) ≤

∞∑
m=0

[E(λ2β
m+1)P(X∗

u(0) ≥ m)]1/2, (3.12)

where in the last step we have used the Cauchy–Schwartz inequality. SinceX∗
u(0) has the same

distribution as Zu = sups≥0{WH(s)− us}, it follows from (3.7) that, for all large enough m,

P(X∗
u(0) ≥ m) ≤ e−θ∗(u)m2(1−H)/2, (3.13)

where θ∗(u) is defined in (3.8). Next, we estimate E(λ2β
m ) for m ≥ 0 and β ≥ 1. For m ∈ N,

let bm = x +m and Tm = 2bm/u. We have

E(λ2β
m ) = 2β

∫ ∞

0
t2β−1 P(λm > t) dt

= 2β
∫ ∞

0
t2β−1 P(L0

u(t) ≤ x +m) dt

≤ T 2β
m + 2β

∫ ∞

Tm

t2β−1 P(L0
u(t) ≤ bm) dt, (3.14)

where the second equality is due to the fact that P(λm > t) = P(L0
u(t) ≤ x +m) according to

the definition of λm. Note that

P(L0
u(t) ≤ bm) = P

(
sup
s∈[0,t]

{us −WH(s)} ≤ bm

)
≤ P(WH (t) ≥ ut − bm), (3.15)

and recall that Z := WH(t)/t
H has a standard normal distribution. Therefore, by (3.15), for

t > Tm, we have

P(L0
u(t) ≤ bm) ≤ P(WH (t) ≥ ut − bm) ≤ P

(
WH(t) ≥ ut

2

)
= P

(
Z ≥ ut1−H

2

)
. (3.16)

It follows from (3.14) and (3.16) that

E(λ2β
m ) ≤ T 2β

m + 2β
∫ ∞

0
t2β−1 P

(
Z ≥ ut1−H

2

)
dt

= T 2β
m + 2β

∫ ∞

0
t2β−1 P

((
2Z

u

)1/(1−H)
≥ t

)
dt

= T 2β
m + E

((
2|Z|
u

)2β/(1−H))
= 4β

u2β (x +m)2β + E

((
2|Z|
u

)2β/(1−H))
< ∞. (3.17)
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The estimates (3.13) and (3.17) imply that the infinite series on the right-hand side of (3.12)
converges. Thus, E(τβ0 ) < ∞ for all β ≥ 1, and, hence, for all β ≥ 0. This completes the
proof of the first part of the proposition.

We turn now to the proof of part (ii). First, we will prove that

E

( ∫ ∞

0
|C(Xxu(t))− C(X∗

u(t))| dt

)
< ∞. (3.18)

We will show later that part (ii) of the proposition is a rather direct consequence of this inequality.
Note that

E

( ∫ ∞

0
|C(Xxu(t))− C(X∗

u(t))| dt

)
= E

( ∫ τ0

0
|C(Xxu(t))− C(X∗

u(t))| dt

)
,

where τ0 is given in (3.11) and X∗
u is given in (3.5) and (3.6). The definition of τ0 implies that

L0
u(τ0) ≤ x +X∗

u(0). Therefore, it follows from (3.4) and (3.5) that, for t ∈ [0, τ0],
max{Xxu(t), X∗

u(t)} ≤ Zu + x +X∗
u(0).

Since C is a nondecreasing function, this implies that

max{C(Xxu(t)), C(X∗
u(t))} ≤ C(Zu + x +X∗

u(0)),

and, consequently, using the Cauchy–Schwartz inequality,

E

( ∫ τ0

0
|C(Xxu(t))− C(X∗

u(t))| dt

)
≤ E(τ0C(Zu + x +X∗

u(0)))

≤ [E(τ 2
0 )E([C(Zu + x +X∗

u(0))]2)]1/2.

Since E(τ 2
0 ) < ∞ by part (i) of the lemma, (3.18) will follow once we show that

E([C(Zu + x +X∗
u(0))]2) < ∞. (3.19)

Recall thatX∗
u(0) and Zu have the same distribution. The tail asymptotic (3.7) implies that any

moment of Zu is finite. This fact together with (2.4) yields (3.19).
We will now deduce part (ii) of the proposition from (3.18). Toward this end, first observe

that, since X∗
u(t) is a stationary process,

1

T
E

( ∫ T

0
C(X∗

u(t)) dt

)
= 1

T
E

( ∫ T

0
C(X∗

u(0)) dt

)
= E(C(Zu)),

and recall that E(C(Zu)) < ∞ by (3.7). Then note that, by (3.18),

lim sup
T→∞

∣∣∣∣ 1

T
E

( ∫ T

0
C(X∗

u(t)) dt

)
− 1

T
E

( ∫ T

0
C(Xxu(t)) dt

)∣∣∣∣
≤ lim sup

T→∞
1

T
E

( ∫ ∞

0
|C(Xxu(t))− C(X∗

u(t))| dt

)
= 0.

Therefore,

lim
T→∞

1

T
E

( ∫ T

0
C(Xxu(t)) dt

)
= E(C(Zu)), (3.20)

which implies part (ii) of the proposition in view of (3.3). Therefore, the proof of the proposition
is complete.
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Remark. The above proposition is in agreement with a result in Theorem 1 of [37] which
shows that the limiting distributions ofM(t) = maxs∈[0,t]Xxu(s) andM∗(t) = maxs∈[0,t]X∗

u(s)

coincide, as t tends to ∞.

3.3. Properties of E(C(Zu))

For u > 0, let G(u) = E(C(Zu)). We are interested in the behavior of G(u) in view of the
identity (3.20).

Lemma 3.2. Let G(u) = E(C(Zu)), where Zu is defined in (3.4). Then the following results
hold.

(i) G(u) is a decreasing and continuous function of u on [0,∞).

(ii) If C(x) is a convex function then so is G(u).

(iii) limu→0+ G(u) = +∞.

Proof. First we observe that the polynomial bound (2.4) on the growth of C combined with
(3.7), which describes the tail behavior of Zu, imply that G(u) = E(C(Zu)) is finite for each
u ≥ 0. It is a decreasing function of u becauseC is nondecreasing whileZu1 ≤ Zu2 if u1 > u2.

To complete the proof of part (i), it remains to show that G(u) is a continuous function.
To prove this, first note that, according to definition (3.4), Zu is a continuous function of the
variable u a.s., as shown below. Indeed, if tu is a random time such that Zu = WH(tu) − utu
and u ∈ (0, v), then

Zu ≥ Zv ≥ WH(tu)− vtu = Zu − tu(v − u).

Hence, limv→u+ Zv = Zu. A similar argument shows that limv→u− Zv = Zu. Therefore,
continuity of C implies that C(Zu) is a continuous function of u with probability 1. Since
C(Zu) is monotone in u, the dominated convergence theorem implies the continuity of G.

To prove part (ii), fix constants r ∈ [0, 1], u1 > 0, and u2 > 0, and let ūr = ru1 + (1−r)u2.
Then

Zūr = sup
t≥0

{WH(t)− ūr t} ≤ rZu1 + (1 − r)Zu2 .

If C is a nondecreasing convex function, we have

E(C(Zūr )) ≤ r E(C(Zu1))+ (1 − r)E(C(Zu2)).

Hence, G is convex, and the proof of part (ii) is complete.
Turning to part (iii), we first note that Z0 = supt≥0WH(t) = +∞ with probability 1. Let

(un)n≥0 be any sequence monotonically decreasing to 0. Then, Zun is increasing and, hence,
there exists a limit (finite or infinite) limn→∞ Zun = L and Zun ≤ L for all n ≥ 0. Thus,
WH(t)− unt ≤ L for all n ≥ 0 and t ≥ 0. By letting n go to ∞ we obtain supt≥0WH(t) ≤ L,
and, consequently, L = +∞ with probability 1. Therefore, limu→0+ Z(u) = +∞ a.s. Since
C is a nondecreasing function, the monotone convergence theorem implies that

lim
u→0+ E(C(Zu)) = +∞.

This completes the proof of the lemma.
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3.4. Existence of an optimal control

In the following two theorems we provide a representation of the cost functional I (u, x) as
well as the existence and uniqueness results for the optimal control u∗ > 0.

Theorem 3.1. Let I (u, x) be the cost functional of the long-run average cost problem described
in (3.3). Then the following statements hold.

(i) I (u, x) is independent of x and has the representation

I (u) := I (u, x) = h(u)+ pu+G(u), (3.21)

where G(u) is given in Lemma 3.2. Furthermore, I (u) is finite for each u > 0 and is
continuous in u > 0.

(ii) limu→0+ I (u) = +∞ and limu→∞ I (u) = +∞.

(iii) If h(x) and C(x) are convex functions, then I (u) is also convex.

Proof. Part (i) follows from (3.3), Proposition 3.1, and Lemma 3.2.
The first part of claim (ii) follows from the fact that I (u) ≥ G(u) along with part (iii) of

Lemma 3.2. To verify the second part, note that I (u) ≥ h(u) for allu > 0, and limu→+∞ h(u)=
+∞. Consequently, limu→+∞ I (u) = +∞.

Part (iii) follows from representation (3.21) combined with the part (ii) of Lemma 3.2. This
completes the proof of the theorem.

Theorem 3.2. (i) There is an optimal control u∗ > 0 such that, for all x ≥ 0, we have

I (u∗) = min
u>0

I (u, x),

where I is given in (3.21). In particular, u∗ is independent of x.

(ii) In the case p > 0, if h and C are convex functions, then u∗ is unique.

(iii) In the case p = 0, if h is a strictly convex function and C is a convex function, then u∗ is
unique.

Proof. Since I (u) is a continuous function, part (i) follows from parts (i) and (ii) of
Theorem 3.1.

If h and C are convex functions, representation (3.21) yields the result that I is a strictly
convex function when p > 0. Therefore, u∗ is unique in this case.

In the case p = 0, if h is a strictly convex function and C is a convex function, the result
follows from representation (3.21) in a similar way as in the case p > 0.

3.5. Generalizations

In this section we generalize the results in Theorems 3.1 and 3.2 to the more general model
introduced in (2.1). Note that, for a fixed control u > 0 in (2.1), the self-similarity of FBM
yields the result that the process ŴH defined by

ŴH (t) = σ(u)WH

(
t

σ (u)1/H

)
, t ∈ R,

is an FBM. Let

Yxu (t) = Xxu

(
t

σ (u)1/H

)
.
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Then Yxu satisfies

Yxu (t) = x − ut

σ (u)1/H
+ ŴH (t)+ L̂xu(t), (3.22)

where

L̂xu(t) = Lxu

(
t

σ (u)1/H

)
.

Using (2.2) and change of the variable s = t/σ (u)1/H , we observe that

L̂xu(t) = Lxu

(
t

σ (u)1/H

)
= − min

{
0, min
s∈[0,t]

(
x − su

σ(u)1/H
+ ŴH (s)

)}
. (3.23)

Equations (3.22) and (3.23) are analogous to (2.1) and (2.2).
We next consider the change in the cost structure due to the change of the variable s =

t/σ (u)1/H . We note that

1

T

∫ T

0
C(Xxu(t)) dt = 1

M(T )

∫ M(T )

0
C(Y xu (t)) dt,

where M(T ) = σ(u)1/HT . Therefore, using the results in Theorem 3.1, we obtain

lim
T→∞

1

T
E

( ∫ T

0
C(Xxu(t)) dt

)
= G

(
u

σ(u)1/H

)
. (3.24)

We have the following result.

Theorem 3.3. Consider the controlled state processXxu defined by (2.1) and (2.2) with the cost
functional I (x, u) given in (2.5). Define f : [0,∞) → [0,∞) by

f (u) = u

σ(u)1/H
. (3.25)

Then
I (u, x) = h(u)+ pu+G(f (u)), (3.26)

where the functionG is given in Lemma 3.2. Furthermore, I (u, x) is independent of x (we will
henceforth denote the cost function by I (u)).

Proof. The same argument as that used in the proof of Lemma 3.1 yields

lim
T→∞

1

T
E(Lxu(T )) = u.

Combining this result with (3.24) we obtain representation (3.26).

Our next result is analogous to Theorems 3.1 and 3.2.

Theorem 3.4. Assume that the function f in (3.25) is continuous and that limu→0+ f (u) = 0.
Then, with I (u) = I (u, x) as in (3.26), the following statements hold.

(i) limu→0+ I (u) = limu→+∞ I (u) = +∞, and I (u) is a finite continuous function on
[0,∞). Furthermore, there is a constant u∗ > 0 such that I (u∗) = minu>0 I (u).

(ii) If f is a concave increasing function then statements similar to parts (i) and (ii) of
Theorem 3.2 (regarding the uniqueness u∗) hold.
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The proof of this theorem is a straightforward modification of the proofs of Theorems 3.1
and 3.2, and is therefore omitted.

Remark. We can further generalize our model to cover the following situation. For given
positive continuous functions b(u) and σ(u), let

Xxu(t) = x + σ(u)Wh(t)− b(u)t + Lxu(t),

where, for u > 0,

Lxu(t) = − min
{

0, min
s∈[0,t](x − b(u)s + σ(u)WH(s))

}
.

The optimization problem here is to minimize the cost functional I (u, x) defined in (2.5).
Following the time change method described in Section 3.5, we can obtain an analogue of

Theorem 3.4 regarding the derivation of the optimal control. In this situation, the function f
defined in (3.25) needs to be replaced by f (u) = b(u)(σ (u))−1/H with the assumptions that
f is continuous and limu→0+ f (u) = 0. We omit the details of the proof.

4. A constrained minimization problem

In this section we address a constrained minimization problem that can be solved by using
our results in Section 3. Let {WH(t) : t ≥ 0} be an FBM defined on a complete probability
space (�,F ,P). Our model here is of the form

Yxu (t) = x − ut + σ(u)WH(t)+Kx
u (t), (4.1)

where σ is a nonnegative continuous function, Kx
u (·) is a nonnegative, nondecreasing right-

continuous with left limits (RCLL) process adapted to the natural filtration (Ft )t≥0, where Ft
is the σ -algebra generated by {WH(s) : 0 ≤ s ≤ t}, augmented with all the null sets in F .
Furthermore, Kx

u (0) = 0 and the process Kx
u is chosen by the controller in such a way that

the state process Yxu is constrained to nonnegative reals. In this situation, the controller is
equipped with two controls: the choice of u > 0 and the choice of the Kx

u process subject to
the nonnegativity of the Yxu process.

Throughout this section, we keep the initial state x ≥ 0 fixed. We will deduce using the
results of the previous section that the value of this minimization problem as well as the optimal
control are not affected by the initial data.

Letm > 0 be any fixed positive constant. The constrained minimization problem we would
like to address here is the following.

Minimize lim sup
T→∞

1

T
E

( ∫ T

0
[h(u)+ C(Y xu (t))] dt

)
(4.2)

Subject to lim sup
T→∞

E(Kx
u (T ))

T
≤ m, (4.3)

over all feasible controls u > 0 and feasible processes Kx
u (·) which ensure that Yxu (·) is a

nonnegative process. A controlled optimization problem of this nature for diffusion processes
was considered in [1], and for a more complete treatment in the case of diffusion processes, we
refer the reader to [32].
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Fix any integer m > 0, and define a class of state processes Um as follows:

Um =
{
(Y xu ,K

x
u ) : Yxu (t) ≥ 0 for t ≥ 0, (4.1) is satisfied, lim sup

T→∞
E(Kx

u (T ))

T
≤ m

}
.

From our results in Section 3, it follows that, for any u ≤ m, the pair (Xxu, L
x
u) in (2.1) and

(2.2) belongs to Um, and, hence, Um is nonempty. Therefore, the constrained minimization
problem is to find

inf
(Y xu ,K

x
u )∈Um

lim sup
T→∞

1

T
E

( ∫ T

0
[h(u)+ C(Y xu (t))] dt

)
.

In this section we make the following additional assumptions.

(i) For functions h and C, we assume that

h is strictly convex and satisfies (2.3), C is convex and satisfies (2.4). (4.4)

(ii) Let f (u) = u/σ(u)1/H . We assume that

f (u) > 0, limu→0+ f (u) = 0, and f is a convex increasing function. (4.5)

The following lemma enables us to reduce the set Um to the collection of processes (Xxu, L
x
u)

described in the previous section, with u ≤ m.

Lemma 4.1. Let u > 0, and let (Y xu ,K
x
u ) be a pair of processes satisfying (4.1). Consider

(Xxu, L
x
u), which satisfies (2.1) and (2.2), and is defined on the same probability space as

(Y xu ,K
x
u ). Then

(i) Lxu(t) ≤ Kx
u (t) and Xxu(t) ≤ Yxu (t) for t ≥ 0.

(ii) u = lim
T→∞

1

T
E(Lxu(T )) ≤ lim sup

T→∞
1

T
E(Kx

u (T )).

(iii) G(f (u)) = lim
T→∞

1

T
E

( ∫ T

0
C(Xxu(t)) dt

)
≤ lim sup

T→∞
1

T
E

( ∫ T

0
C(Y xu (t)) dt

)
.

Proof. Since Yxu ≥ 0, Kx
u (0) = 0, and Kx

u is a nonincreasing process, the minimality
property of the reflection map stated in (2.16) implies that Lxu(t) ≤ Kx

u (t) and Xxu(t) ≤ Yxu (t)

for t ≥ 0.
Next, observe that part (ii) of the lemma follows from the result in part (i) while the identity

u = limT→∞(1/T )E(Lxu(T )) is implied by Lemma 3.1 (see also the remark immediately after
the proof of Lemma 3.1).

Finally, part (iii) of the lemma follows from (3.24), part (i), and from the fact that C is
nondecreasing. The proof of the lemma is complete.

Let

Vm = {(Xxu, Lxu) : (2.1) and (2.2) are satisfied, and, in addition, u ≤ m}.
From the above lemma, it is clear that

inf
(Kxu ,Y

x
u )∈Um

lim
T→∞

1

T
E

( ∫ T

0
[h(u)+ C(Y xu (t))] dt

)
= inf
(Xxu,L

x
u)∈Vm

lim sup
T→∞

1

T
E

( ∫ T

0
[h(u)+ C(Xxu(t))] dt

)
. (4.6)
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Therefore, our minimization problem is reduced. Next, we can use the results in Section 3.5
and write, for any u > 0,

lim
T→∞

1

T
E

( ∫ T

0
[h(u)+ C(Xxu(t))] dt

)
= h(u)+G(f (u)). (4.7)

Here G is given by Lemma 3.2, and f is described in (3.25) and (4.5). Consequently,

inf
(Xxu,L

x
u)∈Vm

lim
T→∞

1

T
E

( ∫ T

0
[h(u)+ C(Xxu(t))] dt

)
= inf{h(u)+G(f (u)) : 0 < u ≤ m}.

(4.8)
We next consider the optimal control described in Theorem 3.4 corresponding to the casep = 0.
In virtue of assumptions (4.4) and (4.5), the optimal control is unique and we will label it by
u∗

0 > 0. We have the following result.

Theorem 4.1. Let

u∗(m) =
{
m if m < u∗

0,

u∗
0 if m ≥ u∗

0,
(4.9)

where u∗
0 is the unique optimal control in Theorem 3.4 corresponding to p = 0.

Then the pair (Xu
∗(m)
x , L

u∗(m)
x ) is an optimal process for the constrained minimization

problem (4.2) and (4.3). Furthermore, the optimal control u∗(m) is a continuous increasing
function of the parameter m.

Proof. Let (u) = h(u)+G(f (u)), where f and G are as in (4.7). Then, by assumptions
(4.4) and (4.5), and Theorem 3.4,  is a strictly convex function which is finite everywhere on
(0,∞). Furthermore, limu→0+ (u) = +∞ and limu→+∞(u) = +∞, and, hence,  has
a unique minimum at u∗

0. Therefore,  is strictly increasing on (u∗
0,∞). Clearly, with u∗(m)

defined in (4.9),
(u∗(m)) = inf

u≤m(u),

and u∗(m) is the unique number which has this property. By (4.6) and (4.8), we have

(u∗(m)) = inf
(Xxu,L

x
u)∈Vm

lim sup
T→∞

1

T
E

( ∫ T

0
[h(u)+ C(Y xu (t))] dt

)
.

Consider the pair of processes (Xxu∗(m), L
x
u∗(m)) defined in (2.1) and (2.2). Then, by virtue of

Lemma 3.1, we have

lim
T→∞

1

T
E(Lxu∗(m)(T )) = u∗(m) ≤ m,

and, by Theorem 3.6,

lim sup
T→∞

1

T
E

( ∫ T

0
[h(u)+ C(Xxu∗(m)(t))] dt

)
= (u∗(m)).

Hence, (Xxu∗(m), L
x
u∗(m)) describes an optimal strategy. This completes the proof of the theorem.

Remark. Note that the above optimal control u∗(m) is independent of the initial point x.
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5. Infinite-horizon discounted cost minimization problem

In this section we define an optimal control u∗ for the infinite-horizon discounted cost
functional given in (2.7). Throughout this section, we assume that σ(u) ≡ 1, the state process
Xxu satisfies (3.1), and that the functionals h and C are convex in addition to the assumptions
stated in (2.3) and (2.4). In contrast with Section 3, our methods here do not readily extend to
the case where the function σ(u) is nonconstant.

The discounted cost functional Jα(x, u) is given by

Jα(x, u) = E

( ∫ ∞

0
e−αt [h(u)+ C(Xxu(t))] dt +

∫ ∞

0
e−αtp dLxu(t)

)
= h(u)

α
+ E

( ∫ ∞

0
e−αt [C(Xxu(t))+ αpLxu(t)] dt

)
. (5.1)

Here α > 0 is a constant discount factor and p > 0 is also a constant. To derive the last equality
above, we used Fubini’s theorem to obtain

∫ ∞
0 e−αt dLxu(t) = α

∫ ∞
0 e−αtLxu(t) dt .

Let

Jα,1(x, u) = E

( ∫ ∞

0
e−αtC(Xxu(t)) dt

)
and

Jα,2(x, u) = E

( ∫ ∞

0
e−αtLxu(t) dt

)
. (5.2)

Next we use the convexity of the reflection mapping described in (2.15) to establish the convexity
of the cost functional with respect to u.

Lemma 5.1. Let x ≥ 0 be fixed, and let C be a convex function satisfying assumption (2.4).
Then, Jα,1(x, u) and Jα,2(x, u) introduced above are finite for each u ≥ 0 and are convex in
the u variable.

Proof. By (3.2) we have the bound E(Lxu(t)) ≤ ut+K0(1+tH ), whereK0 > 0 is a constant
independent of t . This implies, using Fubini’s theorem, that Jα,2(x, u) is finite.

Next, using (3.18), we obtain∣∣∣∣Jα,1(x, u)− E

( ∫ ∞

0
e−αtC(X∗

u(t)) dt

)∣∣∣∣ ≤ E

( ∫ ∞

0
|C(Xxu(t))− C(X∗

u(t))| dt

)
< ∞.

But, using the stationarity of X∗
u, we have E(

∫ ∞
0 e−αtC(X∗

u(t)) dt) = α−1 E(C(Zu)), where
Zu is given in (3.4). Note that E(C(Zu)) is finite because C has polynomial growth and by
virtue of (3.7). Consequently, Jα,1(x, u) is also finite.

To establish convexity of Jα,1(x, u), first recall thatXxu = �(x+WH −ue), where e(t) ≡ t

for t ≥ 0, and � is the reflection mapping described in Section 2.3. Now let u1 ≥ 0, u2 ≥ 0,
and r ∈ (0, 1). Then, for t ≥ 0,

x +WH(t)− (ru1 + (1 − r)u2)e(t)

= r(x +WH(t)− u1e(t))+ (1 − r)(x +WH(t)− u2e(t)).

Since the reflection map � satisfies the convexity property (2.15), we have

Xxūr (t) ≤ rXxu1
(t)+ (1 − r)Xxu2

(t), (5.3)

where ūr = ru1 + (1 − r)u2. Next, since C is a convex nondecreasing function, (5.3) implies
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that C(Xxūr (t)) ≤ rC(Xxu1
(t))+ (1 − r)C(Xxu2

(t)) for t ≥ 0. From this, it follows that

Jα,1(x, ūr ) ≤ rJα,1(x, u1)+ (1 − r)Jα,1(x, u2).

Hence, Jα,1(x, u) is convex in the u variable.
Next, by (2.2) and (2.11), we have

�(x +WH − ue)(t)− (x +WH − ue)(t) = Lxu(t), t ≥ 0.

Then, since � is convex in the u variable by (2.15), the process Lxu is also convex in the u
variable. Consequently, with ūr = ru1 + (1 − r)u2, we obtain

Lxūr (t) ≤ rLxu1
(t)+ (1 − r)Lxu2

(t), t ≥ 0.

Finally, it is evident that Jα,2(x, u) is convex in the u variable from definition (5.2).

Corollary 5.1. Under the conditions of Lemma 5.1, the discounted cost functional Jα(x, u) is
finite for each u ≥ 0 and is convex in the u variable.

Proof. Note that

Jα(x, u) = h(u)

α
+ Jα,1(x, u)+ αpJα,2(x, u). (5.4)

By our assumptions, h is a convex function, and p ≥ 0 and α > 0 are constants. Therefore,
the claim follows from Lemma 5.1.

The above lemma and corollary lead to the following result.

Theorem 5.1. Consider the Xxu process satisfying (3.1) and the associated discounted cost
functional Jα(x, u) described in (5.1). Then, for each initial point x ≥ 0, there is an optimal
control u∗ ≥ 0 such that

Jα(x, u
∗) = inf

u≥0
Jα(x, u) ≡ Vα(x),

where Vα(x) is the value function of the discounted cost problem defined in (2.8).

Proof. Fix any x ≥ 0 and α > 0. By Corollary 5.1, Jα(x, u) is finite for each u ≥ 0
and is convex in the u variable. By (5.4), we have Jα(x, u) ≥ h(u)/α and hence, since
limu→∞ h(u) = +∞, we obtain limu→∞ Jα(x, u) = +∞. Since Jα(x, u) is convex in
the u variable, we can conclude that there is a u∗ ≥ 0 (which may depend on x) such that
Jα(x, u

∗) = infu≥0 Jα(x, u). This completes the proof of the theorem.

Remark. Note that in contrast with the long-run average cost minimization problem, we cannot
rule out the possibility that u∗ = 0 here.

Corollary 5.2. For the special case p = 0, assume further that h(x) is constant on an interval
[0, δ] for some δ > 0. Then, for every initial point x ≥ 0, the optimal control u∗ is strictly
positive.

Proof. It follows from (5.4) that Jα(x, u) = Jα,1(x, u). The function C is increasing and
Xxu1

(t) < Xxu2
(t) for all t ≥ 0 and u1 > u2. Therefore Jα,1(x, u1) ≤ Jα,1(x, u2) for u1 > u2.

Consequently, Jα(x, 0) ≥ Jα(x, u) for all u > 0. Hence, we can find an optimal control
u∗ > 0, and the proof of the corollary is complete.
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6. Finite-horizon problem and Abelian limits

In this section we establish Abelian limit relationships among the value functions of three
stochastic control problems introduced in Section 2.2. The main result is stated in Theorem 6.1,
below. Throughout this section, for simplicity, we assume that σ(u) ≡ 1 in the model described
in (2.1).

We begin with the existence of an optimal control for the finite-horizon control problem
introduced in Section 2.2.

Proposition 6.1. Let x ≥ 0, T > 0, and I (u, x, T ) be defined by (2.10). Then

(i) I (u, x, T ) is finite for each u > 0 and is continuous in u > 0,

(ii) limu→∞ I (u, x, T ) = +∞,

(iii) if h and C are convex functions, I (u, x, T ) is a convex function of the variable u.

Corollary 6.1. For any fixed x ≥ 0 and T > 0, the following statements hold.

(i) There is an optimal control u∗(x, T ) ≥ 0 such that I (u∗(x, T )) = minu>0 I (u, x, T ).

(ii) In the case p > 0, if h and C are convex functions, then u∗(x, T ) is unique.

(iii) In the case p = 0, if h is a strictly convex function and C is a convex function, then
u∗(x, T ) is unique.

The proofs of the above proposition and corollary are straightforward adaptations of the
corresponding proofs given in Section 3, and are therefore omitted.

The following theorem is the main result of this section.

Theorem 6.1. Let Xxu satisfy (3.1) and let V0, Vα(x), and V (x, T ) be the value functions
defined in (2.6), (2.8), and (2.9), respectively. Then the following Abelian limit relationships
hold:

lim
α→0+ αVα(x) = lim

T→∞
V (x, T )

T
= V0.

We prove this result in Propositions 6.2 and 6.3, below. The following technical lemma
gathers necessary tools to establish limα→0+ αVα(x) = V0.

Lemma 6.1. Let u > 0 be given, and letXxu satisfy (3.1). Consider the cost functional Jα(x, u)
as defined in (2.7). Then

lim
α→0+ αJα(x, u) = I (u),

where I (u) is described in (3.21).

Proof. First consider limα→0+ α E(
∫ ∞

0 e−αt dLxu(t)), where Lxu is as in (2.2). Similarly to
(5.1), we have

α E

( ∫ ∞

0
e−αt dLxu(t)

)
= α2 E

( ∫ ∞

0
e−αtLxu(t) dt

)
= α2

∫ ∞

0
e−αt E(Lxu(t)) dt, (6.1)

where we used Fubini’s theorem to obtain the last identity. By (3.1),

E(Lxu(t)) = ut + E(Xxu(t))− x.
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Therefore,

α2
∫ ∞

0
e−αt E(Lxu(t)) dt = α2u

∫ ∞

0
e−αt t dt + α2

∫ ∞

0
e−αt E(Xxu(t)) dt − αx

= u+ α2
∫ ∞

0
e−αt E(Xxu(t)) dt − αx. (6.2)

Furthermore, by (3.2), 0 ≤ E(Xxu(t)) ≤ K0(1+ tH ), where the constantK0 > 0 is independent
of t and u. Thus,

0 ≤ α2
∫ ∞

0
e−αt E(Xxu(t)) dt

≤ K0α
2
∫ ∞

0
e−αt (1 + tH ) dt

≤ K0(α + gamma(H)α1−H ), (6.3)

where gamma(H) := ∫ ∞
0 e−t tH dt = α1+H ∫ ∞

0 e−αt tH dt is the gamma function evaluated
at H .

Since H ∈ (0, 1), it follows from (6.3) that limα→0+ α2
∫ ∞

0 e−αt E(Xxu(t)) dt = 0. Hence,
using (6.1) and (6.2), we obtain

lim
α→0+ α E

( ∫ ∞

0
e−αt dLxu(t)

)
= u. (6.4)

We next consider limα→0+ α E(
∫ ∞

0 e−αtC(Xxu(t)) dt). It follows from (3.18) that∣∣∣∣E( ∫ ∞

0
e−αtC(Xxu(t)) dt

)
− E

( ∫ ∞

0
e−αtC(X∗

u(t)) dt

)∣∣∣∣
≤ E

( ∫ ∞

0
|C(Xxu(t))− C(X∗

u(t))| dt

)
< ∞,

where X∗
u is the stationary process described in (3.5) and (3.6). Therefore,

lim
α→0+ α E

( ∫ ∞

0
e−αtC(Xxu(t)) dt

)
= lim
α→0+ α E

( ∫ ∞

0
e−αtC(X∗

u(t)) dt

)
= lim
α→0+ α

∫ ∞

0
e−αt E(C(Zu)) dt

= E(C(Zu))

= G(u), (6.5)

where G(u) is defined in Section 3.3. It follows from (2.7), (6.4), and (6.5) that

lim
α→0+ αJα(x, u) = h(u)+ pu+G(u) = I (u),

where I (u) is given in (3.21). This completes the proof of the lemma.

The next proposition contains the proof of the first part of Theorem 6.1.
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Proposition 6.2. LetXxu satisfy (3.1), and letVα(x) be the corresponding value function defined
in (2.8). Then

lim
α→0+ αVα(x) = V0 < ∞,

where V0 is the value of the long-run average cost minimization problem given in (2.6).

Proof. Fix the initial point x ≥ 0. For any u > 0, we have αVα(x) ≤ αJα(x, u). Hence, by
Lemma 6.1, lim supα→0+ αVα(x) ≤ limα→0+ αJα(x, u) = I (u). Therefore, minimizing the
right-hand side over u > 0, we obtain

lim sup
α→0+

αVα(x) ≤ inf
u>0

I (u) = V0.

It remains to show the validity of the reverse inequality, namely that

lim inf
α→0+ αVα(x) ≥ inf

u>0
I (u) = V0. (6.6)

To this end, consider a decreasing to zero sequence αn > 0, n ∈ N, such that

lim inf
α→0+ αVα(x) = lim

n→∞αnVαn(x). (6.7)

Fix any ε0 > 0, and let un > 0, n ∈ N, be a sequence such that Vαn(x) + ε0 > Jαn(x, un).
Then

αnVαn(x)+ αnε0 > αnJαn(x, un) ≥ h(un). (6.8)

Letting n → ∞ we obtain

lim sup
n→∞

h(un) ≤ lim sup
n→∞

αnVαn(x) ≤ V0. (6.9)

Since limx→∞ h(x) = +∞, this implies that un is a bounded sequence. That is, there is an
M > 0 such that un ∈ (0,M) for all n ∈ N. Therefore, without loss of generality, we can
assume that un converges as n → ∞ to some u∞ ∈ [0,M] (otherwise, we can consider a
convergent subsequence of un).

Let δ ∈ (u∞,∞). Then,

αnJαn(x, un) ≥ h(un)+ α2
np

∫ ∞

0
e−αnt E(Lxun(t)) dt + αn

∫ ∞

0
e−αnt E[C(Xxδ (t))] dt.

Since E(Lxun(t)) = E(Xxun(t))+ unt − x ≥ unt − x, we obtain

α2
n

∫ ∞

0
e−αnt E(Lxun(t)) dt ≥ un − αnx,

and, hence,

αnJαn(x, un) ≥ h(un)+ pun − pαnx + αn

∫ ∞

0
e−αnt E[C(Xxδ (t))] dt.

Therefore, letting n go to ∞ and using (6.5), we obtain

lim inf
n→∞ αnJαn(x, un) ≥ h(u∞)+ pu∞ + E[C(Zδ)]. (6.10)

https://doi.org/10.1239/aap/1269611149 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1269611149


206 A. P. GHOSH ET AL.

In particular, we can conclude that u∞ > 0, because otherwise, letting δ tend to 0 and using
Lemma 3.2, we would obtain lim infn→∞ αnJαn(x, un) = +∞, which contradicts the fact that
lim supn→∞ αnJαn(x, un) ≤ V0 < ∞ according to (6.8) and (6.9). Therefore, u∞ > 0.

Letting δ in (6.10) tend to u∞ and again using the continuity of G(u) = E[C(Zu)] proved
in Lemma 3.2, we obtain

lim inf
n→∞ αnJαn(x, un) ≥ h(u∞)+ pu∞ + E[C(Zu∞)] = I (u∞) ≥ V0. (6.11)

Inequalities (6.8), (6.9), and (6.11) combined together yield

lim
n→∞αnJαn(x, un) = I (u∞) = V0,

which completes the proof of the proposition in view of (6.7). Note that (6.11) implies that u∞
is an optimal control for the long-run average cost control problem.

The following proposition includes the second part of Theorem 6.1.

Proposition 6.3. Under the conditions of Theorem 6.1, we have

lim
T→∞

V (x, T )

T
= V0.

Proof. It follows from (2.5) and (2.10) that, for any x ≥ 0 and u > 0, we have

lim sup
T→∞

I (u, x, T )

T
= I (u),

where I (u) is given in (3.21). Therefore

lim sup
T→∞

V (x, T )

T
≤ lim sup

T→∞
I (u, x, T )

T
= I (u),

and minimizing the right-hand side over u > 0, we obtain

lim sup
T→∞

V (x, T )

T
≤ inf
u>0

I (u) = V0. (6.12)

It remains to show that

lim inf
T→∞

V (x, T )

T
≥ V0. (6.13)

The proof of (6.13) given below is quite similar to that of (6.6). Consider a sequence of positive
real numbers (Tn)n∈N such that limn→∞ Tn = +∞ and

lim inf
T→∞

V (x, T )

T
= lim
n→∞

V (x, Tn)

Tn
.

Fix any ε0 > 0, and, for each n ∈ N, choose un > 0 such that V (x, Tn) + ε0 > I (un, x, Tn).
Then, in view of (2.10) and (6.12), we have

lim sup
n→∞

h(un) ≤ lim sup
n→∞

V (x, Tn)

Tn
≤ V0 < +∞.
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Since limx→∞ h(x) = +∞, this implies that un is a bounded sequence. That is, there is an
M > 0 such that un ∈ (0,M) for all n ∈ N. Taking a further subsequence if necessary, we
can assume without loss of generality that un converges to some u∞ ∈ [0,M] as n → ∞.
Furthermore, u∞ > 0 because if u∞ = 0 then by (3.20) we obtain

V0 ≥ lim sup
n→∞

V (x, Tn)

Tn
≥ lim sup

n→∞
I (un, x, Tn)

Tn
≥ E(C(Zδ)) for any δ > 0.

This is impossible in view of part (iii) of Lemma 3.2. Therefore u∞ > 0. Let v1 and v2 be any
numbers such that 0 < v1 < u∞ < v2. Then, by (2.10) and an argument similar to that used
to derive (6.10), we have

V (x, Tn)+ ε0 > I (un, x, Tn) ≥ h(v1)Tn + E(Lxv1
(Tn))+

∫ Tn

0
E[C(Xxv2

(t))] dt

for large enough n. Using Lemma 3.1 along with (3.20), we deduce that

lim inf
n→∞

V (x, Tn)

Tn
≥ h(v1)+ pv1 + E(C(Zv2)).

Since the functions h(u) and G(u) = E(C(Zu)) are continuous, this implies that

V0 ≥ lim inf
n→∞

V (x, Tn)

Tn
≥ h(u∞)+ pu∞ + E(C(Zu∞)) = I (u∞) ≥ V0.

The proof of (6.13) and, hence, the proof of the proposition is complete. In fact, the above
inequality also shows that u∞ is an optimal control for the long-run average cost control
problem.

Propositions 6.2 and 6.3 combined together yield Theorem 6.1.

Remark 6.1. The proofs of Propositions 6.2 and 6.3 also imply the following results.

1. Let (αn)n≥0 be a sequence of positive numbers converging to zero, and let un be an
ε-optimal control for Vαn(x) in (2.8). Then the sequence (un)n≥0 is bounded and any
limit point of (un)n≥0 is an optimal control for V0 defined in (2.6).

2. Let (Tn)n≥0 be a sequence of positive numbers such that limn→∞ Tn = +∞. If un be an
ε-optimal control for V (x, Tn) in (2.9), then the sequence (un)n≥0 is bounded and any
limit point of (un)n≥0 is an optimal control for V0 defined in (2.6).

Acknowledgements

The work of Arka Ghosh was partially supported by the National Science Foundation grant
DMS-0608634. The work of Ananda Weerasinghe was partially supported by the US Army
Research Office grant W911NF0710424. We are grateful for their support.

References

[1] Ata, B., Harrison, J. M. and Shepp, L. A. (2005). Drift rate control of a Brownian processing system. Ann.
Appl. Prob. 15, 1145–1160.

[2] Bell, S. L. and Williams, R. J. (2001). Dynamic scheduling of a system with two parallel servers in heavy
traffic with resource pooling: asymptotic optimality of a threshold policy. Ann. Appl. Prob. 11, 608–649.

https://doi.org/10.1239/aap/1269611149 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1269611149


208 A. P. GHOSH ET AL.

[3] Biagini, F., Hu, Y., Oksendal, B. and Sulem, A. (2002). A stochastic maximum principle for processes
driven by fractional Brownian motion. Stoch. Process. Appl. 100, 233–253.

[4] Biagini, F., Hu, Y., Oksendal, B. and Zhang, T. (2008). Stochastic Calculus for Fractional Brownian Motion
and Applications. Springer, London.

[5] Budhiraja, A. and Ghosh, A. P. (2005). A large deviations approach to asymptotically optimal control of
crisscross network in heavy traffic. Ann. Appl. Prob. 15, 1887–1935.

[6] Budhiraja, A. and Ghosh, A. P. (2006). Diffusion approximations for controlled stochastic networks: an
asymptotic bound for the value function. Ann. Appl. Prob. 16, 1962–2006.

[7] Duffield, N. G. and O’Connell, N. (1995). Large deviations and overflow probabilities for the general
single-server queue, with applications. Math. Proc. Camb. Phil. Soc. 118, 363–374.

[8] Duncan, T. E. (2007). Some stochastic systems with a fractional Brownian motion and applications to control.
In Proc. American Control Conference (New York, July 2007), pp. 1110–1114.

[9] Ghosh, A. P. and Weerasinghe, A. (2008). Optimal buffer size and dynamic rate control for a queueing
network with impatient customers in heavy traffic. Submitted. Available at
http://www.public.iastate.edu/∼apghosh/reneging_queue.pdf.

[10] Gong, W.-B. Liu, Y., Misra, V., and Towsley, D. (2005). Self-similarity and long range dependence on the
Internet: a second look at the evidence, origins and implications. Comput. Networks 48, 377–399.

[11] Hairer, M. (2005). Ergodicity of stochastic differential equations driven by fractional Brownian motion. Ann.
Prob. 33, 703–758.

[12] Harrison, J. M. (1985). Brownian Motion and Stochastic Flow Systems. John Wiley, New York.
[13] Harrison, J. M. (2003). A broader view of Brownian networks. Ann. Appl. Prob. 13, 119–1150.
[14] Heath, D., Resnick, S. and Samorodnitsky, G. (1997). Patterns of buffer overflow in a class of queues with

long memory in the input stream. Ann. Appl. Prob. 7, 1021–1057.
[15] Heath, D., Resnick, S. and Samorodnitsky, G. (1998). Heavy tails and long range dependence in ON/OFF

processes and associated fluid models. Math. Oper. Res. 23, 145–165.
[16] Hu, Y. and Zhou, X.-Y. (2005). Stochastic control for linear systems driven by fractional noises. SIAM J.

Control Optimization 43, 2245–2277.
[17] Kleptsyna, M. L., Le Breton, A. and Viot, M. (2003). About the linear-quadratic regulator problem under

a fractional Brownian perturbation. ESAIM Prob. Statist. 7, 161–170.
[18] Konstantopoulos, T. and Last, G. (2000). On the dynamics and performance of stochastic fluid systems.

J. Appl. Prob. 37, 652–667.
[19] Konstantopoulos, T. and Lin, S.-J. (1996). Fractional Brownian approximations of queueing networks. In

Stochastic Networks (Lecture Notes Statist. 117), Springer, New York, pp. 257–273.
[20] Konstantopoulos, T., Zazanis, M. and De Veciana, G. (1996). Conservation laws and reflection mappings

with an application to multi-class mean value analysis for stochastic fluid queues. Stoch. Process. Appl. 65,
139–146.

[21] Kruk, L., Lehoczky, J., Ramanan, K. and Shreve, S. (2007). An explicit formula for the Skorohod map
on [0, a]. Ann. Prob. 35, 1740–1768.

[22] Leland, W. E., Taqqu, M. S., Willinger, W. and Wilson, D. V. (1994). On the self-similar nature of
Ethernet traffic (extended version). IEEE/ACM Trans. Networking 2, 1–15.

[23] Mandelbrot, B. B. and Van Ness, J. W. (1968). Fractional Brownian motions, fractional noises and
applications. SIAM Rev. 10, 422–437.

[24] Norros, I. (1994). A storage model with self-similar input. Queueing Systems 16, 387–396.
[25] Nualart, D. (2006). The Malliavin Calculus and Related Topics, 2nd edn. Springer, Berlin.
[26] Paxson, V. and Floyd, S. (1995). Wide-area traffic: the failure of Poisson modeling. IEEE/ACM Trans.

Networking 3, 226–244.
[27] Sahinoglu, Z. and Tekinay, S. (1999). Self-similar traffic and network performance. IEEE Commun. Mag.

37, 48–52.
[28] Samorodnitsky, G. and Taqqu, M. S. (1994). Stable Non-Gaussian Random Processes. Chapman and Hall,

New York.
[29] Shiryaev, A. N. (1999). Essentials of Stochastic Finance. World Scientic, River Edge, NJ.
[30] Taqqu, M., Willinger, W. and Sherman, R. (1997). Proof of a fundamental result in self-similar traffic

modeling. Comput. Commun. Rev. 27, 5–23.
[31] Taqqu, M. S., Willinger, W., Sherman, R. and Wilson, D. V. (1997). Self-similarity through high-

variability: statistical analysis of Ethernet LAN traffic at the source level. IEEE ACM Trans. Networking
5, 71–86.

[32] Weerasinghe, A. (2005). An Abelian limit approach to a singular ergodic control problem. SIAM J. Control
Optimization 44, 714–737.

[33] Whitt, W. (2000). An overview of Brownian and non-Brownian FCLTs for the single-server queue. Queueing
Systems 36, 39–70.

https://doi.org/10.1239/aap/1269611149 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1269611149


Stochastic processing system driven by a fractional Brownian motion 209

[34] Whitt, W. (2002). Stochastic-Process Limits. Springer, New York.
[35] Willinger, W., Paxson, V. and Taqqu, M. S. (1998). Self-similarity and heavy tails: structural modeling of

network traffic. In A Practical Guide to Heavy Tails: Statistical Techniques and Applications, eds R. Adler,
R. Feldman, and M. S. Taqqu, Birkhauser, Boston, MA, pp. 27–53.

[36] Willinger, W., Taqqu, M. S. and Erramilli, A. (1996). A bibliographical guide to self-similar traffic and
performance modeling for modern high-speed networks. In Stochastic Networks: Theory and Applications
(R. Statist. Soc. Lecture Notes Ser. 4), Oxford University Press, pp. 339–366.

[37] Zeevi, A. J. and Glynn, P. W. (2000). On the maximum workload of a queue fed by fractional Brownian
motion. Ann. Appl. Prob. 10, 1084–1099.

https://doi.org/10.1239/aap/1269611149 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1269611149

	1 Introduction
	1.1 Motivating example

	2 Basic setup
	2.1 Model
	2.2 Three control problems
	2.3 The reflection map

	3 Long-run average cost minimization problem
	3.1 Reduction of the cost structure
	3.2 A coupling time
	3.3 Properties of `39`42`"613A``45`47`"603AE(C(Zu))
	3.4 Existence of an optimal control
	3.5 Generalizations

	4 A constrained minimization problem
	5 Infinite-horizon discounted cost minimization problem
	6 Finite-horizon problem and Abelian limits
	Acknowledgements
	References

