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Abstract

We define a class of nonlinear mappings which is properly larger than the class of nonexpansive mappings.
We also give a fixed point theorem for this new class of mappings.
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1. Introduction

Nonexpansive mappings are those which have Lipschitz constant equal to one. For
example, contractions, isometries and the resolvents of accretive operators are all
nonexpansive. In the setting of Banach spaces, the fixed point theory for nonexpansive
mappings has been an object of extensive research because, amongst other reasons,
there is a deep connection between these fixed point results and the geometric
properties of the norm of the Banach space where the mappings are defined.

Several generalisations of nonexpansive mappings have received attention, for
example those due to Goebel and Kirk [7], Goebel et al. [8], Suzuki [11], Garcı́a-
Falset et al. [6] and Aoyama and Kohsaka [1]. The goal of these generalisations is
simply to enlarge the class of mappings for which the fixed point results (existence
and convergence of some iteration process) hold. In 2011, Llorens-Fuster and Moreno-
Gálvez [10] defined the so-called L-type mappings. This is a quite general class
of mappings which properly contains most of the previously defined families of
generalised nonexpansive mappings.

To check that a given mapping belongs to any of these classes of generalised
nonexpansive mappings can often be a hard task. Here we will define a different class
of (nonlinear) mappings for which this task seems to be easier. We have called them
orbitally nonexpansive and they properly contain the nonexpansive mappings and also
the L-type mappings in some cases.
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We will give a fixed point result for orbitally nonexpansive mappings in reflexive
Banach spaces and we will also give an example of a fixed point free orbitally
nonexpansive selfmapping of a closed, convex and bounded subset of a reflexive
Banach space. This is a remarkable feature of this class of mappings, because it
is unknown if there exists a nonexpansive fixed point free mapping under these
conditions.

2. Preliminaries

Throughout this paper, we suppose that (X, ‖ · ‖) is a real Banach space and 0X its
zero vector. If A is a nonempty subset of X, conv(A) will denote the convex hull of the
set A. From now on, C stands for a given nonempty, closed, convex and bounded subset
of X. A mapping T : C→ X is nonexpansive if for all x, y ∈ C, ‖T (x) − T (y)‖ ≤ ‖x − y‖.
If T : C → C is a mapping and x0 ∈ C, the sequence (T n(x0)) is often called the orbit
of T starting at x0. If T : C → X is a mapping, a sequence (xn) in C is called an almost
fixed point sequence (a.f.p.s. for short) for T in C whenever xn − T (xn)→ 0X . It is well
known that if T : C → C is nonexpansive and D ⊂ C is nonempty, closed, convex and
T -invariant (that is, T (D) ⊂ D), then T has almost fixed point sequences in D.

Definition 2.1 [10]. We say that the mapping T : C→ C is an L-type mapping (or that
T satisfies condition (L)) on C provided that:

(a) if D ⊂ C is nonempty, closed, convex and T -invariant, then T has an a.f.p.s. (xn)
in D;

(b) for every a.f.p.s. (xn) for T in C and, for each x ∈ C,

lim sup
n→∞

‖xn − T (x)‖ ≤ lim sup
n→∞

‖xn − x‖.

The hypothesis (a) was called Condition (A) by Dhompongsa and Nanan in [4].
To check that a given mapping satisfies this condition can often become a hard task.
However, Condition (A) is automatically satisfied by several classes of mappings. For
instance, if a mapping T : C → C is nonexpansive with respect to some equivalent
renorming of X, then T satisfies Condition (A).

A mapping T : C → C is said to be asymptotically regular provided that for every
x ∈ C, T n+1(x) − T n(x)→ 0X . Of course, asymptotically regular mappings satisfy
Condition (A). Moreover, T is said to be quasi-nonexpansive provided that T has
at least one fixed point in C and, if p ∈ C is such a fixed point, then, for all x ∈ C,
‖p − T (x)‖ ≤ ‖p − x‖. This concept was essentially introduced (along with some
related ideas) by Dı́az and Metcalf [5] in 1967.

To finish this section, we recall a relevant geometric property of Banach spaces. A
Banach space (X, ‖ · ‖) is said to have normal structure if each nonempty, bounded,
closed and convex subset C of X with diam(C) > 0 contains a point p ∈ C such that
rC(p) := sup{‖p − x‖ : x ∈ C} < diam(C). Every uniformly convex Banach space has
normal structure, but the converse is not true.
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This property is relevant in metric fixed point theory because of the seminal work
of Kirk [9], who showed that every nonexpansive selfmapping of a nonempty weakly
compact convex set of a Banach space with normal structure has a fixed point. Similar
results for several kinds of generalised nonexpansive mappings were obtained in [3]
and [10].

3. Orbitally nonexpansive mappings

Several definitions of generalised nonexpansive mappings are concerned with
the iterates of the mapping under consideration and hence they are related to the
behaviour of its orbits. For instance, a mapping T : C → C is said to be asymptotically
nonexpansive (see [7]) if for all x, y ∈ C, ‖T n(x) − T n(y)‖ ≤ kn‖x − y‖, where (kn) is a
sequence of real numbers such that lim kn = 1.

Here we will present a class of mappings for which some of its orbits behave as a
kind of attractor.

Definition 3.1. A mapping T : C → C is said to be orbitally nonexpansive if for every
nonempty, closed, convex, T -invariant subset D of C, there exists some x0 ∈ D such
that for every x ∈ D,

lim sup
n→∞

‖T n(x0) − T (x)‖ ≤ lim sup
n→∞

‖T n(x0) − x‖. (3.1)

The following results are obvious.

Proposition 3.2. If T : C → C is nonexpansive, then T is orbitally nonexpansive. In
particular, every contraction and every constant mapping is orbitally nonexpansive.

Proposition 3.3. If T : C → C is an asymptotically regular L-type mapping, then T is
orbitally nonexpansive.

Proof. If D is a nonempty, closed, convex, T -invariant subset of C, we may choose any
x0 ∈ D and then (T n(x0)) is an a.f.p.s. because T is asymptotically regular. Moreover,
by condition (L), for every x ∈ D,

lim sup
n
‖T n(x0) − T (x)‖ ≤ lim sup

n
‖T n(x0) − x‖,

which means that T is orbitally nonexpansive. �

There are continuous orbitally nonexpansive mappings which are not Lipchitzian.

Example 3.4. Let T : [0, 1]→ [0, 1] be given by T (x) =
√

x. The closed convex T -
invariant subsets of [0, 1] are just all the intervals of the form [a, 1] with a ∈ [0, 1].
Choosing x0 = 1 gives T n(x0) ≡ 1. Therefore, for every x ∈ [a, 1],

lim sup
n→∞

|T n(x0) − T (x)| = |1 −
√

x| =
1 − x

1 +
√

x
≤ |1 − x| = lim sup

n→∞
|T n(x0) − x|

and T is an orbitally nonexpansive mapping. On the other hand, 0 ∈ Fix(T ) and, for
every x ∈ (0, 1), |0 −

√
x| > |0 − x|. Thus, the mapping T is not quasi-nonexpansive and
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hence fails to satisfy condition (L). Moreover, the mapping T is asymptotically regular.
Indeed, for every x ∈ (0, 1),

lim
n
|T n+1(x) − T n(x)| = lim

n
|x2−n−1

− x2−n
| = lim

n
x2−n−1

|1 − x2−n−1
| = 0

and the same equality holds for the trivial cases x = 0 and x = 1. Thus, the asymptotic
regularity alone is not sufficient for condition (L). From this example it follows that
the assumption of condition (L) is not superfluous in Proposition (3.3).

Proposition 3.5. Let (X, ‖ · ‖) be a Banach space with normal structure. Let C be a
nonempty, weakly compact, convex subset of X. Then every L-type mapping T : C→ C
is orbitally nonexpansive.

Proof. Let D be a nonempty, closed, convex T -invariant subset of C. Since T is an L-
type mapping, from [10, Theorem 4.4], T has a fixed point x0 ∈ D. Then T n(x0) ≡ x0
and therefore, for every x ∈ D, bearing in mind that L-type mappings are quasi-
nonexpansive,

lim sup
n
‖T n(x0) − T (x)‖ = ‖x0 − T (x)‖ ≤ ‖x0 − x‖ = lim sup

n
‖T n(x0) − x‖,

which implies that T is orbitally nonexpansive. �

Notice that orbitally nonexpansive mappings need not be continuous, as [11,
Example 1] and [10, Proposition 3.4], along with the above proposition, show.

4. Fixed point results

First of all, let us point out that there are orbitally nonexpansive fixed point free
mappings. Indeed, in Example 4.3 below, we will give an example which leaves
invariant a weakly compact convex subset of a reflexive Banach space.

Theorem 4.1. Let K be a nonempty weakly compact convex subset of a Banach space
(X, ‖ · ‖) with normal structure. Let T : K → K be an orbitally nonexpansive mapping.
Then T has a fixed point.

Proof. Since K is a weakly compact set, from a standard application of Zorn’s lemma,
there is a nonempty, closed, convex, T -invariant subset C of K with no proper subsets
enjoying these characteristics. From the definition of orbitally nonexpansive mapping,
there exists x0 ∈ C such that, for every x ∈ C,

lim sup
n→∞

‖T n(x0) − T (x)‖ ≤ lim sup
n→∞

‖T n(x0) − x‖.

We will distinguish two cases.

Case I. There exists z ∈ C such that T n(x0) = z for n large enough. We claim that, in
this case, z is a fixed point of T . Indeed,

‖z − T (z)‖ = lim sup
n→∞

‖T n(x0) − T (z)‖ ≤ lim sup
n→∞

‖T n(x0) − z‖ = 0.
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Case II. The sequence (T n(x0)) is bounded and not (eventually) constant. Since the
Banach space (X, ‖ · ‖) has normal structure, from [3, Corollary 1], the real function
g : C → [0,∞) defined by

g(x) := lim sup
n→∞

‖x − T n(x0)‖

is not constant on conv{T n(x0) : n = 1, 2, . . .}. Then g takes at least two different real
values, that is, there exist v1, v2 ∈ conv{T n(x0) : n = 1, 2, . . .} ⊂ C such that

r1 := g(v1) < g(v2) =: r2.

Let r := 1
2 (r1 + r2) and consider the set

M := {x ∈ C : g(x) ≤ r}.

It is straightforward to check that M is nonempty, closed and convex and M , C
because v2 < M. Moreover, for every x ∈ M, since T is an orbitally nonexpansive
mapping,

g(T (x)) = lim sup
n→∞

‖T (x) − T n(x0)‖ ≤ lim sup
n→∞

‖x − T n(x0)‖ = g(x) ≤ r.

Thus, M is a nonempty, closed, convex and T -invariant subset of C with M , C, which
is a contradiction to the minimality of C. Thus, Case II is not possible. �

We finish with two examples. The first is an orbitally nonexpansive mapping in a
Hilbert space (and hence for which Theorem 4.1 applies because every Hilbert space
has normal structure), but it does not fall into the scope of most of the standard fixed
point theorems.

Example 4.2. In the standard Hilbert space `2, consider the set

C = {x = (xn) ∈ `2 : ‖x‖2 ≤ 1, xn ≥ 0, n = 1, 2, . . .},

where ‖x‖2 = (
∑∞

n=1 |xn|
2)1/2 is the ordinary Euclidean norm of x = (xn) ∈ `2. Let

T : C → C be the mapping defined by T ((xn)) = (x2
n).

Notice that the origin 0`2 along with the elements of the standard Schauder basis {en}

are just the fixed points of T . It is easy to check that T fails to be quasi-nonexpansive
and, according to [10, page 5], T cannot be an L-type mapping.

It is obvious that, for every (xn) ∈ C,

‖T ((xn))‖2 =

∞∑
n=1

x4
n ≤

∞∑
n=1

x2
n = ‖(xn)‖2.

Let D be a nonempty, closed, convex, T -invariant subset of C. Then either 0`2 ∈ D or
D = {ek}. In the first case, choosing x0 = 0`2 ∈ D, for all y ∈ D,

lim sup ‖T n(x0) − T (y)‖2 = ‖T (y)‖2 ≤ ‖y‖2 = lim sup ‖T n(x0) − y‖2.

In the second case, D is a singleton and trivially (3.1) is satisfied. Thus, T is an orbitally
nonexpansive selfmapping of C but it is not nonexpansive.
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The following example shows that the assumption of normal structure cannot be
avoided in Theorem 4.1.

Example 4.3. Let X2 be the ordinary Hilbert space `2 endowed with the norm

|x| := max{‖x‖2, 2‖x‖∞},

where, for x = (xn) ∈ `2, ‖x‖∞ = sup{|xn| : n = 1,2, . . .}. It is obvious that X2 is a Banach
space which is isomorphic to (`2, ‖ · ‖2). It is well known that X2 fails to have normal
structure (see [2]).

For x ∈ `2, define S (x) := {n ∈ Z+ : |xn| = ‖x‖∞}. If x , 0`2 , then S (x) is a nonempty
finite set and we can define p(x) := max S (x). In particular, p( 1

2 ek) = k.
Let K := {x ∈ `2 : |x| ≤ 1, xn ≥ 0, n = 1, 2, . . .}. The set K is weakly compact and

convex in `2. Let us consider the mapping T : K → K defined by T (0`2 ) = 1
2 e1 and, for

x , 0`2 ,

T (x) = 1
2 ep(x)+1.

It is obvious that T maps K into itself and that T has no fixed points. In fact, for every
x ∈ K, x , 0`2 ,

T (x) = 1
2 ep(x)+1, T 2(x) = 1

2 ep(x)+2, . . . , T k(x) = 1
2 ep(x)+k.

For x = 0`2 , T (x) , 0`2 and therefore T k+1(x) = 1
2 ep(x)+k. Then, for n large enough and

x, y ∈ K,

‖T n(x) − y‖22 = 1
4 + ‖y‖2 − 2〈T n(x), y〉 = 1

4 + ‖y‖2 − yp(x)+n

and

‖T n(x) − T (y)‖22 = 1
2 .

On the other hand, also for n large enough, 2‖T n(x) − T (y)‖∞ = 1. Moreover,

2‖T n(x) − y‖∞ = 2‖(y1, . . . , yp(x), . . . ,
1
2 − yn+p(x), yn+p(x)+1, . . .)‖∞ → 1.

This implies that

lim sup
n→∞

|T n(x) − T (y)| = max
{√

1
2 , 1
}

= 1

while

lim sup
n→∞

|T n(x) − y| = max
{√

1
4 + ‖x‖2, 1

}
≥ 1

and it follows immediately that T is a fixed point free orbitally nonexpansive mapping
on K with respect to the norm | · |.
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5. Concluding remark

To be an orbitally nonexpansive mapping is a metric property, that is, an orbitally
nonexpansive mapping with respect to a given norm in a Banach space X may
lose this property after an equivalent renorming of X. For instance, the | · |-orbitally
nonexpansive mapping T considered in the last example is fixed point free. According
to Theorem 4.1, T cannot be orbitally nonexpansive with respect to the Euclidean norm
‖ · ‖2, which enjoys normal structure.

A Banach space is said to have the fixed point property for nonexpansive mappings
(FPP in short) if, for every nonempty, closed, convex, bounded subset C of X, every
nonexpansive mapping T : C → C has a fixed point. In a similar way, the fixed
point property with respect to orbitally nonexpansive mappings (ONE-FPP) could be
defined. Notice that it is a famous open question whether every reflexive Banach space
enjoys FPP. While the space X2 of the last example enjoys FPP (see [2]), it is obvious
that it fails ONE-FPP. This raises the question of characterising the Banach spaces
enjoying this property.
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