JFM ARCHIVE

Journal of Fluid Mechanics

Digital Archive 1956–1996

Vital research from the definitive source

The JFM Digital Archive contains every article from the first 40 years of the journal, scanned and digitised to the highest standards.

Please speak to your librarian about gaining access.

journals.cambridge.org/jfm

- Faster publication
- Greater visibility for papers
- Freely available to all for the first year

For more information visit

journals.cambridge.org/rapids

Journal of Fluid Mechanics

Editor

M. G. Worster, University of Cambridge, UK

Journal of Fluid Mechanics is the leading international journal in the field and is essential reading for all those concerned with developments in fluid mechanics. It publishes authoritative articles covering theoretical, computational and experimental investigations of all aspects of the mechanics of fluids. Each issue contains papers on both the fundamental aspects of fluid mechanics, and their applications to other fields such as aeronautics, astrophysics, physiology, chemical and mechanical engineering, hydraulics, meteorology, oceanography, geology, acoustics and combustion.

Price information

is available at: http://journals.cambridge.org/flm

Free email alerts

Keep up-to-date with new material — sign up at http://journals.cambridge.org/flm-alerts

Journal of Fluid Mechanics

is available online at: http://journals.cambridge.org/flm

To subscribe contact Customer Services

in Cambridge:

Phone +44 (0)1223 326070 Fax +44 (0)1223 325150 Email journals@cambridge.org

in New York:

Phone +1 (845) 353 7500 Fax +1 (845) 353 4141 Email subscriptions_newyork@cambridge.org

For free online content visit: http://journals.cambridge.org/flm

International Journal of Astrobiology

Managing Editor

Rocco Mancinelli, Bay Area Envirionmental Research Institute, NASA, USA

International Journal of Astrobiology is the peer-reviewed forum for practitioners in this exciting interdisciplinary field. Coverage includes cosmic prebiotic chemistry, planetary evolution, the search for planetary systems and habitable zones, extremophile biology and experimental simulation of extraterrestrial environments, Mars as an abode of life, life detection in our solar system and beyond, the search for extraterrestrial intelligence, the history of the science of astrobiology, as well as societal and educational aspects of astrobiology. Occasionally an issue of the journal is devoted to the keynote plenary research papers from an international meeting. A notable feature of the journal is the global distribution of its authors.

Price information

is available at: http://journals.cambridge.org/ija

Free email alerts

Keep up-to-date with new material – sign up at http://journals.cambridge.org/ija-alerts

International Journal of Astrobiology

is available online at: http://journals.cambridge.org/ija

To subscribe contact Customer Services

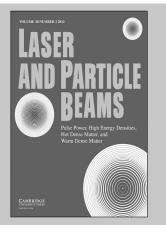
in Cambridge:

Phone +44 (0)1223 326070 Fax +44 (0)1223 325150 Email journals@cambridge.org

in New York:

Phone +1 (845) 353 7500 Fax +1 (845) 353 4141 Email subscriptions_newyork@cambridge.org

For free online content visit: http://journals.cambridge.org/ija



Laser and Particle Beams

Editor-in-Chief

Dieter H. H. Hoffmann, Technical University Darmstadt, Germany

Laser and Particle Beams is an international journal which deals with basic physics issues of intense laser and particle beams, and the interaction of these beams with matter. The journal is designed to aid scientists in the task of understanding and modeling basic phenomena in these fields. Subjects covered include the physics of high energy densities; non-LTE phenomena; hot dense matter and related atomic, plasma and hydrodynamic physics and astrophysics; intense sources of coherent radiation; high current particle accelerators; beam-wave interaction; and pulsed power technology.

Laser and Particle Beams

is available online at: http://journals.cambridge.org/lpb

To subscribe contact Customer Services

in Cambridge:

Phone +44 (0)1223 326070 Fax +44 (0)1223 325150 Email journals@cambridge.org

in New York:

Phone +1 (845) 353 7500 Fax +1 (845) 353 4141 Email subscriptions_newyork@cambridge.org

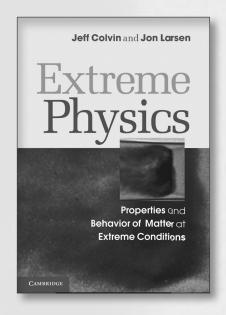
Free email alerts

Keep up-to-date with new material – sign up at

journals.cambridge.org/register

For free online content visit: http://journals.cambridge.org/lpb

CAMBRIDGE



Extreme Physics

Properties and Behavior of Matter at Extreme Conditions

Jeff Colvin and Jon Larsen

Most matter in the Universe, from the deep interior of planets to the core of stars, is at high temperature or high pressure compared to the matter of our ordinary experience. This offers a comprehensive introduction to the basic physical theory on matter at such extreme conditions and the mathematical modeling techniques involved in numerical simulations of its properties and behavior. Focusing computational modeling, the book discusses topics such as the basic properties of dense plasmas; ionization physics; the physical mechanisms by which laser light is absorbed in matter; radiation transport in matter; the basics of hydrodynamics and shock-wave formation and propagation; and numerical simulation of radiation-hydrodynamics phenomenology. End-of-chapter exercises

allow the reader to test their understanding of the material and introduce additional physics, making this an invaluable resource for researchers and graduate students in this broad and interdisciplinary area of physics.

Contents:

Acknowledgements; 1. Extreme environments: what, where, how; 2. Properties of dense and classical plasmas; 3. Laser energy absorption in matter; 4. Hydrodynamic motion; 5. Shocks; 6. Equation of state; 7. Ionization; 8. Thermal energy transport; 9. Radiation energy transport; 10. Magnetohydrodynamics; 11. Considerations for constructing radiation-hydrodynamics computer codes; 12. Numerical simulations; Appendix: units and constants, glossary of symbols; References; Bibliography; Index.

\$99.00: Hardback: 978-1-107-01967-6: 416 pp.

Price subject to change.

www.cambridge.org/9781107019676

@CambUP_Physics
800.872.7423 / +44 (0)1223 326050

Instructions for Authors

Editorial policy The journal welcomes submissions in any of the areas of plasma physics. Its scope includes experimental and theoretical work on basic plasma physics, the plasma physics of magnetic and inertial fusion, laser—plasma interactions, industrial plasmas, plasma devices and plasmas in space and astrophysics. This list is, of course, merely illustrative of the wide range of topics on which papers are invited, and is not intended to exclude any aspect of plasma physics that is not explicitly mentioned.

Authors are urged to ensure that their papers are written clearly and attractively, in order that their work will be readily accessible to readers. Manuscripts must be written in English. *Journal of Plasma Physics* employs a rigorous peer-review process whereby all submitted manuscripts are sent to recognized experts in their subjects for evaluation. The Editors' decision on the suitability of a manuscript for publication is final.

Submission of manuscripts Papers may be submitted to the Editor or any of the Associate Editors via the online submission system, mc.manuscriptcentral.com/pla. When a paper is accepted, the authors will be asked to supply source files in LaTeX or Word. Instructions for the preparation of these files and LaTeX style files are given in the Instructions for Contributors link at journals.cambridge.org/pla.

Incremental publishing and DOIs In order to make articles which have been accepted for publication in *Journal of Plasma Physics* available as quickly as possible, they are now published incrementally online (at Cambridge Journals Online; journals.cambridge.org) The online version is available as soon as author corrections have been completed and before the article appears in a printed issue. A reference is added to the first page of the article in the journal catchline. This is the DOI – Digital Object Identifier. This is a global publishers' standard. A unique DOI number is created for each published item. It can be used for citation purposes instead of volume, issue and page numbers. It therefore suits the early citation of articles which are published on the web before they have appeared in a printed issue. See journals.cambridge.org/pla.

Proof reading Only typographical or factual errors may be changed at proof stage. The publisher reserves the right to charge authors for correction of non-typographical errors.

Offprints Corresponding authors will receive a PDF of their article upon publication. Print offprints may be purchased from the publisher if ordered at first proof stage.

Copying This journal is registered with the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923. Organizations in the USA who are also registered with C.C.C. may therefore copy material (beyond the limits permitted by sections 107 and 108 of US copyright law) subject to payment to C.C.C. of the per copy fee of \$16.00. This consent does not extend to multiple copying for promotional or commercial purposes. Code 0022–3778/2014 \$16.00.

ISI Tear Sheet Service, 3501 Market Street, Philadelphia, Pennsylvania 19104, USA, is authorized to supply single copies of separate articles for private use only.

Organizations authorized by the Copyright Licensing Agency may also copy material subject to the usual conditions. *For all other use*, permission should be sought from Cambridge or the American Branch of Cambridge University Press.

JOURNAL OF PLASMA PHYSICS

VOLUME 80 • PART 3

Research Articles

<i>V. A. Lisovskiy, E. P. Artushenko and V. D. Yegorenkov</i>	319
Theoretical analyses of current amplification in a new kind of plasma magnetic flux	
compression generator Xiang Xu, Lin Chen, Cheng-Zheng Qian and You-Nian Wang	329
Electrostatic shielding in plasmas and the physical meaning of the Debye length G. Livadiotis and D. J. McComas	341
Dispersion equation for ballooning modes in two-component plasma D. A. Kozlov, N. G. Mazur, V. A. Pilipenko and E. N. Fedorov	379
Analytical model for gyro-phase drift arising from abrupt inhomogeneity Jeffrey J. Walker, M. E. Koepke, M. I. Zimmerman, W. M. Farrell and V. I. Demidov	395
Solitary Langmuir waves in two-electron temperature plasma V. V. Prudkikh	405
On error field penetration processes in magnetic island mode locking H. H. Wang, Z. X. Wang and X. G. Wang	417
The stability of the dust acoustic waves under transverse perturbations in a magnetized and collisionless dusty plasma Dong-Ning Gao, Xin Qi, Xue-Ren Hong, Xue Yang, Wen-Shan Duan and Lei Yang	425
Possible reason of ionospheric anomaly post the April 20, 2013, $M_W = 6.6$ China' Lushan earthquake: Applying two-dimensional principal component analysis (2DPCA) to two-dimensional total electron content (TEC)	427
Jyh-Woei Lin Partially transverse and partially longitudinal wave in non-uniform electron plasmas Hamid Saleem	437 447
Terahertz wave generation by beating of two spatial-Gaussian lasers in collisional plasma <i>M. Sharifian, H. R. Sharifinejad and H. Golbakhsi</i>	453
Non-Markovian dynamics of dust charge fluctuations in dusty plasmas H. Asgari, S. V. Muniandy and Amir Ghalee	465
Solution of Grad–Shafranov equation by the method of fundamental solutions <i>D. Nath and M. S. Kalra</i>	477
Examining the range of validity of the Bohm criterion R. Morales Crespo and R. N. Franklin	495
Comment on 'Propagation of solitary waves and shock wavelength in the pair plasma (J. Plasma Phys. 78, 525–529, 2012)' Frank Verheest	513
Dust acoustic shock waves in dusty plasma of opposite polarity with non-extensive electron and ion distributions S. K. Zaghbeer, H. H. Salah, N. H. Sheta, E. K. El-Shewy and A. Elgarayhi	517